
2 Frobenius Series Solution of Ordinary Differential Equations

At the start of the differential equation section of the 1B21 course last year, you met the linear first-order
separable equation (

dy

dx

)
= α y , (2.1)

where α is a constant. You were also shown how to integrate the equation to get the solution

y = A eα x , (2.2)

where A is an arbitrary integration constant. The solution can be expanded in a power series in x and I want
to show explicitly that this power series does indeed satisfy Eq. (2.1):

y = A

[
1 + αx +

1
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α2x2 +
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6
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αn−1xn−1 +
1
n!
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= A

[
0 + α + α2x +
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α3x2 + · · · · · · · · · · · · · · · · · ·+ 1
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.

Notice that, although similar terms are pushed one to the right, y′ is clearly equal to α y.
Let us now see how this is handled using the summation notation. Here

y = A
∞∑

n=0

1
n!

αn xn , (2.3)

dy

dx
= A

∞∑
n=0

1
(n− 1)!

αn xn−1 = A α
∞∑

n=0

1
(n− 1)!

αn−1 xn−1 . (2.4)

Eq. (2.4) does not yet look quite like α times Eq. (2.3) because one sees xn−1 rather than xn. This is a reflection
of all the terms being pushed one over, as noted in the long-hand representation above. To show the equivalence,
first note that the n = 0 term is actually absent from the series for y′ and so the series effectively starts at
n = 1. Secondly, the n in the series is a dummy variable, like an integration variable, which does not occur in
the final answer. We can therefore make the substitution m = n− 1 in Eq. (2.4) to find

dy

dx
= A α

∞∑
m=0

1
m!

αm xm , (2.5)

which is exactly α y.
Generally the boot is on the other foot. We often end up with a differential equation (e.g. the Legendre

equation) which we cannot solve by inspection as we have done here. We want then to develop techniques for
finding directly series solutions for differential equations.

Let us try for a solution of Eq. (2.1) in the form

y = xk
∞∑

n=0

an xn =
∞∑

n=0

an xn+k , (2.6)

where a0 6= 0. Thus the value of the index k is defined by the condition that the first term a0 doesn’t vanish.
Differentiating term-by-term leads to

dy

dx
=

∞∑
n=0

(n + k) an xn+k−1 . (2.7)

Inserting Eqs. (2.6) and (2.7) into the differential equation, we find

∞∑
m=0

(m + k) am xm+k−1 = α
∞∑

n=0

an xn+k (2.8)
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where, to avoid confusion, I have used a different dummy variable m on the left from the n on the right. Since
this equation has to be true for a range of values of x around the origin, it must be true separately for each
power of x. We must therefore compare the coefficients of different powers of x on the two sides of Eq. (2.8).
To facilitate the comparison, let m = n + 1 on the left hand side.

∞∑
n=−1

(n + k + 1) an+1 xn+k = α
∞∑

n=0

an xn+k . (2.9)

Since we now have powers xn+k explicitly on both sides of the equation, it is simple to deduce that (n + k +
1) an+1 = α an, i.e.

an+1 =
α

n + k + 1
an . (2.10)

This is a very simple example of a recurrence relation, which allows us to evaluate all the higher coefficients
from the first one. It does however contain the unknown index k. How is its value fixed?

The lowest power of x on the left hand side of Eq. (2.9) is a0 k xk−1 (corresponding to n = −1), and there is
nothing like this on the right hand side because the sum there starts with n = 0. The term must therefore be
made to cancel

a0 k = 0 . (2.11)

Since a0 6= 0, this can only happen if k = 0. Eq. (2.11) is a very simple example of what is called an indicial
equation; it fixes the index k.

With k = 0, the recurrence relation becomes

an+1 =
α

n + 1
an . (2.12)

To use the same notation as in the previous solution, let a0 = A. Then

a1 = α A ,

a2 =
α

2
a1 =

α2

2
A ,

a3 =
α3

6
A etc.

In general

an+1 =
α

n + 1
× α

n
× α

n− 1
× · · · × α

1
×A =

αn+1

(n + 1)!
A . (2.13)

2.1 Possible problems

Let me give you a couple of examples to compare.

Example 1
Take first the case of

dy

dx
=

α y

x
.

The right hand side blows up at x = 0 but not too badly. In the notation that we shall use later, there is a
regular singularity at x = 0. As before we try for a solution of the form

y =
∞∑

n=0

an xn+k , hence

dy

dx
=

∞∑
n=0

(n + k) an xn+k−1 ,

α y

x
=

∞∑
n=0

α an xn+k−1 .
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Looking first at the lowest term, corresponding to n = 0, we see that

a0(α− k)xk−1 = 0 .

But, since a0 6= 0, the only solution is k = α.
Examining now the higher terms, we have to satisfy

an(α− k − n) = n an = 0 for n > 0 .

This is only possible if an = 0 for n ≥ 1, so that the total solution is y = a0 xα.

Example 2
Contrast this with the case of

dy

dx
=

α y

x2
,

where the right hand side blows up a bit faster at x = 0. We call this an irregular singularity. The solution is

y = A e−α/x ,

which has an essential singularity at x = 0 and for which no power series in x is possible in this region. How
does this manifest itself in the Frobenius method?

y =
∞∑

n=0

an xn+k , hence

dy

dx
=

∞∑
n=0

(n + k) an xn+k−1 ,

α y

x2
=

∞∑
n=0

α an xn+k−2 .

The lowest power of x is xk−2 and this is multiplied by α a0. Provided that α 6= 0, the only solution would
require a0 = 0. But the value of k was determined by requiring that a0 6= 0. These two conditions are in mutual
contradiction and so there is no power series solution in x.

Example 3
Consider the differential equation

dy

dx
=

y

1− x
,

which has solution y = A/(1− x). By the series method we would obtain

∞∑
n=0

(1− x) an (n + k) xn+k−1 =
∞∑

n=0

an xn+k .

Multiplying out by the −x factor and taking it over to the other side,

∞∑
n=0

an (n + k) xn+k−1 =
∞∑

n=0

an (n + k + 1)xn+k .

Now change the dummy index on the left by letting n → n + 1, to give

∞∑
n=−1

an+1 (n + k + 1)xn+k =
∞∑

n=0

an (n + k + 1)xn+k .

The indicial equation is obtained by demanding that the lowest power, corresponding to n = −1 on the left
hand side, should vanish. This requires k = 0. The recurrence relation is then

an+1 = an ,
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which means that all the coefficients are equal to a0. The full solution is therefore

y = a0

∞∑
n=0

xn .

This solution is fine provided that the series converges and you saw in the 1B21 course that this geometric
series diverges if | x |> 1. This is not entirely unexpected because the equation has a regular singular point at
x = 1. In summary:

a: You cannot make any power series expansion about an irregular point, i.e. one where y′ diverges faster than
1/x.

b: The power series may not converge if x is too large.

Both these problems are present in second order equations, to which we now turn.

2.2 Second Order Equations

In the 1B21 course you solved the simple harmonic oscillator equation

d2y

dx2
+ ω2 y = 0 . (2.14)

The most general solution is
y = A cos ωx + B sinωx , (2.15)

where A and B are arbitrary constants to be fixed by the boundary conditions. A second order linear equation
has two arbitrary constants.

Note that the two individual solutions of this equation, viz cos ωx and sinωx, are respectively even and odd
functions of the independent variable x. Why is this? First write down Eq. (2.14) for a function y = f(x) and
then let x → −x. We then have the two equations

d2f(x)
dx2

+ ω2 f(x) = 0 ,

d2f(−x)
dx2

+ ω2 f(−x) = 0 . (2.16)

Thus f(−x) satisfies the same equation as f(x) and this is because all the operators in Eq. (2.14) are even;
d2

dx2
doesn’t change when x → −x. Any linear combinations of f(x) and f(−x) also satisfy the equations. In

particular, the even and odd combinations

fe(x) = 1
2 [f(x) + f(−x)] , (2.17)

fo(x) = 1
2 [f(x)− f(−x)] (2.18)

also satisfy the equation. This is the real reason why cos ωx and sinωx are solutions to the oscillator equation.
Of course, this argument does not say that the basic solutions have to be either even or odd, but one can always
choose them so to be. We will use this argument when we study the Legendre equation in detail.

Try now for a series solution of the oscillator equation;

y =
∞∑

n=0

an xn+k ,

dy

dx
=

∞∑
n=0

(n + k) an xn+k−1 ,

d2y

dx2
=

∞∑
n=0

(n + k)(n + k − 1) an xn+k−2 . (2.19)
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Inserting these into Eq. (2.14), we find that
∞∑

n=0

(n + k)(n + k − 1) an xn+k−2 + ω2
∞∑

n=0

an xn+k = 0 . (2.20)

The indicial equation is obtained by looking at the coefficient of the lowest power here, viz xk−2. Since this only
occurs in the first sum (for n = 0), it must vanish:

k(k − 1) a0 xk−2 = 0 .

There are therefore two possible values of the index, k = 0 or k = 1, and this is quite typical for a second order
equation.

Changing the dummy index in the first sum by n → n + 2,
∞∑

n=−2

(n + k + 2)(n + k + 1) an+2 xn+k + ω2
∞∑

n=0

an xn+k = 0 , (2.21)

all the powers now look the same and so we can compare coefficients to obtain the recurrence relation

(n + k + 2)(n + k + 1) an+2 + ω2 an = 0 , (2.22)

which means that

an+2 = − ω2

(n + k + 2)(n + k + 1)
an . (2.23)

Given the value of a0, this allows us to evaluate a2, and then a4 etc. The odd an are completely independent
and, as far as getting a solution is concerned, we can put them all to zero. This independence of the odd and
even an is a consequence of the fact that odd and even solutions of the differential equation are possible. It
therefore follows from the fact that the differential operator is even in x, as shown by Eq. (2.16). In order
to generate these purely odd/even solutions, it is easiest to put a1 = 0. If we don’t, we do not create extra
solutions; we merely mix some of the k = 1 solution into that with k = 0.

Solution for k = 0
The recurrence relation

an+2 = − ω2

(n + 2)(n + 1)
an . (2.24)

has the solution

an = (−ω2)n/2 a0/n! (n even) ,

= 0 (n odd) . (2.25)

The total solution is then
y = a0

∑
n even

(−1)n/2(ωx)n 1
n!

= a0 cos ωx . (2.26)

Solution for k = 1
The recurrence relation is

an+2 = − ω2

(n + 3)(n + 2)
an , (2.27)

so that

an = (−ω2)n/2 a0/(n + 1)! (n even) ,

= 0 (n odd) , (2.28)

and
y = a0 x

∑
n even

(−1)n/2(ωx)n 1
(n + 1)!

=
a0

ω
sinωx . (2.29)

This gives the expected solutions and so we can now start using the technique to study more complicated
second order equations.
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2.3 Singularities of Second Order Equations

Consider the general linear homogeneous second order equation

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0 , (2.30)

where p(x) and q(x) are functions just of x. If we want to do a power series expansion near the point x0, the
behaviour of p(x) and q(x) in the vicinity of this point is of crucial importance.

If p(x) and q(x) are finite, single valued and differentiable at x0, then x0 is called a regular point or an
ordinary point. The equation is said to be regular at x0. In this case lim

x→x0
p(x) and lim

x→x0
q(x) both exist, i.e.

are finite. For the harmonic oscillator equation, p(x) = 0 and q(x) = ω2, so that all points of the equation are
regular. If, on the other hand, either of the two limits is infinite, we say that x0 is a singular point; the equation
is singular at x0.

Suppose that x0 is a singular point, but that

lim
x→0

(x− x0) p(x) and lim
x→0

(x− x0)2 q(x) (2.31)

both exist, the differential equation is said to have a regular singularity at x0. If either limit is infinite, there
is an essential singularity at x = x0.

This classification is very important because if x0 is a regular point then we can always find two independent
series solutions of the form

y(x) =
∞∑

n=0

an(x− x0)n+k , (2.32)

which are convergent for all values of x between x0 and the nearest singular point. Furthermore, it can be shown
(Fuch’s theorem) that if x0 is regular singular point then there exists at least one series solution of the form of
Eq. (2.32).

If, on the other hand, x0 is an essential singularity of the equation then no power series solution in x − x0

exists.

Roots differing by an integer

Consider the equation

x(x− 1)
d2y

dx2
+ 3x

dy

dx
+ y = 0 .

Comparing this with the standard form, we see that p(x) = 3/(x − 1) and q(x) = 1/x(x − 1). Thus x = 0
and x = 1 are regular points of the differential equation and so we can expect to get at least one power series
solution in x. Inserting

y =
∞∑

n=0

an xn+k ,

dy

dx
=

∞∑
n=0

(n + k) an xn+k−1 ,

d2y

dx2
=

∞∑
n=0

(n + k)(n + k − 1) an xn+k−2

into the differential equation,

∞∑
n=0

(n + k)(n + k − 1) an (xn+k − xn+k−1) +
∞∑

n=0

3(n + k) an xn+k +
∞∑

n=0

an xn+k = 0 .

Hence
∞∑

n=0

an xn+k [(n + k)(n + k − 1) + 3(n + k) + 1] =
∞∑

n=−1

(n + k + 1)(n + k) an+1 xn+k .
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The indicial equation comes from looking at the lowest power of x, which is given by n = −1 on the right
hand side. This gives k(k − 1) = 0, i.e. k = 1 or k = 0. The recurrence relation is

(n + k + 1)2 an = (n + k + 1)(n + k) an+1 ,

an+1 =
(

n + k + 1
n + k

)
an .

Taking the index k = 1 and putting a0 = 1, we get a1 = 2, a2 = 3 etc. The full solution is

y1(x) = x(1 + 2x + 3x2 + 4x3 + · · ·) =
x

(1− x)2
·

Note that this series converges for | x |< 1; the divergence at x = 1 is due to the singular point there.
On the other hand, when the index k = 0, we are in trouble because the recurrence relation is

an+1 =
(

n + 1
n

)
an .

If you try to calculate a1 by putting n = 0 you see that the whole thing blows up. Hence there is not a second
series solution at x = 0. Fuch’s theorem only guaranteed that there would be one solution of this kind; the
other solution is going to be nasty at x = 0.

One can find the second (irregular) solution by letting y(x) = y1(x) v(x) and getting a simpler equation for
v(x). Normally, as in this case, v(x) has a nasty `n(x) term in it. This is always the case if the indicial equation
has equal roots. This happens for Bessel’s equation which one often comes across in problems with cylindrical
symmetry.
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