
Stellar Structure and Evolution SPA7023 R.P. Nelson

Week 4

1 Polytropic models

One of the primary aims of this module is to derive, from first principles, the full set of equations that
describe stellar structure. This will result in a set of differential equations and an equation of state
that describe how ρ(r), P (r), T (r), L(r), and m(r) depend on the independent variable r. Hence we
will be able, in principle at least, to compute the internal structure of stellar models. So far, we have
obtained an equation that describes how ρ(r) and m(r) are related

dm(r)

dr
= 4πr2ρ(r), (1)

the hydrostatic equation
1

ρ

dP

dr
= −Gm(r)

r2
(2)

and the ideal gas equation of state

P =
R
µ
ρT =

kB
µmH

ρT. (3)

It should be clear that without an equation that describes how T (r) varies with r, we currently have
3 equations and 4 unknowns (P (r), ρ(r), m(r) and T (r)), and hence our equation set is not complete
and cannot be solved. In the lecture of week 2, however, we derived an equation of state that applies
to adiabatic changes

P = Kργ , (4)

and when K is a constant this results in the pressure, P , being a function of ρ only. Hence, we are able
to solve the equations of stellar structure that we have derived so far for such an equation of state.

The equation of state in eqn. (4) withK being a constant is more generally referred to as a polytropic
relation, and the resulting stellar models are known as polytropic models or polytropes. These simpler
models have played an important role in the development of the subject, as they can solved relatively
easily (sometimes analytically as we will see below), and nonetheless are not too dissimilar from
realistic models. In particular, where there is a near-adiabatic relation between density and pressure,
as expressed in eqn. (4), these models can in fact be rather accurate.

To obtain the equation satisfied by polytropic models, we note that eqn. (2) can be manipulated
and differentiated to give

d

dr

(
r2

ρ

dP

dr

)
= −Gdm

dr
. (5)

Hence, using eqns. (1) and (4) we eliminate m(r) and obtain

d

dr

(
r2Kγργ−2

dρ

dr

)
= −4πGρr2. (6)

It is convenient to replace γ by the polytropic index, n, defined by

γ = 1 +
1

n
, n =

1

γ − 1
. (7)

We also introduce a dimensionless measure of density, θ, through

ρ = ρcθ
n, (8)

where ρc is the central density. Then eqn. (6) becomes

d

dr

(
r2K

[
n+ 1

n

]
ρ(1/n−1)c θ1−nρcnθ

n−1dθ

dr

)
= −4πGρcθ

nr2 (9)
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which simplifies to
(n+ 1)Kρ

(1/n−1)
c

4πG

1

r2
d

dr

(
r2
dθ

dr

)
= −θn. (10)

To simplify the equation further, we introduce a new measure for the distance to the centre, ξ, defined
by

r = αξ, where α2 =
(n+ 1)Kρ

(1/n−1)
c

4πG
. (11)

Then the equation finally becomes
1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn. (12)

This equation is called the Lane-Emden equation, and the solution θ(ξ) is called the Lane-Emden
function. From eqn. (8) it follows that θ must satisfy the boundary conditions

θ(ξ) = 1 for ξ = 0

dθ

dξ
= 0 for ξ = 0. (13)

The second boundary condition comes from consideration of the hydrostatic equation (2) near the
centre of the star

dP

dr
= −Gm(r)ρ

r2
≈ −G4πr3ρ2c

3r2
= −4πGρ2cr

3
. (14)

It is clear that

lim
r→0

4πGρ2cr

3
= 0 hence

dP

dr

∣∣∣∣
r=0

= 0. (15)

Given the relations P = Kρ1+1/n and ρ = ρcθ
n, it is easy to show that the second boundary condition

applies at the centre of the star. We also note that the surface of the model is defined by the point
ξ = ξ1 where θ(ξ1) = 0. i.e. where the density goes to zero. Hence we see that θ takes values 0 ≤ θ ≤ 1,
since the density is expected to be a monotonically decreasing function of radius in a star.

Given the solution θ(ξ), we can obtain relations between the various quantities characterising the
model. It follows immediately from eqn. (11) that the surface radius of the model is

R = αξ1 =

[
(n+ 1)Kρ

(1/n−1)
c

4πG

]1/2
ξ1. (16)

The mass, m(ξ), interior to ξ may be obtained by integrating eqn. (1), using eqns. (8), (11) and (12),
giving

m(ξ) =

∫ αξ

0
4πr2ρdr = 4πα3ρc

∫ ξ

0
ξ2θndξ

= −4πα3ρc

∫ ξ

0

d

dξ

(
ξ2
dθ

dξ

)
dξ

= −4πα3ρcξ
2dθ

dξ
. (17)

Using eqn. (11) for α, we finally obtain

m(ξ) = −4π

[
(n+ 1)K

4πG

]3/2
ρ

3−n
2n

c ξ2
dθ

dξ
. (18)

In particular, the total mass is given by

M = −4π

[
(n+ 1)K

4πG

]3/2
ρ

3−n
2n

c

(
ξ2
dθ

dξ

)
ξ=ξ1

. (19)
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From eqns. (16) and (19), by eliminating ρc, we may find a relation between M , R and K. The result
is

K = (4π)
1
n

G

n+ 1
ξ
−n+1

n
1

(
−dθ
dξ

) 1−n
n

ξ=ξ1

M
n−1
n R

3−n
n . (20)

There are two different interpretations of this relation. If the constant K in eqn. (3) is given in terms
of basic physical constants, and hence is known, eqn. (20) defines a relation between the mass and
radius of the star. If, on the other hand, eqn. (3) just expressed proportionality, with the constant K
being essentially arbitrary, then eqn (20) may be used to determine K for a star with a given mass
and radius. As shown below, one may then determine other quantities for the star. In the former case,
therefore, there is a unique polytropic model for a given mass, whereas in the latter case a model can
be constructed for any value of M and R.

From the last of eqns. (17) we find that the mean density of the star is

ρ̄ =
3M

4πR3
= −3

ξ

(
dθ

dξ

)
ξ=ξ1

ρc, (21)

and hence the central density is determined by the mass and radius as

ρc = −ξ1
3

(
dθ

dξ

)−1
ξ=ξ1

3M

4πR3
≡ an

3M

4πR3
, (22)

where the last equation defines the constant an, which depends on the polytropic index, n, only.
Finally, using the equation of state from eqn. (4), with γ = 1 + 1/n,

Pc = Kρ1+1/n
c , (23)

and using eqns. (20) and (22), we find that

Pc =
1

4π(n+ 1)

(
−dθ
dξ

)−2
ξ=ξ1

GM2

R4
≡ cn

GM2

R4
, (24)

where cn depends on the polytropic index, n, only. The pressure throughout the model is then deter-
mined by

P = Pcθ
n+1. (25)

When the temperature is related to pressure and density through the ideal gas law, P = kBρT/(µmH),
it may be determined from eqns. (8) and (25) as

T = Tcθ, (26)

where

Tc =

[
(n+ 1)ξ1

(
−dθ
dξ

)
ξ=ξ1

]−1
GMµmH

kBR
≡ bn

GMµmH

kBR
, (27)

where bn depends on the polytropic index only. In the case when the star is composed of an ideal gas,
therefore, θ is a measure of the temperature.

To determine the structure of a polytropic star completely, we only need to find the solution to
the Lane-Emden equation (12) with the boundary conditions eqn. (13). Unfortunately, in general no
analytical solution is possible. The only exceptions are

n = 0 : θ = 1− ξ2/6 ξ1 =
√

6

n = 1 : θ = sin ξ
ξ ξ1 = π

n = 5 : θ =
(

1 + ξ2

3

)−1/2
ξ1 =∞
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n ξ1 an bn cn

0 2.449 1.00 0.5 0.12
1 3.142 3.29 0.5 0.39
1.5 3.654 5.99 0.54 0.77
2 4.353 11.40 0.60 1.64
3 6.897 54.18 0.85 11.05
4 14.97 662.4 1.67 247.6

Table 1: Properties of polytropic models. Constants an, bn and cn specify the central density, temper-
ature and pressure as given by eqns. (8), (27) and (24).

ξ θ dθ/dξ ξ θ dθ/dξ

0 1 0 0 1 0
0.5 0.96 -0.16 0.5 0.96 -0.16
1.0 0.85 -0.29 1.0 0.86 -0.25
1.5 0.68 -0.36 1.5 0.72 -0.28
2.0 0.50 -0.37 2.0 0.58 -0.26
2.5 0.32 -0.34 3.0 0.36 -0.18
3.0 0.16 -0.28 4.0 0.21 -0.12
3.5 0.03 -0.22 6.0 0.04 -0.06
3.654 0 -0.20 6.897 0 -0.04

Table 2: Properties of polytropes of indices n = 1.5 (left three columns) and n = 3 (right three
columns).

The solution for n = 5 is evidently peculiar, in that it has infinite radius. However, since

lim
ξ→∞

(
−ξ2dθ

dξ

)
=
√

27/3, n = 5 (28)

is finite, so is the mass of the model. It may be shown that only for n > 5 does the Lane-Emden
equation have solutions corresponding to finite radius.

For values of n other than 0, 1 and 5, the Lane-Emden equation must be solved numerically.
Extensive tables of the solutions exist, and obtaining numerical solutions is a relatively simple numerical
problem. Table 1 lists a number of useful quantities, which enter into the expressions given above, for
a selection of polytropic models.

Table 2 presents the solution for two particular cases, n = 1.5 and n = 3, at selected values of ξ.
From table 1 it follows that the properties of polytropic models vary widely with n. This is true in
particular of the degree of central condensation, as measured by an, the ratio of the central to mean
density. For n = 0 it is obvious from eqn. (8) that density is constant, and hence a1 = 1, whereas the
value of an tends to infinity as n → 5. For stars on the main sequence, the central condensation is
typically around 100, corresponding to a polytrope of index ≈ 3.3.

It should be noticed also that eqn (24) for the central pressure, and in the ideal gas case eqn. (27)
for the central temperature, confirm the simple scaling derived in the previous lecture. Now, however,
the polytropic relations contain the additional numerical constants bn and cn. It is obvious from table 1
that cn varies strongly with n; hence our estimate of the central pressure in the lecture of week 3 is at
best a rough estimate. On the other hand, the range of variation of bn is much more modest, except
when n is close to the critical case n = 5. Thus, the estimate of the central temperature obtained in
the lecture of week 3 is reasonable for a broad range of models.
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1.1 Gravitational potential energy of a polytropic star

Ω = −
∫ M

0

Gm(r)

r
dm(r). (29)

From the polytropic equation of state P = Kρ1+
1
n we obtain

dP =

(
1 +

1

n

)
Kρ

1
ndρ (30)

and hence
dP

ρ
=

(
n+ 1

n

)
Kρ

1
n
−1dρ. (31)

From the equation of state we have
P

ρ
= Kρ

1
n (32)

and differentiating this expression gives

d

(
P

ρ

)
=

1

n
Kρ

1
n
−1dρ. (33)

Hence we obtain
dP

ρ
= (n+ 1)d

(
P

ρ

)
. (34)

We will also use the equations that govern the mass distribution and hydrostatic equilibrium:

dm(r)

dr
= 4πr2ρ(r) (35)

and
dP

dr
= −Gm(r)

r2
ρ(r). (36)

We start by writing the gravitational potential energy as follows, and then proceed by integrating by
parts a number of times (note that the limits of integration c and s denote the centre and surface,
respectively):

Ω = −
∫ M

0

Gm(r)

r
dm(r) = −1

2

∫ s

c

Gd(m(r)2)

r
. (37)

Integrating by parts (noting that the total mass is denoted by M and the radius of the star is given
by R) gives

Ω = −1

2

∫ s

c

Gd(m(r)2)

r
=

[
Gm(r)2

2r

]s
c

− 1

2

∫ s

c

Gm(r)2

r2
dr

= −GM
2

2R
+

1

2

∫ s

c
m(r)

dP

dr

1

ρ
dr

= −GM
2

2R
+

1

2

∫ s

c
m(r)

dP

ρ

= −GM
2

2R
+

(n+ 1)

2

∫ s

c
m(r)d

(
P

ρ

)
. (38)

Now we integrate the 2nd term above by parts:

Ω = −GM
2

2R
+

[
(n+ 1)

2
m(r)

P

ρ

]s
c

− (n+ 1)

2

∫ s

c

P

ρ
dm(r)

= −GM
2

2R
− (n+ 1)

2

∫ s

c

P

ρ
4πr2ρ(r)dr

= −GM
2

2R
− (n+ 1)

2

∫ s

c
P

4π

3
d(r3). (39)
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Now we integrate the 2nd term above by parts:

Ω = −GM
2

2R
−
[

(n+ 1)

2

4π

3
Pr3

]s
c

+
(n+ 1)

6

∫ s

c
4πr3

dP

dr
dr

= −GM
2

2R
− (n+ 1)

6

∫ s

c
4πr3

Gm(r)

r2
ρ(r)dr

= −GM
2

2R
− (n+ 1)

6

∫ s

c

Gm(r)

r
dm(r). (40)

The above expression can be written as

Ω = −GM
2

2R
+

(n+ 1)

6
Ω. (41)

Solving for Ω in equation (41) finally gives the expression for the gravitational potential energy

Ω = − 3

5− n
GM2

R
. (42)

Hence, we see that for an n = 0 polytrope, which is of constant density, the value for the gravitational
potential energy agrees with that obtained in the lecture notes of week 3. As the value of n increases
towards n = 5, and the degree of central concentration increases, the value of Ω becomes increasingly
negative until it becomes undefined for n = 5.

1.2 Solving the Lane-Emden equation numerically

We recall that the Lane-Emden equation is

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn (43)

and the boundary conditions at the centre of the star are

θ(ξ = 0) = 1 and

(
dθ

dξ

)
ξ=0

= 0, (44)

where θn plays the role of a scaled density and ξ plays the role of the scaled radius when the equation
of state is expressed as P = Kρ1+1/n.

Note that we have the following relations

ρ = ρcθ
n

P = Pcθ
n+1

T = Tcθ
n. (45)

We also have

ρc = an
3M

4πR3
where an = −ξ1

3

(
dθ

dξ

)−1
ξ=ξ1

Pc = cn
GM2

R4
where cn =

1

4π(n+ 1)

(
−dθ
dξ

)−2
ξ=ξ1

Tc = bn
GM

R

µmH

kB
where bn =

[
(n+ 1)ξ1

(
−dθ
dξ

)
ξ=ξ1

]−1
. (46)

We note that ξ1 corresponds to the value of ξ where θ(ξ) = 0. We also have the relation r = αξ where

α =

√
(n+ 1)Kρ

1/n−1
c

4πG
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and

K = (4π)1/n
G

(n+ 1)
ξ
−(n+1)/n
1

(
−dθ
dξ

)(1−n)/n

ξ=ξ1

M (n−1)/nR(3−n)/n.

Hence, if we specify the total stellar mass,M , and the stellar radius, R, and solve for θ(ξ), (−dθ/dξ)ξ=ξ1
and ξ1 we can determine how ρ, P and T vary with radius.

1.2.1 A simple numerical algorithm

We now present a sequence of steps that allow us to solve the Lane-Emden equation numerically.

(1). Rewrite eqn. (43) in the form
d2θ

dξ2
= −2

ξ

dθ

dξ
− θn. (47)

(2). Approximate derivatives of the function θ as

dθ

dξ
≈ ∆θ

∆ξ

where ∆θ represents a small but finite change in θ, and ∆ξ is a small but finite change in ξ.
Using the same approximation, we can write

d2θ

dξ2
≡ d

dξ

(
dθ

dξ

)
≈ 1

∆ξ
×∆

(
dθ

dξ

)
where ∆ (dθ/dξ) represents a small but finite change in dθ/dξ.

(3). Now divide the radius of the star into discrete points, starting with a central value ξ0, and with
successive points ξ1, ξ2, ..., ξi, ξi+1, ... (note that ξ1 here does not correspond to the surface of the
model, as it does in our earlier discussion).

Define ∆ξ = ξi+1 − ξi, the distance between any two successive points.

Note that when we solve the Lane-Emden equation we will compute the values of θ and dθ/dξ at
the discrete points. These will be denoted as θ0, θ1, θ2, ..., θi and (dθ/dξ)0, (dθ/dξ)1, (dθ/dξ)2, ...,
(dθ/dξ)i, ...

(4). Now rewrite the Lane-Emden equation as

1

∆ξ
×∆

(
dθ

dξ

)
= −2

ξ

dθ

dξ
− θn (48)

which then becomes
1

∆ξ

[(
dθ

dξ

)
i+1

−
(
dθ

dξ

)
i

]
= − 2

ξi

(
dθ

dξ

)
i

− θni (49)

with the subscripts denoting the fact that these quantities are defined at discrete points in scaled radius
ξi. Equation (49) can now be written as(

dθ

dξ

)
i+1

=

(
dθ

dξ

)
i

−∆ξ

[
2

ξi

(
dθ

dξ

)
i

+ θni

]
(50)

Using the approximation (
∆θ

∆ξ

)
i+1

=
θi+1 − θi

∆ξ
≈
(
dθ

dξ

)
i+1

(51)

we can now write
θi+1 = θi + ∆ξ

(
dθ

dξ

)
i+1

. (52)
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Equations (51) and (52) form a set of coupled equations that can be used to solve the Lane-Emden
equation (

dθ

dξ

)
i+1

=

(
dθ

dξ

)
i

−∆ξ

[
2

ξi

(
dθ

dξ

)
i

+ θni

]

θi+1 = θi + ∆ξ

(
dθ

dξ

)
i+1

with the boundary conditions θ0 = 1 and

(
dθ

dξ

)
0

= 0 (53)

(5). We now solve eqns. (53) using the following steps

i. Define ξ0 = 10−6. We should use ξ0 = 0.0 to define the radius point at the centre of the star, but
this would introduce a division by zero in the first of equations (53) so we choose a small number
close to zero instead.

ii. Define a value for ∆ξ. We will use ∆ξ = 10−3.

iii. Impose the boundary conditions by defining θ0 = 1.0 and (dθ/dξ)0 = 0.0

iv. Using the equations (53), start stepping out from the centre of the star, updating(
dθ

dξ

)
i+1

, θi+1 and ξi+1

at each radius point. The first update will be(
dθ

dξ

)
1

=

(
dθ

dξ

)
0

−∆ξ

[
2

ξ0

(
dθ

dξ

)
0

+ θn0

]

θ1 = θ0 + ∆ξ

(
dθ

dξ

)
1

ξ1 = ξ0 + ∆ξ

The second update will be(
dθ

dξ

)
2

=

(
dθ

dξ

)
1

−∆ξ

[
2

ξ1

(
dθ

dξ

)
1

+ θn1

]

θ2 = θ1 + ∆ξ

(
dθ

dξ

)
2

ξ2 = ξ1 + ∆ξ

v. Use eqns. (53) to continue stepping out towards the surface of the star. Stop stepping out when
the value of θi+1 < 0 as this indicates that we have gone beyond the surface of the star where
θ = 0.

vi. Use the final values of ξi, ξi+1, θi θi+1, (dθ/dξ)i and (dθ/dξ)i+1) to interpolate and find the values
of ξ = ξ1 and (dθ/dξ)ξ=ξ1 that correspond to the point where θ = 0.

(6). We have now obtained values for ξ1 and (dθ/dξ)ξ=xi1 , and combined with specified values for M
and R they can be used to define the constants an, bn and cn, and hence ρc, Pc and Tc.

(7). We also have values for θi at numerous positions inside the star, and hence we can define
the values of ρ, P and T at these positions. By using M and R to calculate K we can define
α and therefore the values of r that correspond to the ξi values. Hence we now know how ρ,
P and T depend on r. An example of a n = 3.3 polytrope for a solar mass and radius star
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is shown in Fig. 1, and compared with the Standard Solar model which can be downloaded from
http://www.sns.ias.edu/ jnb/SNdata/Export/BS2005/bs05op.dat.

Figure 1: These plots compare the values of ρ, P , T and L obtained for an n = 3.3 polytrope with the Standard
Solar Moodel (see http://www.sns.ias.edu/ jnb/SNdata/Export/BS2005/bs05op.dat). Note that the luminosity
obtained for the polytrope was calculated using the expression derived for εpp presented in the lecture of week
5: εpp = 2.6 × 10−37X2ρT 4. Note the modified exponent on the temperature which was required to obtain
decent agreement with the Solar model.
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