
Eigenvalues and Eigenvectors
This chapter is based on notes written by Dr Helen Wilson

0.1 Eigenvalues and eigenvectors

0.1.1 Background: polynomials

An nth-order polynomial is a function of the form

f(x) = c0 + c1x + c2x
2 + · · · + cnxn

with cn �= 0.
If f(α) = 0 then we say x = α is a root of the equation f(x) = 0, and f(x)

can be factored: f(x) = (x − α)q(x).
Every polynomial of order n (i.e. with highest power xn) can be broken

down into n factors:

c0 + c1x + c2x
2 + · · · + cnxn = cn(x − α1)(x − α2)(x − α3) · · · (x − αn)

although the numbers α1, α2 etc. don’t have to be all different and may be
complex.

If all the coefficients c0, c1, . . . cn are real, then any complex roots appear in
complex conjugate pairs: a + ib and a − ib.

There are two things we need be able to do to find all the roots of a polyno-
mial:

• Find a root α; and

• Given one root, find the new (smaller) polynomial q(x).

Finding roots

To find roots of the equation f(x) = 0:

• Guess easy values: 0, 1, −1, 2, −2 and so on.

• If f(a) = 0 then a is a root

• If f(a) > 0 and f(b) < 0 then there is a root between a and b:

�

�
a

�

b

�

• Guess factors of c0 (e.g. if c0 = 6, try ±1, ±2, ±3, ±6).
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Quadratics

You probably know the formula for quadratics, but there are nicer (and quicker)
methods.

An easy one:
x2 + 6x + 9 = (x + 3)2

Now it follows that
x2 + 6x + 13 = (x + 3)2 + 4

so to solve x2 + 6x + 13 = 0 we need

(x+3)2+4 = 0 (x+3)2 = −4 x+3 = ±2i x = −3±2i so x2+6x+13 = (x+3−2i)(x+3+2i).

Similarly,

x2+6x+8 = (x+3)2−1 x2+6x+8 = 0 =⇒ (x+3)2 = 1 x+3 = ±1 x = −2 or −4.

This procedure:

x2 + 2nx + c → (x + n)2 + c − n2

is called completing the square.
If the numbers work out, there is an even quicker method. Look at the

general factored quadratic (without a constant at the front):

(x − a)(x − b) = x2 − (a + b) + ab

Now, looking at a specific case, e.g.

x2 + 4x + 3 = 0

we want to match the two: so we need

ab = 3
a + b = −4

The first one immediately suggests either 1 and 3 or −1 and −3; the second one
tells us that −1 and −3 are the roots so

x2 + 4x + 3 = (x + 1)(x + 3).

Another example:
x2 − x − 12 = 0.

Now the factors may be 1 and 12, 2 and 6, or 3 and 4 (with a minus sign
somewhere). The “sum” (which needs to be the difference because of the minus
sign) should be 1 so we quickly reach

Roots x = 4 and x = −3, x2 − x − 12 = (x − 4)(x + 3).
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Factorising polynomials

The long division method you learnt years ago for dividing large numbers
works in a very similar way for polynomials.

Example: f(x) = x3 + 1. We spot a root x = −1 which means there is a
factor of (x + 1), so x3 + 1 = (x + 1)q(x).

x2 − x + 1
x + 1 ) x3 + 0x2 + 0x + 1

x3 + x2

−x2 + 0x
−x2 − x

x + 1

At each stage we choose a multiple of our (x+1) factor that matches the highest
power in the remainder we are trying to get rid of; we write that multipying
factor above the line; we write the multiple below; then we subtract to get the
next remainder. In this case q(x) = x2 − x + 1 which has complex roots.

Example: f(x) = x3 + 10x2 + 31x + 30. This time we don’t immediately
spot a factor, so try a few values. Note first that if x > 0 all the terms are
positive so f(x) > 0; so all the roots must be negative.

x = 0 : f(0) = 30
x = −1 : f(−1) = −1 + 10 − 31 + 30 = 8
x = −2 : f(−2) = −8 + 40 − 62 + 30 = 0

so we can write f(x) = (x + 2)q(x).

x2 + 8x + 15
x + 2 ) x3 + 10x2 + 31x + 30

x3 + 2x2

8x2 + 31x
8x2 + 16x

15x + 30

In this case we have q(x) = x2 +8x+15 = (x+3)(x+5) so f(x) = (x+2)(x+
3)(x + 5).

There is another method; simply write down the most general form for q(x)
and then work out the coefficients of each power of x.

Example: f(x) = x3 + x2 + x + 1. Spot a root x = −1. Then write

f(x) = (x + 1)(ax2 + bx + c) = ax3 + bx2 + cx
+ ax2 + bx + c

so we have these equations for the coefficients of the powers of x:

x3 : a = 1
x2 : a + b = 1 =⇒ b = 0
x : b + c = 1 =⇒ c = 1
1 : c = 1 which agrees.

Thus q(x) = x2 + 1 and f(x) = (x + 1)(x + i)(x − i).
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0.1.2 Motivation

If A is a square matrix, there is often no obvious relationship between the vector
v and its image Av under multiplication by A. However frequently there are
some nonzero vectors that A maps into scalar multiple of themselves. Such
vectors (called eigenvectors) arise naturally in the study of vibrations, electrical
systems, genetics, chemical reactions, quantum mechanics, mechanical stress,
economics and geometry.

0.1.3 Definitions

For a square matrix A, if
Av = λv

with v �= 0 then v is an eigenvector of A with eigenvalue λ.

When is this possible?

Av = λI v (A − λI) v = 0

This is just an ordinary homogeneous linear system. Remember, if the determi-
nant of the matrix on the left is non-zero then there is a unique solution v = 0;
for a nontrivial solution we need

det (A − λI) = 0.

Suppose this determinant is zero; then our equation will have an infinite
number of solutions, v and any multiple of it.

The determinant det(A − λI) is a polynomial in λ of degree n, so there are
at most n different eigenvalues.

A useful fact (not proved here) is det(A) = λ1λ2 · · ·λn.

Example

A =
(

5 −2
9 −6

)
.

|A − λI | =
∣∣∣∣ 5 − λ −2

9 −6 − λ

∣∣∣∣ = (5 − λ)(−6 − λ) − (−2)(9)

= (−30 + λ + λ2) + 18 = λ2 + λ − 12 = (λ + 4)(λ − 3)

so the matrix has eigenvalues λ1 = 3, λ2 = −4.
λ1 = 3:

(A − λ1I)v1 = 0 and v1 =
(

a
b

)
=⇒

(
2 −2
9 −9

)(
a
b

)
=

(
0
0

)
.

a − b = 0 a = b v1 =
(

1
1

)
(or any multiple of this).

Check:

Av1 =
(

5 −2
9 −6

) (
1
1

)
=

(
3
3

)
= 3

(
1
1

)
= λ1v1.
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λ2 = −4:

(A − λ2I)v2 = 0 and v2 =
(

a
b

)
=⇒

(
9 −2
9 −2

) (
a
b

)
=

(
0
0

)
.

9a − 2b = 0 9a = 2b v2 =
(

2
9

)
(or any multiple of this).

Check:

Av2 =
(

5 −2
9 −6

) (
2
9

)
=

( −8
−36

)
= −4

(
2
9

)
= λ2v2.

Another example

A =
(

1 −1
2 −1

)

Again, we look for eigenvalues using the determinant:

|A − λI | =
∣∣∣∣ 1 − λ −1

2 −1 − λ

∣∣∣∣ = (1 − λ)(−1 − λ) + 2 = λ2 + 1

so the two roots of this equation are λ = ±i.

Eigenvector and eigenvalue properties

• Eigenvalue and eigenvector pair satisfy

Av = λv and v �= 0.

• λ is allowed to be zero

• λ is allowed to be complex: but if a + ib is an eigenvalue so is a− ib, and
the eigenvectors corresponding to these eigenvalues will also be a complex
conjugate pair (as long as A is real)

• The same eigenvalue may appear more than once.

• Eigenvectors corresponding to different eigenvalues are linearly indepen-
dent (and explain).

Example

A =


 0 −1 −3

2 3 3
−2 1 1




First we need to solve the determinant equation:

det (A − λI) = 0
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0 =

∣∣∣∣∣∣
−λ −1 −3
2 3 − λ 3
−2 1 1 − λ

∣∣∣∣∣∣ = (−λ)
∣∣∣∣ 3 − λ 3

1 1 − λ

∣∣∣∣ − (−1)
∣∣∣∣ 2 3
−2 1 − λ

∣∣∣∣ + (−3)
∣∣∣∣ 2 3 − λ
−2 1

∣∣∣∣
= (−λ){(3 − λ)(1 − λ) − 3} + {2(1 − λ) + 6} − 3{2 + 2(3 − λ)}
= (−λ){3 − 4λ + λ2 − 3} + {2 − 2λ + 6} − {6 + 18 − 6λ}
= (−1){−4λ2 + λ3} + {8 − 2λ} − {6 + 18 − 6λ}
= −λ3 + 4λ2 + 4λ − 16 = −(λ − 2)(λ2 − 2λ − 8) = −(λ − 2)(λ + 2)(λ − 4)

This is zero if λ = 2, λ = −2 or λ = 4 so these are the three eigenvalues.
Now for each eigenvector in turn, we solve the equation (A − λI)v = 0.
First eigenvector: λ1 = 2.

(A − 2I)v1 = 0


 −2 −1 −3

2 1 3
−2 1 −1





 a

b
c


 =


 0

0
0




We carry out a single Gaussian elimination step here (r2 → r2 + r1 and r3 →
r3 − r1): 

 −2 −1 −3
0 0 0
0 2 2





 a

b
c


 =


 0

0
0




Now we can see that there is a zero row (which we expected because we made
the determinant zero) and two equations to solve by back substitution. When
we circle the leading term in each row there is no circle in the third column so
we rename c = α. Then r3 gives

r3 =⇒ 2b + 2c = 0 b = −α

r1 =⇒ −2a− b − 3c = 0 a = −α

and so the general eigenvector is

v1 =


 −α

−α
α


 and we can use any multiple of it: v1 =


 1

1
−1


 .

Second eigenvector: λ2 = −2

(A + 2I)v2 = 0


 2 −1 −3

2 5 3
−2 1 3





 d

e
f


 =


 0

0
0




Again, we eliminate: r2 → r2 − r1 and r3 → r3 + r1:
 2 −1 −3

0 6 6
0 0 0





 d

e
f


 =


 0

0
0




Just like last time, when we circle the leading elements in the rows there is no
circle in column 3 so we can set f = α and back substitute:

r2 =⇒ 6e + 6f = 0 e = −α

r1 =⇒ 2d − e − 3f = 0 d = α
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which gives us the solution
 d

e
f


 =


 α

−α
α


 v2 =


 1

−1
1


 .

Third eigenvector: λ3 = 4

(A − 4I)v3 = 0


 −4 −1 −3

2 −1 3
−2 1 −3





 a

b
c


 =


 0

0
0




This time it makes sense to use non-standard Gaussian elimination: r3 → r3+r2

followed by r2 → 2r2 + r1.
 −4 −1 −3

0 −3 3
0 0 0





 a

b
c


 =


 0

0
0




and, again, we can set c = α

r2 =⇒ −3b + 3c = 0 b = α

r1 =⇒ −4a − b − 3c = 0 a = −α
 a

b
c


 =


 −α

α
α


 v3 =


 1

−1
−1


 .

Examples with repeated eigenvalues

A =


 2 0 0

0 2 0
0 0 1




Since this is a diagonal matrix, its eigenvalues are just the values on the diagonal
(check with the full determinant if you’re not convinced). In this case we have
λ = 1, λ = 2 and λ = 2 again. The eigenvector for λ = 1 is perfectly normal:

(A − I)v1 = 0


 1 0 0

0 1 0
0 0 0





 a

b
c


 =


 0

0
0


 v1 =


 0

0
1


 .

When we come to solve with λ = 2 though, the eigenvector is not uniquely
defined:

(A − 2I)v2 = 0


 0 0 0

0 0 0
0 0 −1





 d

e
f


 =


 0

0
0




which only tells us that f = 0 and doesn’t fix d and e. In fact in this case we can
choose any two different pairs d and e as our two eigenvectors for the repeated
eigenvalue λ = 2,

e.g. v2 =


 1

0
0


 , v3 =


 0

1
0


 or v2 =


 1

1
0


 , v3 =


 1

−1
0



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and in fact any linear combination αv2 + βv3 will also be an eigenvector of A
with eigenvalue 2.

This doesn’t always work, though. Here is another example:

A =


 2 1 0

0 2 0
0 0 1


 .

Just like last time, the eigenvalues are λ1 = 1, λ2 = λ3 = 2.
Look for the eigenvector of λ1 = 1:

(A − λ1I)v1 =


 1 1 0

0 1 0
0 0 0





 a

b
c


 =


 0

0
0


 v1 =


 0

0
1


 .

Now the eigenvector(s) of λ2 = 2:

(A − λ2I)v2 =


 0 1 0

0 0 0
0 0 −1





 a

b
c


 =


 0

0
0


 .

Again, there is just one solution:

v2 =


 1

0
0


 .

In this case there are only two eigenvectors.

Review of eigenvalues and eigenvectors

• Eigenvalue and eigenvector pair satisfy

Av = λv and v �= 0.

We find the eigenvalues by solving the polynomial det (A − λI) = 0 and
then find each eigenvector by solving the linear system (A − λI)v = 0.

• λ is allowed to be zero or complex.

• The same eigenvalue may appear more than once; if it does, we may have
a choice of eigenvectors or a missing one.

• The product of the eigenvalues is the determinant

• The sum of the eigenvalues is the trace of the matrix; the sum of the
elements on the leading diagonal.

0.1.4 Commuting matrices

A pair of matrices A and B are said to commute if AB = B A. If two n × n
matrices commute, and they both have n distinct eigenvalues, then they have
the same eigenvectors.
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Proof

Look at an eigenvector of A. We know that Av = λv. Now let u = B v. Then

Au = AB v = B Av = Bλv = λB v = λu

We’ve shown
A u = λu

which means u is an eigenvector of A with eigenvalue λ. Since the eigenvector
of A corresponding to λ was v, it follows that u must be a multiple of v:

u = µv B v = µv

so v is an eigenvector of B with eigenvalue µ.

Example

A =
(

3 2
−1 0

)
B =

(
1 −2
1 4

)

These commute:

A B =
(

3 2
−1 0

) (
1 −2
1 4

)
=

(
5 2
−1 2

)
B A =

(
1 −2
1 4

) (
3 2
−1 0

)
=

(
5 2
−1 2

)

Let’s look at A first. The eigenvalues:

det (A − λI) =
∣∣∣∣ 3 − λ 2

−1 −λ

∣∣∣∣ = (3−λ)(−λ)+2 = λ2−3λ+2 = (λ−1)(λ−2).

The eigenvalues are λ1 = 1 and λ2 = 2.
First eigenvector: λ1 = 1.

(A−I)v1 =
(

2 2
−1 −1

) (
a
b

)
=

(
0
0

)
=⇒ a+b = 0 v1 =

(
1
−1

)
.

Second eigenvector: λ2 = 2.

(A−2I)v1 =
(

1 2
−1 −2

) (
c
d

)
=

(
0
0

)
=⇒ c+2d = 0 v2 =

(
2
−1

)
.

Now we see what effect B has on these eigenvectors:

B v1 =
(

1 −2
1 4

) (
1
−1

)
=

(
3
−3

)
= 3v1 B v2 =

(
1 −2
1 4

) (
2
−1

)
=

(
4
−2

)
= 2v2.

Note

Because A commutes with itself, it follows that A and A2 (and all other powers
of A) have the same eigenvectors.
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0.1.5 Symmetric matrices

If our real matrix A is symmetric then all its eigenvalues are real.
The eigenvectors corresponding to any two different eigenvalues will be or-

thogonal, i.e. vi · vj = 0 (or v�i vj = 0) if λi �= λj .
For equal eigenvalues, there will still be a complete set of eigenvectors, and

we can choose the constants in the eigenvectors for the repeated eigenvalue so
that all the eigenvectors are orthogonal.

Example

A =


 0 1 1

1 0 1
1 1 0




First we look for the eigenvalues:

det (A − λI) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = (−λ)
∣∣∣∣ −λ 1

1 −λ

∣∣∣∣ − (1)
∣∣∣∣ 1 1

1 −λ

∣∣∣∣ + (1)
∣∣∣∣ 1 −λ

1 1

∣∣∣∣
= (−λ){λ2 − 1} − {−λ − 1} + {1 + λ} = −λ3 + λ + λ + 1 + 1 + λ = −λ3 + 3λ + 2

We can spot the root λ = −1, and factorise:

−λ3 + 3λ+ 2 = −(λ3 − 3λ− 2) = −(λ+ 1)(λ2 −λ− 2) = −(λ+ 1)(λ+ 1)(λ− 2)

so we have the eigenvalue λ = −1 twice, and the eigenvalue λ = 2.
We’ll find the straightforward one first:

(A − 2I)v1 =


 −2 1 1

1 −2 1
1 1 −2





 a

b
c


 =


 0

0
0




Gaussian elimination: r2 → 2r2 + r1; r3 → 2r3 + r1:

 −2 1 1

0 −3 3
0 3 −3





 a

b
c


 =


 0

0
0




Now the last row is clearly a multiple of r2 so we can set c = α and back-
substitute to get b = α and a = α.

v1 =


 1

1
1


 .

Now onto the repeated root:

(A + I)v2 =


 1 1 1

1 1 1
1 1 1





 d

e
f


 =


 0

0
0




10



All three rows are the same so Gaussian elimination would just leave us with
the equation d + e + f = 0. Note that even at this stage we can see any vector
we choose will be orthogonal to v1:

v�
1 v2 =

(
1 1 1

)
 d

e
f


 = d + e + f = 0.

Now we want to choose two vectors satisfying d+e+f = 0 which are orthogonal
to one another.

Choosing the first one is easy: you have free choice. Keep it as simple as
possible; use zeros where you can. The obvious choice is probably

v2 =


 1

0
−1


 .

Now for the second, we need to choose a new vector that satisfies two things:

v3 =


 d′

e′

f ′


 d′+e′+f ′ = 0 v�2 v3 = 0 =⇒ (

1 0 −1
) 
 d′

e′

f ′


 = d′−f ′ = 0.

Now we have two linear equations in d′, e′ and f ′:

 1 1 1

1 0 −1
0 0 0





 d′

e′

f ′


 =


 0

0
0




and we can solve this system by Gaussian elimination and back substitution in
the usual way. r2 → r2 − r1:
 1 1 1

0 −1 −2
0 0 0





 d′

e′

f ′


 =


 0

0
0


 f ′ = α

−e′ − 2f ′ = 0, e′ = −2α
d′ + e′ + f ′ = 0, d′ = α

v3 =


 1

−2
1


 .

0.1.6 Power method

Iterative methods

Remember Newton’s method for finding a root of the equation f(x) = 0:

xn+1 = xn − f(xn)
f ′(xn)

.

This is an iterative method: we start with an initial guess x0 and keep ap-
plying the rule until we get a root. Although it isn’t guaranteed to work, if we
start close enough to a root we will end up there.

Why do we need iterative methods?

We usually find eigenvalues by solving the characteristic equation of our
n × n matrix A:

det (A − λI) = 0.
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When n is large, this is a huge polynomial and it isn’t easy to find the roots. If
we really need all the roots, then using something like Newton’s method may
be the best way; but very often in engineering problems all we need is the
largest eigenvalue (e.g. the dominant mode of vibration will produce the largest
amplitudes).

Using eigenvectors as a basis

If we have a set of n linearly independent vectors in n-dimensional space then we
can say that they form a basis of the space, and we can write any n-dimensional
vector z can be written as a linear combination of them:

z = α1v1 + α2v2 + · · · + αnvn

for some constants α1, α2, . . .αn.
In our case, if our matrix has all real eigenvalues and a complete set of eigen-

vectors (as, for example, if it is symmetric), then we can use the eigenvectors
of our matrix as the basis, so that we know how the vectors change when we
multiply by A:

Az = α1λ1v1 + α2λ2v2 + · · · + αnλnvn.

A2z = α1λ
2
1v1 + α2λ

2
2v2 + · · · + αnλ2

nvn.

We need just one more assumption to make our method work: the eigenvalue
with the largest magnitude must be strictly larger than all the others: |λ1| >
|λ2| ≥ |λ3| ≥ |λ4| ≥ · · · .

In this case, after many multiplications the first term will be the largest:

Akz ≈ α1λ
k
1v1.

Definition of the Power method

The basic method (given on the left) is: choose an initial guess for the eigen-
vector and call it z0. Then iteratively carry out this process:




for k = 1, 2, . . .

find zk = Azk−1 = Akz0

form ck = z�0 zk

form µk =
ck

ck−1
(not for k = 1)

µk → λ1

next k




for k = 1, 2, . . .
find y

k
= Azk−1

let µk = maximum element of y
k

form zk =
1
µk

y
k

µk → λ1 and zk → v1

next k

In practice it is best to normalise the vector Akz0 so that it has 1 as its largest
element (see the method on the right, above). This process of normalisation
helps prevent errors from growing. We can also extract an estimate of the
eigenvector at the end. This is the essence of the PageRank algorithm (except
that the sort of matrix we used there always has largest eigenvalue 1 so (a) we
don’t need to renormalise and (b) we want the eigenvector, not the eigenvalue).
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Example

Let’s look at a nice, small 2 × 2 matrix and use as our starting guess a simple
vector with only one non-zero element:

A =
(

4 1
2 3

)
z0 =

(
1
0

)

We’ll use the normalising method, and work to 2 decimal places.

k = 1

y
1

=
(

4 1
2 3

) (
1
0

)
=

(
4
2

)
µ1 = 4 z1 =

(
1

0.5

)

k = 2

y
2

=
(

4 1
2 3

) (
1

0.5

)
=

(
4.5
3.5

)
µ2 = 4.5 z2 =

(
1

0.78

)

k = 3

y
3

=
(

4 1
2 3

) (
1

0.78

)
=

(
4.78
4.33

)
µ3 = 4.78 z3 =

(
1

0.91

)

k = 4

y
4

=
(

4 1
2 3

) (
1

0.91

)
=

(
4.91
4.72

)
µ4 = 4.91 z4 =

(
1

0.96

)

k = 5

y
5

=
(

4 1
2 3

) (
1

0.96

)
=

(
4.96
4.88

)
µ4 = 4.96 z4 =

(
1

0.98

)

k = 6

y
6

=
(

4 1
2 3

) (
1

0.98

)
=

(
4.98
4.95

)
µ4 = 4.98 z4 =

(
1

0.99

)

and we can see that µk → 5 and zk →
(

1
1

)
as the process continues.

Further examples if needed

A =
(

3 2
−1 0

)
B =

(
10 −18
6 −11

)
C =

(
1 2
−2 5

)
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