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1 Introduction

This revision note covers the basic ideas of statistical mechanics, starting from
the quantum mechanical basis.

2 Fundamentals

2.1 The Microstate and the Macrostate

The state of a system is specificied by the microstate: that is, the quantum
mechanical state of every particle in it. Note that it is not necessary for a one-
particle picture to be valid — in, for example, a strongly interacting electron
system the specification of the microstate may be through a many-electron quan-
tum mechanical state. In classical mechanics, the state of an N -particle system
is expressed as a microstate by giving the 3N coordinates and 3N momenta of
all the particles. The 3N × 3N - dimensional space of positions qn and momenta
pn constitute the phase space of the problem.

In reality, of course, we do not observe the microstate. What we actually
measure are properties such as pressure, temperature, volume, heat capacity and
so on of a large number of particles — the macrostate. Although the microstate
evolves rapidly with time (as, for example, the particles in a fluid collide with one



another), the macrostate is essentially constant1, and there will be a large number
of microstates which correspond to a given macrostate. This is where statistics
enters the picture. The fundamental assumption of statistical mechanics is that
all microstates with the same energy occur with equal probability2 — it follows
that the state which we are most likely to observe is that which has the largest
number Ωmax of possible microscopic realizations3.

2.2 The link with Entropy

The entropy of the system also has the property of being maximum for a system in
equilibrium. We also know that entropy is an extensive quantity (that is, for two
independent systems with entropies S1 and S2 the total entropy is S = S1 + S2).
However, if the numbers of microstates in the two systems are Ω1 and Ω2 the total
number of microstates in the two systems taken together is Ω = Ω1Ω2

4. The only
way these two statements can be reconciled is if S ∝ ln Ω. The constant of
proportionality, as we shall see later, is Boltzmann’s constant.

3 Ensembles

3.1 Microcanonical Ensemble

In order to determine the most probable macrostate, we can make a large number
of ‘copies’ of our system, each with the same macroscopic energy, volume and
number of particles (E, V, N). Suppose we make N such copies, and in that
collection of copies (‘ensemble’) ni are in microstate i. Then, of course,

N =
∑

i

ni. (1)

Now count the number of ways of distributing this set of microstates {n1, n2, ...}
over the N copies: there are N ! different ways of numbering the copies, but of
these ni! exchanges of particle within one one-particle state do not make any
difference to the macroscopic quantities. Thus the number of ways of generating

1Of course, there will in fact be fluctuations in the macroscopic quantities, but we may safely
neglect these except for small systems or systems close to changes of phase.

2Note that this is an assumption — but no case has yet been experimentally demonstrated
to contradict it. Note also that we assume that the dynamics of the microstates is such that all
regions of phase space are sampled (strictly, that the phase space trajectory passes arbitrarily
close to all points on the constant energy surface) — the ergodic hypothesis.

3Note the difference between the statistical and thermodynamical views: in equilibrium
thermodynamics, deviations from the equilibrium state do not occur, whereas in statistical
mechanics they are merely very improbable.

4Each microstate in system 1 can be set against all Ω2 states of system 2.



a distribution {n1, n2, ...} is

W ({ni}) =
N !∏
i ni!

. (2)

Now we ask what is the probability of finding this distribution. Suppose the
probability that one system is in microstate i is wi: then the probability that ni

are in that microstate will be wni
i . Thus the probability of finding the distribution

{n1, n2, ...} will be
p({ni}) = N !

∏
i

wni
i /ni!. (3)

3.2 Maximum Probability - Stirling’s approximation and
Lagrange multipliers

In order to find the most probable distribution, we maximise the probability given
by Equation 3 with respect to the numbers ni. In fact, rather than maximise p
it is more convenient to maximise ln(p). Providing both N and ni are large we
may use Stirling’s approximation

ln(n!) ≈ n ln n− n (4)

to find
ln p ≈ N lnN −N +

∑
i

[ni ln wi − (ni ln ni − ni)] (5)

and taking derivatives with respect to the ni (remembering that N is constant)
gives ∑

i

(ln ni − ln wi)dni = 0 (6)

in which, because of Equation 1, not all the dni are independent. We restore the
independence by the method of Lagrange multipliers, subtracting the differential
form

dN =
∑

i

dni = 0 (7)

of Equation 1 multiplied by an unknown constant λ from Equation 6 giving∑
i

(ln ni − ln wi − λ)dni = 0 (8)

in which we may regard the ni as independent, so that the coefficient of each dni

must be zero. Hence
ni = wie

λ. (9)

What this shows is that the probability of finding the system in the ensemble in a
particular microstate i, pi = ni/N , is a constant (because λ is a constant, and by
assumption all microstates have equal likelihood wi). Remember, though, that



the only microstates which are being considered here are those which have exactly
the correct total energy E, volume V and number of particles N5.

3.3 The Canonical Ensemble

The microcanonical ensemble has not really told us much, apart from serving as
a justification of the ensemble concept. Things get moving when we look at the
question of a system in which we specify the temperature T instead of the energy
E of the system. In order to do this we add to our original system A a heat
bath B: the heat bath is taken to be of infinite extent, and we assume that its
microstates have no effect on those of the system A. We still use the ensemble
concept to handle the system, but now we do not know the total energy — we
must find it by averaging

E = 〈Ei〉 =
∑

i

piEi (10)

or, as pi = ni/N ,
NE =

∑
i

niEi. (11)

In equilibrium, the energy will take on some mean value, with dE = 0, and our
set of equations for the most probable distribution now becomes∑

i

dni = 0 (12)∑
i

Eidni = 0 (13)∑
i

(ln ni − ln wi)dni = 0 (14)

which we solve again by using Lagrange multipliers to obtain

ni = wie
λe−βEi . (15)

We can determine the factor eλ, because∑
i

ni = N (16)

and therefore

pi =
e−βEi∑
i e−βEi

(17)

which is conveniently abbreviated by introducing the canonical partition function

Z =
∑

i

e−βEi . (18)

It is essential to remember that the sum in Z is over microstates and not over
energy levels.

5In a classical treatment, rather than the exact energy E we consider a narrow range dE of
energies centred on the energy E.



3.4 Links to Thermodynamics

The partition function Z is the central quantity in statistical mechanics. We have
to remember, when we use it, that the energies Ei of the microstates involved in
Z will, in general, be functions of the volume of the system and the number of
particles in the system.

The fact that we have an expression for the probability of each microstate
means that we can go on to find the average value of any thermodynamic quantity.
For example, the pressure (using P to distinguish pressure from probability p) in
microstate i is

Pi = −
(

∂Ei(N, V )

∂V

)
N

(19)

and so we may write the average pressure as

P =
∑

i

Pipi = −
∑

i

(
∂Ei

∂V

)
e−βEi∑

i e−βEi
. (20)

Now if we differentiate the average energy

E =
∑

i

Eipi =

∑
i Eie

−βEi

Z
(21)

with respect to V , keeping N and β fixed, we find

(
∂E

∂V

)
N,β

= −P + βEP − β

∑
i

(
∂Ei

∂V

)
Eie

−βEi

Z
. (22)

On the other hand, if we differentiate Equation 20 with respect to β we find

(
∂P

∂β

)
N,V

= −EP +

∑
i

(
∂Ei

∂V

)
Eie

−βEi

Z
. (23)

Putting these last two equations together we obtain(
∂E

∂V

)
N,β

+ β

(
∂p

∂β

)
N,V

= −P, (24)

where it is crucial to note that whereas the Ei are functions only of N and V
the average energy E is a function of N , V and β. But thermodynamics tells us6

that (
∂E

∂V

)
N,T

− T

(
∂P

∂T

)
N,V

= −P (25)

6The energy we are calling E is the internal energy U , and dU = TdS − PdV and the
Maxwell relation (∂P/∂T )V = (∂S/∂V )T give us this result.



which we may rewrite as(
∂E

∂V

)
N,T

+
1

T

(
∂P

∂1/T

)
N,V

= −P (26)

from which we may deduce that β = 1/kT , where k is some as yet unknown
constant. Indeed, at present we have no reason to say that k does not vary from
system to system. We can demonstrate the universality of k by considering a
slightly more complex situation of two systems A and A′ in thermal contact with
each other and with the thermal bath. Simultaneously optimising the probability
with respect to the ni of the two systems tells us that the two partition functions
are

ZA =
∑

i

e−βEi (27)

and
ZA′ =

∑
i′

e−βEi′ . (28)

Thus systems in thermal contact have the same β: but thermodynamics tells us
that they have the same T , and therefore k must be independent of the system.
From then on it is an experimental matter to select a system (such as an ideal
gas) and to determine the value of this universal constant.

With the connection between thermodynamics and statistical mechanics es-
tablished, we may go on to write

E = kT 2

(
∂ ln Z

∂T

)
N,V

(29)

P = kT

(
∂ ln Z

∂V

)
N,T

(30)

S = kT

(
∂ ln Z

∂T

)
N,V

+ k ln Z. (31)

The last relation is more neatly expressed via the free energy

F = −kT ln Z (32)

S = −
(

∂F

∂T

)
N,V

. (33)

3.5 Grand Canonical Ensemble

The final elaboration is to allow the number of particles in the system to vary.
Situations in which this is significant include, of course, pn junctions in semicon-
ductors, where the number density of carriers varies as a function of position.
In this situation there is a reservoir of particles which establishes the chemical



potential, much as the heat reservoir in the canonical ensemble established the
temperature.

The procedure is similar to that for the canonical ensemble, except that now
we need to consider configuration in which the number of particles N in each
copy of the system in the ensemble is allowed to vary. We denote this by an extra
subscript N , and include the different N values in the summations, the full set
of equations being ∑

i,N

dni,N = 0 (34)

∑
i,N

Ndni,N = 0 (35)

∑
i,N

Eidni,N = 0 (36)

∑
i,N

(ln ni,N − ln wi,N)dni,N = 0 (37)

and using Lagrange multipliers as usual gives

pi,N =
e−βEi+αN

Z
(38)

where now
Z =

∑
i,N

e−βEi+αN . (39)

Note that the summation over i, N means that the sum is taken over all the
microstates i for which the particle number is N , and over all the values of N .

We can make the links to thermodynamics again, using

TdS = dU + pdV − µdN (40)

to show that
α =

µ

kT
(41)

whereas

β =
1

kT
(42)

as before.
Note that this means that Z is just a weighted sum of canonical partition

functions:

Z(T, V, µ) =
∞∑

N=1

(
e

µ
kT

)N
Z(T, V, N). (43)

Compare this with the relationship of the canonical partition function to the
microcanonical partition function (barely worth calling a partition function - it
is just the degeneracy g) as the sum weighted by the Boltzmann factor

Z(T, V, N) =
∑
E

e−
E
kT g(V, N, E). (44)



4 Particle Statistics

So far we have said nothing about the statistics which our particles obey, that is,
whether they are distinguishable or indistinguishable, classical or quantum, and
if quantum whether they are Fermions or Bosons. Let us suppose that we are
dealing with single particle states, labelled by k, with nk particles in the state k
with energy εk. We may define a statistical weight g({nk}) which is a function of
the whole set of occupation numbers, which will depend on the type of particle.
For bosons, it does not matter how many particles are in each state, and

gBE({nk}) = 1. (45)

For fermions, however, we must discount any arrangement in which any state
contains more than one particle

gFD({nk}) =
{

1 if all nk = 0 or 1
0 otherwise.

(46)

For classical particles, the situation is a little more complicated. In principle, the
particles are distinguishable, so there are N ! ways of changing the labels on the
particles. However, we can shuffle round the labels on the particles in a particular
one-particle state without producing a new microstate, so we have a statistical
weight

gCl({nk}) =
N !

n1!n2!...
. (47)

With this definition of statistical weight, the grand partition function may be
written as

Z =
∑
i,N

e−β(Ei−µN =
∑
{nk}

g({nk}) exp

[
−β

∑
k

nk(εk − µ)

]
. (48)

For the Bose-Einstein system

ZBE =
∞∑

n1,n2...=0

[exp (−β(ε1 − µ))]n1 [exp (−β(ε2 − µ))]n2 .... (49)

=
∞∏

k=1

∞∑
nk=0

[exp (−β(εk − µ))]nk . (50)

Each sum in this expression is a geometric series, with the value

∞∑
nk=0

[exp (−β(εk − µ))]nk =
1

1− exp (−β(εk − µ))
(51)

and so

ZBE =
∞∏

k=1

1

1− exp (−β(εk − µ))
. (52)



The expression for fermions follows from taking the upper limit on the sum
to be 1 rather than infinity

ZFD =
1∑

n1,n2...=0

[exp (−β(ε1 − µ))]n1 [exp (−β(ε2 − µ))]n2 .... (53)

=
∞∏

k=1

1∑
nk=0

[exp (−β(εk − µ))]nk (54)

=
∞∏

k=1

1 + exp (−β(εk − µ)) . (55)

For classical particles we have

ZCl = N !
1∑

n1,n2...=0

1

n1!n2!...
[exp (−β(ε1 − µ))]n1 [exp (−β(ε2 − µ))]n2 ....(56)

= N !
∞∏

k=1

1∑
nk=0

1

nk!
[exp (−β(εk − µ))]nk (57)

= N !
∞∏

k=1

exp [exp (−β(εk − µ))] . (58)

Actually, there is one extra modification to make to the classical grand partition
function. We have assumed that the classical particles are distinguishable, and so
they are if, for example, they are atoms in a crystal identifiable by their positions
in the crystal. For atoms in a gas, though, the assumption of distinguishability
leads to the Gibbs paradox7. To correct for this, the prefactor of N ! should be
dropped.

The grand canonical potential may be defined by

Φ(T, V, µ) = −kT lnZ(T, V, µ), (59)

and from this entropy, pressure, particle number, etc. may be obtained by

S(T, V, µ) = −
(

∂Φ

∂T

)
V,µ

(60)

P (T, V, µ) = −
(

∂Φ

∂V

)
T,µ

(61)

N(T, V, µ) = −
(

∂Φ

∂µ

)
V,T

. (62)

7The simple model here is of a container in which identical quantities of a gas under the
same conditions are placed either side of a partition which is then removed. If the particles
can be identified, there will be an associated entropy of mixing. Experimentally, there is no
entropy change. The way to correct this is to correct the statisitcal weight by a factor 1/N !



It is clear that as the grand partition function is a product of one-particle
terms, the logarithm will convert the grand canonical potential into a sum of
one-particle terms. It is then straightforward to extract the individual level oc-
cupancies, because

N =
∑
k

〈nk〉 (63)

giving, by differentiating with respect to µ

〈nk〉BE =
1

exp[β(εk − µ)]− 1
(64)

〈nk〉FD =
1

exp[β(εk − µ)] + 1
(65)

〈nk〉Cl =
1

exp[β(εk − µ)]
. (66)

Again, remember that k here labels a state: if one wishes to label by energy then
one must insert an appropriate degeneracy factor.

A.H. Harker,
September 30, 2005


