1 Change of variables in double integrals

Review of the idea of substitution

Consider the integral

$$
\int_{0}^{2} x \cos \left(x^{2}\right) d x
$$

To evaluate this integral we use the u-substitution

$$
u=x^{2}
$$

This substitution send the interval $[0,2]$ onto the interval $[0,4]$. Since

$$
\begin{equation*}
d u=2 x d x \tag{1}
\end{equation*}
$$

the integral becomes

$$
\frac{1}{2} \int_{0}^{4} \cos u d u=\frac{1}{2} \sin 4
$$

We want to perform similar subsitutions for multiple integrals.

Jacobians

Let

$$
\begin{equation*}
x=g(u, v) \quad \text { and } \quad y=h(u, v) \tag{2}
\end{equation*}
$$

be a transformation of the plane. Then the Jacobian of this transformation is defined by

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{3}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

Theorem

Let

$$
x=g(u, v) \quad \text { and } \quad y=h(u, v)
$$

be a transformation of the plane that is one to one from a region S in the (u, v)-plane to a region R in the (x, y)-plane. If g and h have continuous partial derivatives such that the Jacobian is never zero, then

$$
\begin{equation*}
\iint_{R} f(x, y) d x d y=\iint_{S} f[g(u, v), h(u, v)]\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{4}
\end{equation*}
$$

Here $|\ldots|$ means the absolute value.

Remark A useful fact is that

$$
\begin{equation*}
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{\left|\frac{\partial(u, v)}{\partial(x, y)}\right|} \tag{5}
\end{equation*}
$$

Example

Use an appropriate change of variables to evaluate

$$
\begin{equation*}
\iint_{R}(x-y)^{2} d x d y \tag{6}
\end{equation*}
$$

where R is the parallelogram with vertices $(0,0),(1,1),(2,0)$ and $(1,-1)$. (excercise: draw the domain R).

Solution:

We find that the equations of the four lines that make the parallelogram are

$$
\begin{equation*}
x-y=0 \quad x-y=2 \quad x+y=0 \quad x+y=2 \tag{7}
\end{equation*}
$$

The equations (7) suggest the change of variables

$$
\begin{equation*}
u=x-y \quad v=x+y \tag{8}
\end{equation*}
$$

Solving (8) for x and y gives

$$
\begin{equation*}
x=\frac{u+v}{2} \quad y=\frac{v-u}{2} \tag{9}
\end{equation*}
$$

The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{10}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right|=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

The region S in the (u, v) is the square $0<u<2,0<v<2$. Since $x-y=u$, the integral becomes

$$
\int_{0}^{2} \int_{0}^{2} u^{2} \frac{1}{2} d u d v=\int_{0}^{2}\left[\frac{u^{3}}{6}\right]_{0}^{2} d v=\int_{0}^{2} \frac{4}{3} d v=\frac{8}{3}
$$

Polar coordinates

We know describe examples in which double integrals can be evaluated by changing to polar coordinates. Recall that polar coordinates are defined by

$$
\begin{equation*}
x=r \cos \theta \quad y=r \sin \theta \tag{11}
\end{equation*}
$$

The Jacobian of the transformation (11) is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \tag{12}\\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Example

Let R be the disc of radius 2 centered at the origin. Calculate

$$
\begin{equation*}
\iint_{R} \sin \left(x^{2}+y^{2}\right) d x d y \tag{13}
\end{equation*}
$$

Using the polar coordinates (11) we rewrite (13) as

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin \left(r^{2}\right)\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta \tag{14}
\end{equation*}
$$

Substituting (12) into (14) we obtain

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2} r \sin r^{2} d r d \theta \tag{15}
\end{equation*}
$$

Using the subsitutuion $t=r^{2}$ we have

$$
\int_{0}^{2 \pi} \int_{0}^{4} \frac{1}{2} \sin t d t d \theta=\pi(1-\cos 4)
$$

