1.5.2 The quantum distribution functions

We shall obtain the distribution functions for particles obeying Fermi-Dirac statistics and those obeying Bose-Einstein statistics. Thus we want to know the mean number of particles which may be found in a given quantum state. The method is based on an idea in Feynman's book *Statistical Mechanics*, Benjamin (1972). We start by considering an idealised model, of a subsystem comprising a single quantum state of energy ε , in thermal equilibrium with a reservoir of many particles. The mean energy of a particle in the reservoir is denoted by μ (we will tighten up on the precise definition of *mean energy* later).

Transfer of a particle from reservoir to the subsystem

A particle may be in the reservoir or may be in the subsystem. The probability that it is in the subsystem is proportional to the Boltzmann factor $\exp(-\varepsilon/kT)$, while the probability that it is in the reservoir is proportional to $\exp(-\mu/kT)$. If P(1) is the probability that there is one particle in the subsystem and P(0) is the probability of no particles in the subsystem, then we may write

$$\frac{P(1)}{P(0)} = \exp{-\frac{(\varepsilon - \mu)}{kT}} \quad \text{or} \quad P(1) = P(0) \exp{-\frac{(\varepsilon - \mu)}{kT}}.$$

If the statistics allow (for Bosons, but not for Fermions) then we may transfer more particles from the reservoir to the subsystem. Each particle transferred will lose an energy μ and gain an energy ε . Associated with the transfer of n particles there will therefore be a Boltzmann factor of $\exp -n(\varepsilon - \mu)/kT$. And so the probability of having n particles in the subsystem is

$$P(n) = P(0) \exp{-\frac{n(\varepsilon - \mu)}{kT}}$$
 (1)

Let us put

$$x = \exp{-\frac{(\varepsilon - \mu)}{kT}}.$$
 (2)

Then

$$P(n) = P(0)x^{n}. (3)$$

Normalisation requires that all possible probabilities sum to unity. For Fermions we know that n can take on only the values 0 and 1, while for Bosons n can be any integer. Thus we have

$$P(0) + P(1) = 1$$
 for Fermions

$$\sum_{n=0}^{\infty} P(n) = 1$$
 for Bosons

which can be written, quite generally as

$$\sum_{n=0}^{a} P(n) = 1 \tag{4}$$

where a = 1 for Fermions and $a = \infty$ for Bosons.

Since P(n) is given by Equation (3), the normalisation requirement may be expressed as

$$P(0)\sum_{n=0}^{a}x^{n}=1$$

which gives us P(0):

$$P(0) = \left\{ \sum_{n=0}^{a} x^{n} \right\}^{-1}.$$

We will be encountering the above sum of powers of x quite frequently, so let's denote it by the symbol Σ :

$$\Sigma = \sum_{n=0}^{a} x^{n}.$$
 (5)

In terms of this

$$P(0) = \Sigma^{-1}, \tag{6}$$

and then from Equation (3)

$$P(n) = x^n / \Sigma \tag{7}$$

What we want to know is the *mean* number of particles in the subsystem. That is, we want to calculate

$$\bar{n} = \sum_{n=0}^{a} nP(n) , \qquad (8)$$

which is given by

$$\bar{n} = \frac{1}{\Sigma} \sum_{n=0}^{a} n x^n. \tag{9}$$

The sum of nx^n may be found by using a trick (which is really at the heart of many Statistical Mechanics calculations). The sum differs from the previous sum Σ which we used, because of the extra factor of n. Now we can bring down an n from x^n by differentiation. Thus we write

$$nx^n = x \frac{\mathrm{d}}{\mathrm{d}x} x^n,$$

so that

$$\sum_{n=0}^{a} nx^{n} = x \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{a} x^{n}.$$

Observe that the sum on the right hand side here is our original sum Σ . This means that \bar{n} can be expressed as

$$\bar{n} = x \frac{1}{\Sigma} \frac{d\Sigma}{dx}$$

or

$$\bar{n} = x \frac{\mathrm{d} \ln \Sigma}{\mathrm{d} x} \,.$$

It remains, then, to evaluate Σ for the two cases. For Fermions we know that a=1, so that the sum in Equation (5) is 1+x. For Bosons a is infinity; the sum is an infinite (convergent) geometric series. The sum of such a geometric progression is 1/(1-x). Thus we have

Fermions		Bosons
$\Sigma = 1 + x$		$\Sigma = (1 - x)^{-1}$
$ ln \Sigma = ln (1 + x) $		$\ln \Sigma = -\ln (1 - x)$
	upon differentiating	
$\frac{\mathrm{d}\ln\Sigma}{\mathrm{d}x} = \frac{1}{1+x}$		$\frac{\mathrm{d}\ln\Sigma}{\mathrm{d}x} = \frac{1}{1-x}$
	so that	
$x \frac{\mathrm{d} \ln \Sigma}{\mathrm{d}x} = \frac{x}{1+x}$		$x \frac{\mathrm{d} \ln \Sigma}{\mathrm{d} x} = \frac{x}{1 - x}$
	and \bar{n} is then given by	
$\bar{n} = \frac{1}{x^{-1} + 1}$		$\bar{n} = \frac{1}{x^{-1} - 1}$
	Finally, substituting	
	for x from Eq (2):	
$\bar{n} = \frac{1}{\exp(\varepsilon - \mu)/kT + 1}$		$\bar{n} = \frac{1}{\exp(\varepsilon - \mu)/kT - 1}$

These expressions will be recognised as the Fermi-Dirac and the Bose-Einstein distribution functions. However, it is necessary to understand the way in which this idealised model relates to realistic assemblies of Bosons or Fermions. We have focussed attention on a given quantum state, and treated it as if it were apart from the reservoir. In reality the reservoir is the entire system and the quantum state of interest is *in* that system. The entire analysis then follows through so long as the mean energy of a particle, μ , in the system is changed by a negligible amount if a single quantum state is excluded. And this must be so for any macroscopic system.

We said that it was the mean energy lost when a particle is removed from the reservoir, which we now understand to mean the entire system. When a particle is removed the system remains otherwise unchanged. In particular the distribution of particles in the other energy states is unchanged - the entropy remains constant. Also the energy of the various states is unchanged as the volume remains constant. Thus our μ is equal to $\partial E/\partial N$ at constant S and V, which when compared with the extended statement of the First Law of Thermodynamics:

$$dE = TdS - pdV + \mu dN,$$

indicates that our μ corresponds to the conventional definition of the chemical potential.

End of lecture 6