G25.2651: Statistical Mechanics

Notes for Lecture 2

I. THE LIOUVILLE OPERATOR AND THE POISSON BRACKET

From the last lecture, we saw that Liouville’s equation could be cast in the form
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The Liouville equation is the foundation on which statistical mechanics rests. It will now be cast in a form that will be
suggestive of a more general structure that has a definite quantum analog (to be revisited when we treat the quantum
Liouville equation).

Define an operator
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known as the Liouville operator (i = v/—1 — the i is there as a matter of convention and has the effect of making L a
Hermitian operator). Then Liouville’s equation can be written
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The Liouville operator also be expressed as
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where {A, B} is known as the Poisson bracket between A(x) and B(x):
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Thus, the Liouville equation can be written as

of
—+{f,H} =0
o + {4 H)

The Liouville equation is a partial differential equation for the phase space probability distribution function. Thus,
it specifies a general class of functions f(x,t) that satisfy it. In order to obtain a specific solution requires more input
information, such as an initial condition on f, a boundary condition on f, and other control variables that characterize
the ensemble.

II. PRESERVATION OF PHASE SPACE VOLUME AND LIOUVILLE’S THEOREM

Consider a phase space volume element dxg at ¢ = 0, containing a small collection of initial conditions on a set of
trajectories. The trajectories evolve in time according to Hamilton’s equations of motion, and at a time ¢ later will
be located in a new volume element dx; as shown in the figure below:
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FIG. 1.

How is dxq related to dx;? To answer this, consider a trajectory starting from a phase space vector x¢ in dx¢ and
having a phase space vector x; at time t in dx;. Since the solution of Hamilton’s equations depends on the choice of
initial conditions, x; depends on xq:

xo = (P1(0), .., PN (0),71(0), --.,tn (0))
x¢ = (P1(t), -, PN (8),71(t), .-, N (1))
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Thus, the phase space vector components can be viewed as a coordinate transformation on the phase space from ¢t = 0
to time t. The phase space volume element then transforms according to

dxy = J(x¢;%0)dxg
where J(x;;%0) is the Jacobian of the transformation:
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where n = 6/N. The precise form of the Jacobian can be determined as will be demonstrated below.
The Jacobian is the determinant of a matrix M,
J(x¢;%0) = det(M) = eTrnM
whose matrix elements are
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Taking the time derivative of the Jacobian, we therefore have
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The matrices M~ and dM/dt can be seen to be given by
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Substituting into the expression for d.J/dt gives
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where the chain rule has been introduced for the derivative 8% /dxi. The sum over i can now be performed:

Z. 9x} OxF . ~ _
SO =N MG My =) MMt = 6
i=1

i=1 QX{ % i=1
Thus,
dJ - %]
>~ =7 i —L
dt j;l Ik ok
= 6—’? = JVy %
=1 %t
or
dJ
E == va - X

The initial condition on this differential equation is J(0) = J(x¢;x0) = 1. Moreover, for a Hamiltonian system
Vx - x = 0. This says that dJ/dt = 0 and J(0) = 1. Thus, J(x¢;x0) = 1. If this is true, then the phase space volume
element transforms according to

dX() = dXt

which is another conservation law. This conservation law states that the phase space volume occupied by a collection
of systems evolving according to Hamilton’s equations of motion will be preserved in time. This is one statement of
Liouville’s theorem.

Combining this with the fact that df /dt = 0, we have a conservation law for the phase space probability:

f(x0,0)dxo = f(x¢,t)dx;

which is an equivalent statement of Liouville’s theorem.



III. LIOUVILLE’S THEOREM FOR NON-HAMILTONIAN SYSTEMS

The equations of motion of a system can be cast in the generic form
X = ¢(x)
where, for a Hamiltonian system, the vector function £ would be
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and the incompressibility condition would be a condition on &:
Vi x=Vx-£=0

A non-Hamiltonian system, described by a general vector funciton £, will not, in general, satisfy the incompressibility
condition. That is:

Vi %x=Ve-E#0

Non-Hamiltonian dynamical systems are often used to describe open systems, i.e., systems in contact with heat
reservoirs or mechanical pistons or particle reservoirs. They are also often used to describe driven systems or systems
in contact with external fields.

The fact that the compressibility does not vanish has interesting consequences for the structure of the phase space.
The Jacobian, which satisfies

dJ .
E —JVX'X

will no longer be 1 for all time. Defining k = Vy - %, the general solution for the Jacobian can be written as

J(x¢3%x0) = J(x0;%0) exp (/Ot dsm(xs))

Note that J(xo;x0) = 1 as before. Also, note that & = dln J/dt. Thus, k can be expressed as the total time derivative
of some function, which we will denote W, i.e., K = W. Then, the Jacobian becomes
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= exp (W (x¢) — W(xo0))
Thus, the volume element in phase space now transforms according to
dx; = exp (W (x) — W(xo0)) dxo
which can be arranged to read as a conservation law:
e Wi dx, = e=Wko)gx,

Thus, we have a conservation law for a modified volume element, involving a “metric factor” exp(—W (x)). Introducing
the suggestive notation /g = exp(—W (x)), the conservation law reads \/g(xydx; = \/g(xodxo. This is a generalized
version of Liouville’s theorem. Furthermore, a generalized Liouville equation for non-Hamiltonian systems can be
derived which incorporates this metric factor. The derivation is beyond the scope of this course, however, the result
is

Afv9) + Vx- (xfv/g) =0

We have called this equation, the generalized Liouville equation Finally, noting that /g satisfies the same equation as
J, ie.,
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the presence of /g in the generalized Liouville equation can be eliminated, resulting in
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which is the ordinary Liouville equation from before. Thus, we have derived a modified version of Liouville’s theorem
and have shown that it leads to a conservation law for f equivalent to the Hamiltonian case. This, then, supports the
generality of the Liouville equation for both Hamiltonian and non-Hamiltonian based ensembles, an important fact
considering that this equation is the foundation of statistical mechanics.

IV. EQUILIBRIUM ENSEMBLES

An equilibrium ensemble is one for which there is no explicit time-dependence in the phase space distribution
function, f /0t = 0. In this case, Liouville’s equation reduces to

{f,H}=0

which implies that f(x) must be a pure function of the Hamiltonian

The specific form that F(H(x)) has depends on the specific details of the ensemble.

The integral over the phase space distribution function plays a special role in statistical mechanics:

F= / dxF(H (x)) 1)

It is known as the partition function and is equal to the number of members in the ensemble. That is, it is equal to
the number of microstates that all give rise to a given set of macroscopic observables. Thus, it is the quantity from
which all thermodynamic properties are derived.

If a measurement of a macroscopic observable A(x) is made, then the value obtained will be the ensemble average:
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Egs. (1) and (2) are the central results of ensemble theory, since they determine all thermodynamic and other
observable quantities.

A. Introduction to the Microcanonical Ensemble

The microcanonical ensemble is built upon the so called postulate of equal a priori probabilities:

Postulate of equal a priori probabilities: For an isolated macroscopic system in equilibrium, all microscopic
states corresponding to the same set of macroscopic observables are equally probable.

1. Basic definitions and thermodynamics

Consider a thought experiment in which N particles are placed in a container of volume V' and allowed to evolve
according to Hamilton’s equations of motion. The total energy E = H(x) is conserved. Moreover, the number of
particles N and volume V are considered to be fixed. This constitutes a set of three thermodynamic variables N, V, E
that characterize the ensemble and can be varied to alter the conditions of the experiment.



The evolution of this system in time generates a trajectory that samples the constant energy hypersurface H (x) = E.
All points on this surface correspond to the same set of macroscopic observables. Thus, by the postulate of equal
a priori probabilities, the corresponding ensemble, called the microcanonical ensemble, should have a distribution
function F'(H (x)) that reflects the fact that all points on the constant energy hypersurface are equally probable. Such
a distribution function need only reflect the fact that energy is conserved and can be written as

F(H(x)) = 6(H(x) - E)

where §(z) is the Dirac delta function. The delta function has the property that
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for any function f(x).

Averaging over the microcanonical distribution function is equivalent to computing the time average in our thought
experiment. The microcanonical partition function Q(N,V, E) is given by
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In Cartesian coordinates, this is equivalent to
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where C'y is a constant of proportionality. It is given by
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Here h is a constant with units Energy-Time, and Fj is a constant having units of energy. The extra factor of Fjy
is needed because the § function has units of inverse energy. Such a constant has no effect at all on any properties).
Thus, Q(N,V, E) is dimensionless. The origin of Cn is quantum mechanical in nature (h turns out to be Planck’s
constant) and must be put into the classical expression by hand. Later, we will explore the effects of this constant on
thermodynamic properties of the ideal gas.

Cn

The microcanonical partition function function measures the number of microstates available to a system which
evolves on the constant energy hypersurface. Boltzmann identified this quantity as the entropy, S of the system,
which, for the microcanonical ensemble is a natural function of N, V and E:

S =8(N,V,E)
Thus, Boltzmann’s relation between Q(N,V, E), the number of microstates and S(N,V, E) is
S(N,V,E) = klnQ(N,V, E)

where k is Boltzmann’s constant 1/k = 315773.218 Kelvin/Hartree. The importance of Boltzmann’s relation is that
it establishes a connection between the thermodynamic properties of a system and its microscopic details.

Recall the standard thermodynamic definition of entropy:
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where an amount of heat d@) is assumed to be absorbed reversibly, i.e., along a thermodynamic path, by the system.

The first law of thermodynamics states that the energy, E of the system is given by the sum of the heat absorbed by
the system and the work done on the system in a thermodynamic process:

E=Q+W

If the thermodynamic transformation of the system is carried reversibly, i.e., along a thermodynamic path, then the
first law will be valid for the differential change in energy, dE due to absorption of a differential amount of heat, dQ ey
and a differential amount of work, dIW done on the system:



dE =d@Q +dW

The work done on the system can be in the form of compression/expansion work at constant pressure, P, leading to
a change, dV in the volume and/or the insertion/deletion of particles from the system at constant chemical potential,
i, leading to a change dN in the particle number. Thus, in general

dW = —PdV + pdN

(The above relation for the work is true only for a one-component system. If there are M types of particles present,
then the second term must be generalized according to Ekle 1k dNy). Then, using the fact that dQ = T'dS, we have

dE = TdS — PdV + pdN

or
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But since S = S(N,V, E) is a natural function of N, V, and E, the differential, dS is also given by
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Comparing these two expressions, we see that
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Finally, using Boltzmann’s relation between the entropy S and the partition function (2, we obtain a prescription for
obtaining the thermodynamic properties of the system starting from a microscopic, particle-based description of the

system:
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Of course, the ultimate test of Boltzmann’s relation between entropy and the partition function is that the above
relations correctly generate the known thermodynamic properties of a given system, e.g. the equation of state. We
will soon see several examples in which this is, indeed, the case.



