
3.6 Hard Sphere Gas 
 
The interactions between the atoms or molecules of a real gas comprise a strong 
repulsion at short distances and a weak attraction at long distances. Both of these are 
important in determining how the properties of the gas differ from those of an ideal 
(non-interacting) gas. We quote from Chaikin and Lubensky1: “Although this seems 
like an immense trivialisation of the problem, there is a good deal of unusual and 
unexpected physics to be found in hard-sphere models.” 
 
The hard-sphere interaction is 
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where σ is the hard core diameter. It is indeed a simplification of a real inter-particle 
interaction – but what behaviour does it predict? What properties of real systems can 
be understood in terms of the short-distance repulsion? And, indeed, what properties 
cannot be understood from this simplification? 
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Fig. 3.1?  Hard core potential 

 
The direct way of solving the problem of the hard sphere fluid would be to evaluate 
the partition function; everything follows from that. Even for an interaction as simple 
as this, it turns out that the partition function cannot be evaluated analytically except 
in one dimension: the so-called Tonks ‘hard stick’ model. This leads to the Clausius 
equation of state. Certainly in two and three dimensions no explicit solution is 
possible.   
 
(Question – is ‘excluded volume’ treatment a mean-field treatment – and so is the 
excluded volume argument then valid for four and higher dimensions? This can be 
tested using the virial coefficients calculated by Clisby and McCoy for four and 
higher dimensions.) 
 
Arguments about why the partition function (really the configuration integral) is so 
difficult to evaluate are given in Reif. The point is that the excluded volumes appear 
in nested integrals. 
 
Accepting that no analytic solution is possible, there is a number of approaches that 
might be considered: 1) mean field, 2) virial expansion, 3) molecular dynamics. 
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3.6.1  Mean field treatment 
The mean field treatment of the hard sphere gas results in the Clausius equation of 
state: the ideal gas equation, but with an excluded volume term. This follows by 
analogy with our treatment of the van der Waals gas, where now there is no attractive 
term in the interaction. See also Problem 3.8. 
 
3.6.2  Hard Sphere Equation of state 
The equation of state of a hard-sphere fluid has a very special form. Recall that the 
Helmholtz free energy F is given in terms of the partition function Z by 
 lnF kT Z= − . 
We saw that the partition function for an interacting gas may be written as 
 id NZ Z Q=  
where Zid is the partition function for an ideal (non-interacting) gas 
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and QN is the configuration integral 
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To obtain the equation of state we must find the pressure, by differentiating the free 
energy 
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It is important, now, to appreciate that the configuration integral is independent of 
temperature. This must be so, since there is no energy scale for the problem; the 
interaction energy is either zero or it is infinite. Thus the ratio E/kT will be 
temperature-independent.  
 
The pressure of the hard-sphere gas is then given by   
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The function g(N/V) is found by differentiating lnQ with respect to V. We know it is a 
function of N and V and in the thermodynamic limit the argument must be intensive. 
Thus the functional form and we have the low-density ideal gas limiting value 

. ( )0 0g =
 
[Problem – show that the leading term in the expansion of g(n) is in n2 – i.e. show that 
there is no linear term.] 
 
The important conclusion we draw from these arguments, and in particular from 
Eq. (PP) is that for a hard sphere gas the combination p/kT  is a function of the density 
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N/V.  This function must depend also on the only parameter of the interaction: the 
hard core diameter σ.  
 
3.6.3  Virial Expansion 
The virial expansion is written as  
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where the virial coefficients BBm  are, in the general case, functions of temperature. 
However, as argued above, for the hard sphere gas the virial coefficients are 
temperature-independent. 
  
The virial expansion may be regarded as a low-density approximation to the equation 
of state. Certainly this is the case when only a finite number of coefficients is 
available. If, however, all the coefficients were known, then provided the series were 
convergent, the sum would give p/kT for all values of the density N/V: the complete 
equation of state. Now although we are likely to know the values for but a finite 
number of the virial coefficients, there may be ways of guessing / inferring / 
estimating the higher-order coefficients.  We shall examine two ways of doing this.  
 
3.6.4  Virial Coefficients 
The second virial coefficient for the hard sphere gas has been calculated; we found   
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where σ is the hard core diameter. 
 
The general term of the virial expansion is ( m

m )B N V , which must have the 
dimensions of N/V. Thus BBm will have the dimensions of (volume) . Now the only 
variable that the hard sphere virial coefficients depend on is σ. Thus it is clear that  

m–1

 3( 1)const m
mB σ −= ×  

where the constants are dimensionless numbers – which must be determined. 
 
It is increasingly difficult to calculate the higher-order virial coefficients; those up to 
sixth order were evaluated by Rhee and Hoover2 in 1964, and terms up to tenth order 
were found by Clisby and McCoy3 in 2006. These are listed in the table below, in 
terms of the single parameter b: 
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BB2/b = 1 
BB3/b2 = 0.625 
BB4/b3 = 0.2869495 
BB5/b4 = 0.110252 
BB6/b5 = 0.03888198 
BB7/b6 = 0.01302354 
BB8/b7 = 0.0041832 
BB9/b8 = 0.0013094 
BB10/b9 = 0.0004035 

Table 3.xx Virial coefficients for the hard sphere gas 
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Note/recall that the hard sphere virial coefficients are independent of temperature 
(Problem 3.7) and they are all expressed in terms of the hard core dimension. 
 
We now consider ways of guessing / inferring / estimating the higher-order 
coefficients, so that the hard sphere equation of state may be approximated 
 
3.6.5  Carnahan and Starling procedure 
We start with the remarkable procedure of Carnahan and Starling4. They inferred a 
general (approximate) expression for the nth virial coefficient, enabling them to sum 
the virial expansion and thus deduce an (approximate) equation of state. The virial 
expansion is written as 
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This is written out for the known values of the virial coefficients: 
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In terms of the dimensionless density variable 4y Nb V= this becomes 
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Note only terms up to y5 were known to Carnahan and Starling. And they observed 
that if these coefficients were rounded to whole numbers: 4, 10, 18, 28, 40, then the 
coefficient of yn was given by n(n + 3). They then made the assumption that this 
expression would work for the higher-order terms as well. We can check this 
hypothesis with the newly-known virial coefficients; Carnahan and Starling’s formula 
gives 54, 70, 88, 108; the actual rounded integers are 53, 69, 86, 106. The agreement 
is still quite good. 
 
From this assumption, the general expression for the nth virial coefficient is 

 ( )( ) 1
1

1 2
4

n
n n

n n
B b −

−

− +
= . (JJ) 

These are tabulated below, together with the true values.  
 

   C+S value 
BB2/b = 1 1 
BB3/b2 = 0.625 0.625 
BB4/b3 = 0.2869495 0.28125 
BB5/b4 = 0.110252 0.109375 
BB6/b5 = 0.03888198 0.0390625 
BB7/b6 = 0.01302354 0.0131836 
BB8/b7 = 0.0041832 0.00427246 
BB9/b8 = 0.0013094 0.00134277 
BB10/b9 = 0.0004035 0.000411987 
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If we now sum the infinite series of Eq. (HH), with the general BBn given by Eq. (JJ), 
we obtain 
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In terms of the number density N/V this gives the equation of state as 
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Incidentally, the universal function g(n) of Eq. (PP) is then given by 
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Conventionally the equation of state is expressed and plotted in terms of the ‘packing 
fraction’ 0V V , where V0 is the volume occupied by the hard spheres 3

0 4V Nπσ=  so 
that 
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Then we obtain  
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This is plotted in the figure below. For comparison we have also shown some data 
points obtained by molecular dynamics simulations5. 
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7

5

10

0
0

15
pV

NkT

V V/ 0

1
ideal gas

Carnhan + Starling

- molecular dynamics

 
 

pV/NkT as a function of V0/V 
 
We note that a random assembly of spheres will pack to V0/V  = 0.638 so this is the 
greatest density possible for the fluid. However a close-packed lattice (fcc or hcp) will 
pack more densely, to 0.7405. Thus there should be a phase transition to a solid phase.  
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(I believe the lack of an attractive part of the inter-particle interaction means that there 
will be no gas-liquid transition. I think the attraction is needed to have a self-bound 
fluid phase coexisting with a dispersed gas phase.) 
 
At higher densities the data points from molecular dynamics simulations fall 
consistently below the curve of Carnahan and Starling. This indicates the shortcoming 
of their method. Inspired as Eq. (JJ) is and as elegant as Eq. (AA) is, they are not quite 
correct. And the discrepancy is expected to become greater at the higher densities. 
Perhaps the problem is to be expected – after all, even the lower order virial 
coefficients have been approximated, when the coefficients of the powers of y in 
Eq. (BB) were truncated to integers. 
 
A more systematic way at arriving at an equation of state is the Padé method. 
 
3.6.6  Padé approximants 
The equation of state of the hard sphere gas takes the form 

 ( )0
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where f is a universal function of its argument. So if the function is determined then 
the hard sphere equation of state is known.  
 
The virial series gives f as a power series in its argument. And in reality one can only 
know a finite number of these terms. The Carnahan and Starling procedure takes the 
known terms, ‘guesses’ the (infinite number of) higher-order terms and then sums the 
series. The figure above indicates that the result is good, but it could be better.   
 
For the Carnahan and Starling equation of state the function f may be written as 
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In this form we observe that f (x) is the quotient of two polynomials. And this leads us 
naturally to the Padé method. 
 
One knows f (x) to a finite number of terms. In the Padé method the function f (x) is 
approximated by the quotient of two polynomials 
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Here Pn(x) and Qm(x) are polynomials of degrees n and m respectively. 
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Without loss of generality we may (indeed it is convenient to) restrict q0 = 1.  
 
The terms of Pn(x) and Qm(x) may be determined so long as f (x) is known to at least 
n + m terms. In other words if f (x) is known to n + m terms, then Fn,m(x) agrees with 
the known terms of the series for f(x); moreover the quotient generates a series of 
higher order terms as well. The hope is that this series will be a good approximation 
to the true (but unknown) f(x). 
 
Power series of ( ) ( ) ( )m nf x Q x P x−  begins with the term xm + n + 1. 
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One can construct approximants with different m, n subject to m + n = N. See Reichl 
for (some) details.   
 
In this way Ree and Hoover (1964) – (i.e. before Clisby and McCoy’s extra virial 
coefficients) constructed the approximant: 
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This is plotted in the figure below. Observe the agreement with the molecular 
dynamics simulation data is very good indeed; it is considerably better than the 
Carnhan and Starling equation of state. 
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Padé approximant to hard sphere equation of state 
 

3.6.7  Phase transition 
We note that a random assembly of spheres will pack to V0/V  = 0.638 so this is the 
greatest density possible for the fluid. However a close-packed lattice (fcc or hcp) will 
pack more densely, to 0.7405. Thus there should be a phase transition to a solid phase. 

 
                                        3d hard spheres               2d hard discs             (from Reichl) 
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The lack of an attractive part of the inter-particle interaction means that there will be 
no gas-liquid transition; attraction is needed to have a self-bound fluid phase 
coexisting with a dispersed gas phase. The transition to the solid phase is seen in the 
two-dimensional simulations. 
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