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1B40 Practical Skills 

 

Combining uncertainties from several quantities – error 

propagation 
 

We usually encounter situations where the result of an experiment is given in terms of 

two (or more) quantities. We then need to know what is the error on the final answer, in 

terms of the uncertainties on the individual quantities.  We will discuss some specific 

cases before dealing with a more general case; a summary appears at the end.  

Linear cases 
A simple case is where the result, Z, is a linear sum of two other quantities A and B, e.g. 

.z a b    If A has the value a a and B the value b b then Z has the value .z z  

How is z related to a and b ?  We might expect that .z a b      However this 

could lead to the nonsense result that 0z  !  We could decide to consider the maximum 

possible error and simply add the magnitudes of a and b .  This would be an 

overestimation of the error.   

A more sensible approach is to consider standard deviations.  Thus if we square, 

z a b    we get  

      
2 2 2

2 .z a b a b        

Over a large number of measurements we would expect that if a and b are both equally 

positive and negative and not correlated to each other then the average value of a b   

is zero.  Hence  

     
2 2 2

2 2 2

,

,z a b

z a b  

  

 

 

 

and so we add the errors on a and b in quadrature.  Note the result would have been the 

same if .z a b     

A formal derivation of the result is as follows, 
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The last term involves the covariance of a and b.  This is a measure of whether their 

errors are correlated or not.  It can be positive or negative or, in the case where they are 

uncorrelated, zero.  Its value is related to the extent that a value of a affects that of .b  
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Products and quotients 
If z ab  then  

 
   ,

.

z z a a b b ab a b b a a b

z a b b a a b

      

    

       

  
 

To first-order in the errors,  

 .z a b b a     

Since we don’t know the signs of the uncertainties, we square and average over a large 

number of measurements,  

        

        

2 2 22 2

2 2 22 2

2 ,

2 .

z a b b a ab a b

z a b b a ab a b

    

    

  

  
 

If the uncertainties in a and b, a  and b , are uncorrelated,    0a b    and  

 

2 2 2

2 22

,

.a bz

z a b

z a b

z a b

  

 

     
      

     

    
      

     

 

Thus in this case we add the fractional errors in quadrature.   

 

If 
a

z
b

 then  

 

 

 
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,

1 /

1 1 1 ,
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

 

   


  


  

 

    
         

    

 

 

where in the second line we have use the binomial approximation for 
1

1 1
b b

b b

 


 
  

 
when / 1.b b    

Just as in the linear case we don’t know the sign of the uncertainties, so squaring as 

before  
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          
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      
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      

     
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if the errors are uncorrelated.  Thus also in this case we add in quadrature the fractional 

errors.   

 

Functions of a single variable 
Suppose we have a measured quantity A, and determined its value as .a a  The reason 

A was measured was to provide an indirect measurement of a quantity Z which is a 

known function of A, i.e. z = f(a).  What is the best estimate for  z  z?  The graph 

illustrates such a case for 2.z a   
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The uncertainty, Z, in Z is related to that in A by 

 

0

.
a a

dz
z a

da
 



 
  
 

 

This is equivalent to assuming that f(a) is linear over the small region we are considering 

and we evaluate the differential at the mean of the measurements.  This is a general result.    

Three examples are  

1) 1,n ndz
z a na

da

   giving .
z a

n
z a

 
  

2) 
1

ln ,
dz

z a
da a

   giving .
a

z
a


   

3)    exp exp ,
dz

z a a z
da

    giving .
z

a
z


  
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Functions of Several Variables 

If z = f(a,b) and the uncertainties in A and B are given by a and b respectively we make 

the same approximation as before, i.e. z is a linear function of a and b in the relevant 

region, so that  we can write 

 

0 0

.
A a B b

z z
z a b

a b
  

 

    
    

    
 

The quantity 
z

a




is called a partial derivative.  You will learn more about these in your 

mathematics courses (if you haven’t already met them).  To obtain an expression for 
z

a




 

we consider z as a function of the variable a, all other quantities are considered as 

constant, and differentiate the expression for z in the normal way.   

As before the signs of the uncertainties are not known, so we square the expression and 

average over many measurements,  

        

        

     

2 2
2 2 2

2 2
2 2 2

2 2
2 2 2

2 ,

2 ,

2 cov( , ).

z z z z
z a b a b

a b a b

z z z z
z a b a b

a b a b

z z z z
z a b a b

a b a b

    

    

  

         
        

         

         
        

         

         
        

         

  

The last term is zero if A and B are independent variables as there is equal probability of 

positive and negative combinations of a and b  whose average is therefore zero.  Thus 

     
2 2

2 2 2

2 2

2 2 2

,

.z a b

z z
z a b

a b

z z

a b

  

  

    
    

    

    
    

    

 

This can be extended to more variables by adding further similar terms, viz 

 

2 2 2

2 2 2 2 .z a b c

z z z

a b c
   

       
        

       
 

All the earlier examples, e.g. z a b  or /z a b are just special cases of the general 

result given above.   

 

Correlated uncertainties 
Most of the measurements of quantities you will meet in the laboratory course are 

uncorrelated, or at least weakly correlated.  So the subtle effects of correlations will 

usually be ignored.  However it is worth considering an extreme case to illustrate their 

effects. Consider the simple case of z a b  . The error on z is given by  

 2 2 2.z a b     

If b a then this result leads to  
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2 22 ,

2 .

z a

z a

 

 




 

Yet if we had started from 2z a we would immediately get 2z a  and hence  

 2 ,z a   

in contradiction to the previous result.  The latter is correct, the former is wrong as it has 

not allowed for the correlation between a and  b a  which is, of course 100%.  We 

have    0a a   , in fact cov( , ) 1a a  .    

 

Example 
Consider that a quantity z is dependent on quantities a, b and c in the following way,  

  2 2 expz a b c     

where  and  are constants.  (This is a contrived expression simply for the purposes of 

this exercise!)  We want to find the error on z in terms of those on a, b and c.  We can 

proceed either by applying the formulae for the various special cases considered above, or 

the general formula.   

 

Case 1 – apply special case formulae. 

Let  2 expy b c   and 1/ 2p y , then  

 2 1/ 2 2 .z a y a p      

By differentiation  

 1/ 21
,

2
p y y   

and so  

 

     

     

2 2 2

2 2 22 2

2

1
4 .

4

z a a p

z a a y
y

   

   

 

 
 

But  

 
     

     

2 2 2 2

2 2 22 2

[ ] [ exp( ) ]

4 exp(2 ) .

y b c

y b b c c

   

   

 

 
 

Thus combining the results we get  

    
 

   
2 2 2 22 2 2 2

2

1
4 4 exp(2 ) .

4 exp( )
z a a b b c c

b c
     


   
 

 

Case 2 – application of general formula. 

By partial differentiation we have  
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 

2

2

2 ,

1
2 ,

2 exp( )

1
exp .

2 exp( )

z
a

a

z
b

b b c

z
c

c b c













 




 

 

The general formula then gives   

 

 

2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

2

,

1
4 4 exp(2 ) .

4 exp( )

z a b c

z a b c

z z z

a b c

a b c
b c

   

     


       
       

       

    

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Summary of error propagation formulae 
 

If quantities a and b have errors a  and b  respectively and are uncorrelated,  and k and 

n are constants, then if 

 

quantity error on quantity 

z na  
; a

z a zn z
a


  

 
   

 
 

z a b   2 2 2 2 2;z a b z a b          

z a b   2 2 2 2 2;z a b z a b          

z ab  2 2 2 22

;a b a bz
z z

z a b a b

   


        
            

         
 

/z a b  2 2 2 22

;a b a bz
z z

z a b a b

   


        
            

         
 

nz a  1; na az
z an zn na

z a a

 
 

    
       

     
 

 lnz a  a
z

a


   

 expz a  ea

z a az     

ekaz   eka

z a azk k     

 sinz ka   cos ak ka          Note a and a  are in radians! 

 , , ,z f a b c  2 2 2

2 2 2 2

z a b c

f f f

a b c
   

       
        

       
 

 
In complex expressions, either apply the general result from the last row, or break the 

expression down into sums, products and quotients and apply the separate formulae and 

combine the results.  


