1 Iterated Integrals and Area

Definition of an Iterated Integral

Just as we can take a partial derivative by considering only one of the variables a true variable and holding the rest of the variables constant, we can take a "partial integral". We indicate which is the true variable by writing $d x, d y$, etc. Also as with partial derivatives, we can take two "partial integrals" taking one variable at a time. In practice, we will either take x first then y or y first then x. We call this an iterated integral or a double integral.

Definition of a Double Integral

Let $f(x, y)$ be a function of two variables defined on a region R bounded below and above by

$$
\begin{equation*}
y=g_{1}(x) \quad \text { and } \quad y=g_{2}(x) \tag{1}
\end{equation*}
$$

and to the left and right by

$$
\begin{equation*}
x=a \quad \text { and } \quad x=b \tag{2}
\end{equation*}
$$

then the double integral (or iterated integral) of $f(x, y)$ over R is defined by

$$
\begin{equation*}
\iint_{R} f(x, y) d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x \tag{3}
\end{equation*}
$$

Example

Find the double integral of $f(x, y)=6 x^{2}+2 y$ over R where R is the region between $y=x^{2}$ and $y=4$.

Solution
First we have that the inside limits of integration are x^{2} and 4 . The region is bounded from the left by $x=-2$ and from the right by $x=2$ as indicated by the picture below.

We now integrate

$$
\begin{gather*}
\int_{-2}^{2} \int_{x^{2}}^{4}\left(6 x^{2}+2 y\right) d y d x=\int_{-2}^{2}\left[6 x^{2} y+y^{2}\right]_{x^{2}}^{4} d x= \\
=\int_{-2}^{2}\left(24 x^{2}+16\right)-\left(6 x^{4}+x^{4}\right) d x=\left[8 x^{3}+16 x-\frac{7}{5} x^{5}\right]_{-2}^{2}=102.4 \tag{4}
\end{gather*}
$$

2 Changing the Order of Integration

If a region is bounded from the left by $x=h_{1}(y)$ and the right by $x=h_{2}(y)$ and below and above by $y=c$ and $y=d$, then we can find the double integral of $d x d y$ by first integrating with respect to x then with respect to y. Sometimes there is a choice to make as to whether to integrate first with respect to x and then with respect to y. We do whatever is easier.

Example

Find the double integral of $f(x, y)=3 y$ over the triangle with vertices $(-1,1),(0,0)$, and $(1,1)$.

Solution
We integrate with respect to x first. The region is bounded on the left and the right by $x=-y$ and $x=y$. The lowest the region gets is $y=0$ and the highest is $y=1$. The integral is

$$
\begin{equation*}
\int_{0}^{1} \int_{-y}^{y} 3 y d x d y=\int_{0}^{1}[3 x y]_{-y}^{y} d y=\int_{0}^{1} 6 y^{2} d y=\left[2 y^{3}\right]_{0}^{1}=2 \tag{5}
\end{equation*}
$$

If we try instead to integrate with respect to y first, we have to cut the region into two pieces and perform two iterated integrals. This gives

$$
\begin{gathered}
\int_{-1}^{0} \int_{-x}^{1} 3 y d y d x+\int_{0}^{1} \int_{x}^{1} 3 y d y d x= \\
\int_{-1}^{0}\left[\frac{3 y^{2}}{2}\right]_{-x}^{1} d x+\int_{0}^{1}\left[\frac{3 y^{2}}{2}\right]_{x}^{1} d x=
\end{gathered}
$$

$$
\begin{gather*}
\int_{-1}^{0}\left(\frac{3}{2}-\frac{3}{2} x^{2}\right) d x+\int_{0}^{1}\left(\frac{3}{2}-\frac{3}{2} x^{2}\right) d x= \\
{\left[\frac{3}{2} x-\frac{x^{3}}{2}\right]_{-1}^{0}+\left[\frac{3}{2} x-\frac{x^{3}}{2}\right]_{0}^{1}=2} \tag{6}
\end{gather*}
$$

Clearly in this example it is easier to integrate with respect to x first! Example
Evaluate the integral

$$
\begin{equation*}
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y \tag{7}
\end{equation*}
$$

Solution
Try as you may, you will not find an antiderivative of $e^{x^{2}}$. We have another choice. The picture below shows the region.

We can switch the order of integration. The region is bounded above and below by $y=1 / 3 x$ and $y=0$. The double integral with respect to y first and then with respect to x is

$$
\begin{equation*}
\int_{0}^{3} \int_{0}^{x / 3} e^{x^{2}} d y d x \tag{8}
\end{equation*}
$$

The integrand is just a constant with respect to y so we get

$$
\begin{equation*}
\int_{0}^{3}\left[e^{x^{2}} y\right]_{0}^{x / 3} d x=\int_{0}^{3} \frac{x}{3} e^{x^{2}} d x \tag{9}
\end{equation*}
$$

This integral can be performed with simple u-substitution.

$$
\begin{equation*}
u=x^{2} \quad d u=2 x d x \tag{10}
\end{equation*}
$$

and the integral becomes

$$
\begin{equation*}
\frac{1}{6} \int_{0}^{9} e^{u} d u=\left[\frac{1}{6} e^{u}\right]_{0}^{9}=\frac{1}{6} e^{9}-\frac{1}{6} \tag{11}
\end{equation*}
$$

