Stellar Structure and Evolution SPAT7023 R.P. Nelson

Week 10

1 Post-main sequence evolution of high mass stars

Stars with initial masses greater than about 8 Mg are expected to evolve through all the stages of
nuclear burning. The process begins with hydrogen burning at about 2 x 107 K, and proceeds at
progressively higher temperatures through helium, carbon, neon, oxygen and silicon burning. Silicon
burning at about 3 x 10° K leads to a star with a central core of iron, surrounded by concentric shells
containing silicon, oxygen, neon, carbon, helium and hydrogen. Because energy cannot be released
by the thermonuclear fusion of iron (the most stable form of nuclear matter consists of nuclei near
%Fe in the periodic table), the central core contracts. Initially, this contraction can be controlled by
the pressure of the dense gas of degenerate electrons in the core, but as the silicon burning in the
surrounding shell deposits more iron onto the central core, the degenerate electrons in the core become
increasingly relativistic. When the core mass reaches 1.4 Mg, the electrons become ultra-relativistic
and they are no longer able to support the core.

1.1 Core-collapse supernova explosions

Once the innermost region of stellar core approaches 1.4 Mg, the core is on the brink of a catastrophe,
and what follows is an uncontrolled collapse of the stellar core.

To understand the onset of the collapse, we note that when a body contracts under gravity, gravita-
tional energy is converted into internal energy and the temperature rises. If this leads to the activation
of exothermic nuclear fusion, the internal energy increases, the pressure rises, and the contraction is
opposed. The opposite happens if an energy-absorbing (endothermic) process is activated: energy is
absorbed, the effectiveness of the pressure is diminished, and slow gravitational contraction turns into
rapid gravitational collapse.

There are two energy absorbing processes which could drive the iron core of a star into an un-
controlled collapse. They are the photodissociation of atomic nuclei and the capture of electrons via
inverse beta decay.

1.1.1 Nuclear photodissociation

As the core collapses, the temperature rises, and photons become energetic enough to initiate nuclear
photodissociation. For simplicity, assume that we have the following reaction (in reality photodissoci-
ation leads to the formation of different species of nuclei)

v 450 Fe = 13*He + 4n, (1)

and we see that photon energy is used to unbind atomic nuclei, leading to a net loss of thermal energy
in the core that supports against gravity. If we label the particles according to their mass number,
then we have

Q = (13my + 4my — msg)c® = 124.4MeV, (2)

i.e. 1 kg of %Fe absorbs 2 x 10 J of energy - equivalent to 50 kilotons of TNT. Hence, the total
amount of energy that can be absorbed by this process, assuming that we have an iron core of mass
~ 1.4 Mg, is approximately

2x 10T x1.4x2x10%° ~6x 10*J.

This is equivalent to the energy radiated by the Sun over 10'° years.

1.1.2 Electron capture

Neutrons are normally unstable to beta decay with a half-life of 10.25 minutes

n—p+e +r.

Page 1 of 5



Stellar Structure and Evolution SPAT7023 R.P. Nelson

The combined energy of the electron and anti-neutrino is 1.3 MeV (i.e. the mass-energy difference
between the neutron and proton). Hence, electrons with energies up to 1.3 MeV are produced. This
process of neutron beta decay can be switched off if the neutrons are immersed in a dense gas of
degenerate electrons, and all of the energy states with energy up to 1.3MeV are fully occupied. We
recall from week 9 that the Fermi momentum is given by

3n, 1/3
m=n(e) " ®

E2 = p2c? +m2ch. (4)

and the associated electron energy is

If the gas has a density that corresponds to a larger Fermi momentum than this, then electrons will
be present with energy > 1.3 MeV, and these can be captured by protons to form neutrons via inverse
beta decay

e +p—n+re, (5)

a process called neutronisation. Protons in the core of evolved massive stars are bound up in nuclei,
but can still capture electrons in reactions like

e~ 45 Fe —56 Mn. (6)

This occurs when the density exceeds 1.1x10'2 kg m~3, for which the Fermi energy Eg = /p2c2 + m2ct =
3.7MeV, the value needed for inverse beta decay of %Fe to occur. Normally, a Mn nucleus decays
to ®°Fe with a half-life of 2.6 hours, but in a stellar core it captures an electron to form °6Cr. Electron
capture by inverse beta decay on nuclei in a stellar core becomes very rapid when p ~ 10 kg m~3.
The kinetic energy of degenerate electrons is converted into the kinetic energy of electron neutrinos,
Ve, which escape from the core. These energy absorbing processes are so effective that the collapse of
the core is almost unopposed by pressure effects, and the core can collapse almost freely under gravity
on a free-fall time scale (derived in week 1)

[ 3
TH — %7 (7)

which is on the order of 1 millisecond for p ~ 10" kg m™3. The total amount of energy lost may be
estimated as follows. An %Fe core with 1.4 My has ~ 10°7 electrons, which can give rise to 107 v.
The average energy of the captured electrons is ~ 10 MeV when p =~ 2 x 10'3 kg m ™3, hence the energy
lost (expressed in Joules) is

Eeap ~ 10°7 x (10 x 1.6 x 10713) = 1.6 x 10" J.

Hence, a key expectation is that the collapse of an iron stellar core will be accompanied by the emission
of a very large flux of neutrinos.

The collapse is rapid and almost unopposed until a density comparable to the density of nuclear
matter is reached. The nuclear forces, which are attractive over scales ~ 107! m and repulsive
on smaller scales, and neutron degeneracy, are expected to resist further compression and bring the
collapse to a fairly sudden halt. Using the fact that the radius of a nucleus is given by

R =ryA'Y/3, ro~ 1.2 x 1071° m,

where A is the atomic mass number, we find that the density of nuclear matter

N 3Amy  3my
Pove = RS T 4ard

=23x%x 10" kg m™3.

Upon exceeding this density, the core is expected to rebound strongly, and sets up a shock wave that
propagates outwards and travels through the material that is falling towards the centre. Theoretical
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calculations and sophisticated computer simulations suggest that this shock is able to reverse the
inwards fall of stellar material surrounding the core and produce an outward expulsion, a supernova.

Supernovae are very energetic explosions: the observed kinetic energy of the debris is typically
about 10* J, and the energy output in the optical is about 10*? J. These numbers, however, should
be compared with the gravitational binding energy that is released by the collapse of the core

Renal G )2 G M?2 M \? /10 km
AQ ~ — dr ~ =3 x10% ( — ———17J
/ T2 " Rﬁnal . <M® > < R > ’

Rinitial
assuming that Rana < Rinitial. Before the collapse Rinitiai &~ 1000 km, and afterwards we see that
Rfnal ~ 10 km (as will be proved below).

Obviously the gravitational energy released is very large compared
to what we observe in the kinetic energy and photon energy associ- wl } o IMB
ated with a supernova explosion, so it is clear that the energy required - © Kamiokande I
to drive the explosion is available. The question is: what is the ac- or
tual energy loss channel that explains the discrepancy between the 20 ‘# #
observed energy release and the change in gravitational potential en- 10% b ¢ A
ergy? (since these must balance to conserve the total energy). The . ‘?l L
answer is that the collapse leads to the formation of a hot, bloated o 2 4 & 8 10 12
neutron star, and the energy density in this object is large enough Time
that spontaneous production of neutrino—anti-neutrino pairs occurs, Figure 1:
and these can more or less freely escape from the collapsed core, lead-
ing to most of the gravitational binding energy being released through a burst of neutrino emission.
This theoretical expectation was beautifully confirmed by detection of the neutrino burst from the
supernova 1987A by the Kamiokande (Japan) and Irvine-Michigan-Brookhaven (USA) neutrino exper-
iments, as shown in figure [I}

Among the important by-products of a supernova is that the mixture of products of thermonuclear
reactions accumulated around the core is ejected into the interstellar medium, and hence enriches it
with heavy elements.

The collapse of the iron core of a massive star is the cause of the so-called Type II supernovae.
The collapse is expected to leave a core residue, either a neutron star, or an overweight neutron star
that collapses to form a black hole. Type la supernovae, which are used as standard candles for
measuring distances on cosmological scales, are caused by the thermonuclear detonation of a carbon-
oxygen white dwarf, which increases its mass by accreting material from a close companion binary star,
or by coalescing with another white dwarf star binary companion after they spiral-in due to emission
of gravitational waves. If such a white dwarf exceeds the Chandrasekhar limit, then it will contract,
heat up, and ignite an uncontrolled thermonuclear explosion which destroys the star completely. This
arises because the effective thermostat that operates in main sequence stars to maintain a constant
rate of nuclear energy generation cannot operate in a star whose support against gravity is dominated
by degeneracy pressure instead of thermal pressure.

Energy (MeV)

1.2 Neutron stars

A neutron star is born as a hot residue of the collapsed core of a massive star. The typical internal
temperature is initially between 10" and 102 K. It rapidly cools by neutrino emission, and is expected
to reach a temperature on the order of 10° K in a day and 10® K in 100 years. These are high
temperatures according to terrestrial and solar standards, but they are low when compared to the
standards set by the high densities of matter inside a neutron star. The electrons, photons and above
all the neutrons, which appear to be the dominant constituents of neutron stars, are degenerate and
occupy the lowest possible states consistent with Pauli’s exclusion principle. The characteristic radius
of a neutron star is about 15 km, which is about 2000 times smaller than the typical size of a white
dwarf given by eqn. (26) in the week 9 lecture notes.

We now discuss the nature of the matter inside a neutron star, to understand why neutrons are
likely to be the main constituents. Normally, the most stable nuceli are near *°Fe in the periodic
table. Less massive nuclei are less stable because there is a higher fraction of nuclei near the surface.
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More massive nuclei are less stable because the Coulomb repulsion starts to become more important.
This balance changes in the presence of degenerate electrons, and as discussed above once the Fermi
energy is high enough energetic electrons can cause p — n through inverse beta decay. The associated
neutronisation of nuclei leads to the formation of neutron-heavy isotopes such as "®Ni and "®Fe that
are the most stable nuclei in a degenerate electron gas when p ~ 10 kg m—3. At densities p > 4 x 10!
kg m~3, the phenomenon of neutron drip occurs, and neutrons start to dissociate from nuclei. The
result is a dense gas in which electrons, neutrons and nuclei co-exist. The equation of state for such a
mixture is fairly well understood for such a mixture for p < puue = 2.3 x 107 kg m~3, but at higher
densities the nuclei start to merge with another, and the state of matter is now a dense gas consisting
of electrons, protons and neutrons. The equation of state now becomes very complicated to understand
and calculate, since it depends not just on neutron degeneracy (so adopting an equation of state similar
to that used for white dwarfs would not be accurate), but also on the complex short range interactions
among the nucleons.

To understand why neutrons are the dominant constituent, let us neglect the mutual interactions
between the neutrons and protons and just consider a degenerate gas of electrons, protons and neutrons.
As discussed above, neutrons are prevented from decaying because the beta decay of neutrons

n—p+te 41,

is blocked due to the electron degeneracy, whereas the degeneracy ensures a plentiful supply of energetic
electrons that cause the inverse beta decay of protons

p+e —n+vre,

hence converting protons into neutrons.

1.2.1 Sizes of neutron stars

Given that we have demonstrated that neutron stars are expected to be composed primarily of neutrons,
we can say that the number density of neutrons is

where m,, is the mass of the neutron (almost the same as myy). If we make the simplifying assumption
that a neutron star is supported entirely by a non-relativistic, fully-degenerate neutron gas, then we
can adopt the analysis used in week 9 to obtain the mass radius relation for a white dwarf star, noting
that the equation of state is the same as that for an n = 3/2 polytrope. For a 1.5 Mg star, this predicts
the radius to be R = 13 km.

1.2.2 Maximum mass of a neutron star

To a first approximation, neutrons play the same supporting role in a neutron star as electrons in a
white dwarf. As discussed in the lecture notes of week 9, the smaller momenta of electrons compared
to protons and neutrons in a gas of a given temperature means that electron degeneracy pressure sets
in at lower densities than neutron degeneracy pressure, since we require that the Fermi momentum

given by
h [ 3n, 1/3
Po =5 < > (8)

™

is larger than that associated with the thermal motion of the particles before degeneracy pressure
becomes important. Just as degenerate electrons can fail to provide enough support to prevent the
collapse of a white dwarf above a certain mass, the Chandrasekhar limit, degenerate neutrons are
unable to support a neutron star with a mass that exceeds a certain value.

The physics underlying the Chandrasekhar limit is clear cut. As the mass of the white dwarf
approaches the limit, the central density increases and the degenerate electrons become increasingly
degenerate. At the Chandrasekhar limit the electrons are ultra-relativistic and the star collapses.

Page 4 of 5



Stellar Structure and Evolution SPAT7023 R.P. Nelson

A similar phenomenon involving neutrons is expected in a neutron star, but there are a number of
important differences. First, the interactions between the neutrons are important at the high densities
found in a neutron star. Second, the gravitational fields are very strong, and Einstein’s theory of gravity,
not Newton’s, should be used to describe the equilibrium structure of a neutron star. However, these
differences do not alter the fundamental result that there is a maximum mass for a neutron star. Their
main effect is to make the calculation of the maximum mass of a neutron star very difficult.

We can make a simple estimate by adopting the same analysis as used in week 9 for white dwarfs,
and assuming that as the mass of a neutron star increases, its neutrons become ultra-relativistic, and
the equation of state changes from that of a n = 3/2 polytrope to that of an n = 3 polytrope. A
self-gravitating body with such an equation of state sits on the stability/instability boundary, and has
a mass that is determined entirely by the polytropic constant K. In this case, the polytropic constant
is given by fundamental constants as described by eqn. (15) in the week 9 lecture notes:

K2:hC<3>l/3<1+X>4/3

8 ™ 2mH

We note that Ko was formulated for electron degeneracy pressure, and the last factor was obtained
by considering how many electrons are donated by the different elements in the star. For a gas of
neutrons, this factor simply becomes unity, and the value of K5 thus obtained can be combined with
eqn. (20) from the week 4 lectures on polytropes to obtain an estimate of the maximum mass. The
result of doing this gives M = 5.26 M. Prove this for yourselves!

Note that we have neglected a large amount of complex physics in making this estimate. First,
we have neglected the interactions between the neutrons. Second, and this is very important, the
gravitational field in a neutron star is so strong (i.e. the escape velocity from the surface of the star
is starting to approach ¢, the speed of light) that we need to use Einstein’s theory of gravity and not
Newton’s to get an accurate estimate of the maximum mass of a neutron star, since Einstein’s theory
has the effect of making the gravitational field stronger. The result of including these effects is to
reduce the maximum mass of a neutron star down to = 3 M. Once a neutron star exceeds this mass,
it appears that it must inevitably collapse to form a black hole.

1.2.3 Observations of neutron stars

Observationally, neutron stars have been detected in the form of the
pulsars, which emit pulses at very regular intervals, with periods be-
tween a few milliseconds and a few seconds. These are most often
observed in radio emission. The interpretation of the observations is  Seepusesof

radiation when

that they originate from a rotating neutron star, which is predomi- — J&rem o
Radiation is beamed

. . . . . . . directi
nantly radiating in specific directions; a pulse is observed when the
. . ! directi f
beam of radiation sweeps past the observer. open magnetic fikd nes

Charged particles
are accelerated
off the surface of
the neutron star
by strong electric
fields

Figure 2:
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