1.5.2 The quantum distribution functions

We shall obtain the distribution functions for particles obeying Fermi-Dirac statistics and those
obeying Bose-Einstein statistics. Thus we want to know the mean number of particles which
may be found in a given quantum state. The method is based on an idea in Feynman’s book
Statistical Mechanics, Benjamin (1972). We start by considering an idealised model, of a
subsystem comprising a single quantum state of energy &, in thermal equilibrium with a
reservoir of many particles. The mean energy of a particle in the reservoir is denoted by u (we
will tighten up on the precise definition of mean energy later).
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many particles

W: mean energy of particle in reservoir

particle transferred
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€: energy of particle in subsystem
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Transfer of a particle from reservoir to the subsystem

A particle may be in the reservoir or may be in the subsystem. The probability that it is in the
subsystem is proportional to the Boltzmann factor exp (—&/kT), while the probability that it is in
the reservoir is proportional to exp (—u/kT). If P (1) is the probability that there is one particle
in the subsystem and P (0) is the probability of no particles in the subsystem, then we may write

Pl — -
L) = eX —(6 2 or P(1) = P(0) exp—(s 2 .
P(0) kT kT
If the statistics allow (for Bosons, but not for Fermions) then we may transfer more particles
from the reservoir to the subsystem. Each particle transferred will lose an energy u and gain an
energy &. Associated with the transfer of n particles there will therefore be a Boltzmann factor

ofexp—n (e — u)/kT. And so the probability of having n particles in the subsystem is

P = PO exp-" (1)
Let us put
X = exp—(sk—T'u). )
Then
P(n) = P(O)X". (3)

Normalisation requires that all possible probabilities sum to unity. For Fermions we know that
n can take on only the values 0 and 1, while for Bosons n can be any integer. Thus we have

PO+ P(1) =1 for Fermions
ZP (n) =1 for Bosons
n=0

which can be written, quite generally as
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Y P =1 @
n=0

where a = 1 for Fermions and a = oo for Bosons.
Since P (n) is given by Equation (3), the normalisation requirement may be expressed as
PO Y X =1
n=0
which gives us P (0):

Py = {ixn}“.

n=0
We will be encountering the above sum of powers of x quite frequently, so let’s denote it by the
symbol X:

=Y (5
n=0
In terms of this
PO = =7, (6)
and then from Equation (3)
P(n) =x"/%. (7

What we want to know is the mean number of particles in the subsystem. That is, we want to
calculate

no= Z nP(n) , (8)
n=0
which is given by
1 a
== Z nx". )
Z n=0

The sum of nx* may be found by using a trick (which is really at the heart of many Statistical
Mechanics calculations). The sum differs from the previous sum X which we used, because of
the extra factor of n. Now we can bring down an »n from x” by differentiation. Thus we write

d
n n
nx = xd—xx ,

so that
a a
d
2 n' = x— Zx".
n=0 dx n=0

Observe that the sum on the right hand side here is our original sum X. This means that 7 can
be expressed as

or
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It remains, then, to evaluate X for the two cases. For Fermions we know that a = 1, so that the
sum in Equation (5) is 1 + x. For Bosons a is infinity; the sum is an infinite (convergent)
geometric series. The sum of such a geometric progression is 1/(1 — x). Thus we have

Fermions
2=1+x
In¥ =1In(1 + x)

Bosons
z=(1- x)~!
InY = -In(l — X%

upon differentiating

dlnX 1 dln 1
dx  1+x dx 1-x
so that
xdln):= X xdln):: x
dx 1 +x dx 1 —x
and 7 is then given by
~ 1 _ 1
n= o=
x1+1 x!' -1
Finally, substituting
for x from Eq (2):
- 1 _ 1
= .

exp(e — w)/kT + 1 " exp(e - w/kT ~ 1

These expressions will be recognised as the Fermi-Dirac and the Bose-Einstein distribution
functions. However, it is necessary to understand the way in which this idealised model relates
to realistic assemblies of Bosons or Fermions. We have focussed attention on a given quantum
state, and treated it as if it were apart from the reservoir. In reality the reservoir is the entire
system and the quantum state of interest is in that system. The entire analysis then follows
through so long as the mean energy of a particle, u, in the system is changed by a negligible
amount if a single quantum state is excluded. And this must be so for any macroscopic system.

We now turn to an examination of the meaning of u within the spirit of this picture.
We said that it was the mean energy lost when a particle is removed from the reservoir, which
we now understand to mean the entire system. When a particle is removed the system remains
otherwise unchanged. In particular the distribution of particles in the other energy states is
unchanged - the entropy remains constant. Also the energy of the various states is unchanged as
the volume remains constant. Thus our u is equal to JE / N at constant S and V, which when
compared with the extended statement of the First Law of Thermodynamics:

dE = TdS — pdV + udN,
indicates that our u corresponds to the conventional definition of the chemical potential.

End of lecture 6
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