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Lecture by K. A. Malik

Recall

H2 = H2
0

(

Ωm0
(1 + z)3 +Ωr0 (1 + z)4 +ΩΛ

)

− kc2

a2

Define curvature density

Ωk0 =
−kc2

H2
0

get:

−kc2

a2
= −kc2(1 + z)3 = Ωk0(1 + z)2H2

0

and Friedmann

H2 = H2
0

(

Ωm0
(1 + z)3 +Ωr0 (1 + z)4 +Ωk0(1 + z)2 +ΩΛ

)

Can be solved numerically.

The deceleration parameter q

Consider, e.g. matter dominated universe

a(t) ∝ t
2

3

Note: expansion slows down. This can be made more precise, by Taylor expanding the
scale factor:

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)

2 + ...

Rewrite

a(t) = a(t0)

(

1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2

)

where we define

q0 = − ä(t0)

a(t0)

1

H2
0
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Figure 1: The evolution of the scale factor in different universes, Λ = 0.

deceleration parameter. Or

q0 =
−ä(t0)a(t0)

(ȧ(t0))
2

Recall acceleration equation

ä

a
= −4πG

3
(ρ+ 3P )

q0 =
4πG

3
(ρ0 + 3P0)

1

H0

q0 = (1 + 3ω)
Ω0

2

Knowing q0, could get us Ω0, if all matter us described by (1 + ω) ρ and k = 0.

Note: q0 named deceleration parameter and defined with minus sign in definition for
historical reasons: It was assumed that ä

a
< 0 or (ρ+ 3P ) > 0. However, observations

today point ä
a
> 0 and q0 < 0
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Recall

The FRW line element

ds2 = −c2dt2 + a2(t)

(

dr2

1− kr2
+ r2dΩ2

(2)

)

a(t) is homogeneous and isotropic. Light travels on null geodesics, that is ds = 0. Hence
for a light ray travelling radially outwards, dΩ(2) = 0, we have

c dt

a
=

dr√
1− kr2

Distances in FRW

1. Proper distance

the length of the spatial geodesic at some fixed time t.

dp =

∫

ds

The proper distance from us (at point (0,0,0)) to a galaxy situated (r0,0,0) is

dp(t) =

∫ r0

0
ds

= a(t)

∫ r0

0

dr√
1− kr2

Today, with a(t0) = 1

dp =

∫ r0

0

dr√
1− kr2

In a flat universe

dp =

∫ r0

0
dr = r0

For a closed universe, k > 0 use U =
√
kr and du =

√
kdr, get

dp =
1√
k

∫

√
kr0

0

dU√
1− U2

Using table
∫

dx√
1− x2

= arcsin (x)
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So

dp =
1√
k
arcsin

(√
kr0

)

Similarly, for an open universe

dp =
1√
k
arcsinh

(

√

|k|r0
)

2. Luminosity distance

l =
L

4πD2

This assumed Euclidean geometry: a flat non-expanding universe. L is the energy
emitted per second per solid angle.

Total light output of the source is 4πL. By our observer light is spread out over a
sphere of area 4πd2lum. The receiver receives 1

4πd2
lum

of the total output.

Define flux density

S =
4πL

4πd2lum
=

L

d2lum

Inverted

d2lum =
L

S

Take into account two effects:

• Redshift of photon energy E = ~ω, E ∝ ω ∝ a−1 ∝ (1 + z)

• Photons reach observer less frequently: photons emitted at intervals ∆tem,
will be received at intervals

∆tem
a(t0)

a(tem)
= ∆tem(1 + z)

This gives for an object at r0

S =
L

r20(1 + z)2

and hence

dlum = (1 + z)r0
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that is distant objects appear further away then they actually are, as redshift re-
duces their apparent luminosity.

Recall r0 depends on the geometry of the universe. k = 0; dp = r0 → dlum =
dp(1 + z). For z << 1, dlum ≈ dp

k > 0

r0 =
1√
k
sin
(√

kdp

)

which implies

dlum =
1 + z√

k
sin
(√

kdp

)

For z << 1 get

dlum ≈ 1√
k

(√
kdp + ...

)

≈ dp

and similarly for the open case.

3. Angular diameter distance: This distance, denoted ddiam, is defined: the dis-
tance an object of known physical extent appears to be at, assuming Euclidean
geometry (ie it is a measure of how large objects appear). Object of size l, per-
pendicular to the line of sight then

ddiam =
l

tan (θ)
≈ l

θ

so

l = ds = r0a(tem)dθ

→

dθ =
l

r0a(tem)

Using now a(tem) = 1
1+z

dθ =
l

r0
(1 + z)

and hence

ddiam =
l

l
r0
(1 + z)

=
r0

1 + z

For nearby objects

ddiam ≈ r0
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E.g: k = 0, matter dom:

rem =

∫ t0

tem

cdt

a

= ct
2

3

0

∫ t0

tem

dt

t
2

3

= 3ct0

(

1−
(

tem

t0

)
1

3

)

= 3ct0

(

1− a
1

2
em

)

= 3ct0

(

1− 1√
1 + z

)

Now, for an object with extent l

θ =
l(1 + z)

rem

=
l

3ct0

(1 + z)
3

2

√
1 + z − 1

For z << 1: θ ∝ 1
z
and for z >> 1: θ ∝ z. ddiam decreases at large z → distant objects

appear larger.

Note: it is not straight forward to get the information we want (eg distance D) from
the observations (z, l)

Horizons (in FRW)

In general: roughly speaking, a horizon is the boundary between regions we can ob-
serve (exchange information), and ones we can’t.

The Cosmological Horizon: The maximum distance light has travelled since the
Big Bang (at t = 0). Denoted rH , it is given by the following equation

∫ t

0

c dt

a
=

∫ rH

0

dr√
1− kr2

For k = 0 this is

c

∫ t

0

dt

a
=

∫ rH

0
dr
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Which gives us

rH = c

∫ t

0

dt

a

To get physical distance, multiply comoving distance by a(t)

RH = arH = a(t)c

∫ t

0

dt

a

If we choose a(t0) = 1 today, we have RH(t0) = rH(t0)

For matter dom (k = 0, Λ = 0)

a =

(

t

t0

)
2

3

∫ t

0

dt′

a(t′)
= 3t

2

3

0 t
1

3

So

RH(t0) = c3t0

This is the maximum distance light can have travelled (during matter domination).
Note: stars (and galaxies) formed during matter domination, hence 3ct0 is the furthest
distance starlight can have travelled. This resolves Olbers’ paradox. Note, without the
expansion of the universe the Cosmological Horizon would just be ct0

Sometimes the cosmological horizon is referred to as particle horizon have speed v ≤ c,
it is an upper limit particles could have travelled since t = 0

The Event Horizon: is denoted by rev and is defined as the comoving radius within
which signals emitted at time t can be observed by the time tmax:

∫ tmax

t

cdt′

a(t′)
=

∫ rev

0

dr√
1− kr2

For k = 0

rev = c

∫ tmax

t

dt′

a(t′)

The physical radius:

Rev(t) = a(t)rev(t)

For Λ = 0:
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• In the open case (k < 0) tmax is unbounded and Rev → ∞

• In the close case (k > 0), tmax is finite, and so is Rev.

For Λ 6= 0 we found (Λ domination)

a ∝ e

(

√

Λ

3
ct

)

In this case, get for Rev(t)

β =

√

Λ

3

So

Rev(t) = a(t)rev(t)

= ceβt
∫ tmax

t

dt′e−βt′

So

Rev(t) =
c

β

(

1− eβ(t−tmax)
)

as tmax → ∞, eβ(t−tmax) → 0. Hence, in this case Rev is finite (indeed Rev =
√

Λ
3 ).

There is a limit to what we can “see” in the future.

The age of the universe

Rough estimate: Assume constant expansion rate ȧ(t) = const. Today H0 = ȧ(t0)
a(t0)

→
ȧ(t0) = H0 if a(t0) = 1 . Integrate, and get

a(t) = H0t+ const

= H0t

Evaluate today

a0 = H0t0

= 1

So

t0 = H−1
0

This give

t0 ≈
1

100hkms−1Mpc−1
≈ 10Gyr
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Unfortunately, expansion rate is not constant. It depends on the matter content and the
geometry of the universe (Friedmann Equation).

E.g assume matter domination, and get a(t) ∝ t
2

3

H =
ȧ

a
=

2

3
t−1

Evaluate at today

H0 =
2

3
t−1
0

Or

t0 =
2

3
H−1

0 ≈ 6.6Gyr

Observational limits on the age

The universe must be older than the objects it contains. Some age measurements:

• Geological data Earth roughly 5 Gyr old

• Uranium Isotopes (produced in supernovae) indicate through decay chains and
rates that Milky Way is roughly 7 Gyr old

• Studies of old white dwarfs and globular clusters indicate both are roughly 10 Gyr.
Adding roughly 1Gyr for globular clusters and white dwarfs to form; got only very
rough agreement with original estimate

Accurate Calculation

t0 =

∫ t0

0
dt

=

∫ a0

0

da

ȧ

=

∫ a0

0

da

aH

Recall def of redshift

1 + z =
a0

a

Differentiating this

dz = −a0

a2
da
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Or writing it more nicely

dz

1 + z
=

−da

a

get

t0 = −
∫ 0

∞

dz

(1 + z)H(z)

=

∫ ∞

0

dz

(1 + z)H(z)

Friedmann equation from beginning of lecture. Can solve numerically, and find

t0 = 13.8 Gyr = 4.3× 1017 s

According to Planck satellite data from 2013.
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