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GENERAL PHYSICAL CONSTANTS

Permeability of vacuum µ0 = 4π × 10-7 H m-1

Permittivity of vacuum ε0 = 8.85 × 10-12 F m-1

1/4πε0 = 9.0 × 109 m F-1

Speed of light in vacuum c = 3.00 × 108 m s-1

Elementary charge e = 1.60 × 10-19 C

Electron (rest) mass me = 9.11 × 10-31 kg

Unified atomic mass constant mu = 1.66 × 10-27 kg

Proton rest mass mp = 1.67 × 10-27 kg

Neutron rest mass mn = 1.67 × 10-27 kg

Ratio of electronic charge to mass e/me = 1.76 × 1011 C kg-1

Planck constant h = 6.63 × 10-34 J s

� = h/2π = 1.05 × 10-34 J s

Boltzmann constant k = 1.38 × 10-23 J K-1

Stefan-Boltzmann constant σ = 5.67 × 10-8 W m-2 K-4

Gas constant R = 8.31 J mol-1 K-1

Avogadro constant NA = 6.02 × 1023 mol-1

Gravitational constant G = 6.67 × 10-11 N m2 kg-2

Acceleration due to gravity g = 9.81 m s-2

Volume of one mole of an ideal gas at STP = 2.24 × 10-2 m3

One standard atmosphere P0 = 1.01 × 105 N m-2

MATHEMATICAL CONSTANTS

e ≅  2.718 π ≅  3.142 loge10 ≅  2.303
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1. (a) Explain why a system in thermal equilibrium with a reservoir at a
temperature T has fluctuations in its energy E.

[3]

(b) The quantity σE is given by
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Why is σE a measure of the energy fluctuations?

[3]

(c) Show that

                                             σ E E E2 2 2= − .
[2]

(d) The mean energy of a system in thermal equilibrium at a temperature T

may be written as

E
Z

E ej
E kT

j

j= −∑1 / .

Explain the meaning of this expression, defining the quantity Z.

[3]

(e) By considering the expression for the mean square energy E 2  show

that the size of the energy fluctuations may be written as

σ E VkT C= 2

where CV  is the thermal capacity of the system.
[6]

(f) Discuss how the energy fluctuations depend on the size (number of
particles N ) of the system and show that the fractional energy fluctuations
tend to zero as N −1/2. [3]
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2. (a) What is Brownian motion? [2]

(b) The force on a Brownian particle may be written as

vtftF
µ

−= 1
)()(

where )(tf  is a randomly fluctuating force, v is the velocity and µ the
mobility of the particle.  Discuss the separation of the force into these two
parts.

[4]

(c) Show that the equation of motion for the Brownian particle may be

written as

)()(
d

)(d
tAtv

t

tv =γ+

and identify the terms.

[3]

(d) The solution to the equation of motion may be written

( )

0

( ) (0) ( )d
t

t u tv t v e e A u uγ γ− −= +∫ .

Describe how this solution arises and explain its implications.

[3]

(e) The autocorrelation function for the random force is defined by the

average

)()( τ+tAtA .

Discuss the physical meaning of this expression and explain why it is
independent of the time t.

[3]

(f) Show how the motion of the Brownian particle depends on the
autocorrelation function of the velocity, and show how this leads to
diffusive behaviour.  Give an expression for the diffusion coefficient in
terms of the velocity autocorrelation function.

[5]
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3. (a) A binary alloy contains two atomic species A and B with relative
proportions x and 1 x− of different concentrations x1 and x2.  The Gibbs
free energy for this system has the form shown in the figure:

lo w  T

h ig h  T

G

0 1x

In the low temperature case explain how, for some values of x, the system
may lower its free energy by separating into two phases of different
concentrations.

[3]

(b) If the fraction of the system at concentration 1x  is denoted by α then the

fraction at the other concentration 2x  is 1 α− .  Show that the fractions

α and 1 α−  are given by the lever rule:

2 0 0 1

2 1 2 1

,       1
x x x x

x x x x
α α− −= − =

− −

where 0x  is the initial concentration of A atoms. [3]

(c) Sketch, on a T – x graph, the phase separation curve and the spinodal
curve.  How are these determined from the above figure?  What is the
meaning of the spinodal curve?

[5]

(d) Identify, on the phase separation curve, the critical point. [2]

(e) It may be said that the first order transition becomes second order at the
critical point.  Explain this.

[3]

(f) Why are fluctuations important in the vicinity of the critical point?
Describe the nature of the fluctuations in this system.

[4]
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4. (a) Explain what is meant by the order parameter in the context of phase
transitions and describe the difference in the behaviour of the order
parameter for first order and second order transitions. [3]

(b) When the Landau theory of phase transitions is applied to the ferroelectric
transition the free energy is expressed by a polynomial of the form

2 4 6
0 2 4 6F F F F Fϕ ϕ ϕ= + + +

What is the order parameter ϕ for this system?  Give arguments for the
structure of this free energy expression.

[3]

(c) By varying an external parameter, such as the strain, the ferroelectric
transition can be either first order or second order.  Sketch the possible
variations of the free energy as a function of the order parameter that can
account for the first order and the second order transitions respectively.

[4]

(d) Explain qualitatively how the order of the transition depends on the sign
of the 4F  coefficient and why the 6F  term may be neglected when the

transition is second order. [3]

(e) When the transition is first order show that the discontinuity in the order
parameter at the transition is given by

4

62

F

F
ϕ −∆ =

and discuss the behaviour of the discontinuity as the transition becomes
second order.

[3]

(f) Within the spirit of the Landau theory it is conventional to approximate
the temperature dependence of the 2F  coefficient by

( )2 cF T Tα= − .

Explain this by reference to the second order case.  Using this temperature
dependence show that the latent heat at the first order transition is given
by

4
tr

62

F
L T

F
α=

and discuss the behaviour of L as the transition becomes second order. [4]
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5. (a) Outline the sequence of arguments by which one shows that two isolated
systems, when brought into thermal contact, end up in the thermodynamic
state for which

1 2ln ln

E E

∂ Ω ∂ Ω=
∂ ∂

and define the terms 1Ω , 2Ω and E in this expression. [4]

(b) Write down an expression for entropy in terms of Ω.  How does the above
equation imply the equalisation of the temperatures of the two systems?

[4]

(c) Now consider a small sub-system of a large isolated system.  The total
energy of the isolated system is tE .  The sub-system can exchange

thermal energy with the large system.  When the sub-system is in a
microstate of energy E the entropy of the combined system may be
expressed as

( )
2 2

t 2 ....
2

S E S
S S E E

E E

∂ ∂= − + −
∂ ∂

Justify the structure of this expression. [4]

(d) Show how the above result leads to the Boltzmann distribution function
(otherwise known as the Boltzmann factor).

[4]

(e) The equilibrium state of an isolated system corresponds to a maximum of
the entropy.  Discuss, in terms of the second derivative of S, how the
existence of an entropy maximum has a consequence for the heat capacity
of the system.

[4]


