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1 Introduction

Kinetic theory treats gases as collections of small, perfectly elastic, particles in
motion. Note that the assumption of perfect elasticity means that kinetic theory
in its simplest form will not allow interchange of energy between the kinetic
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energy of the translation motion of the particle (atom or molecule) and its internal
degrees of freedom. This is not a good assumption as far as internal molecular
vibrations are concerned (energies of order 0.1 eV, comparable with kT ), but is
reasonable, except in extreme conditions tending towards plasmas, for electronic
excitations (energies several eV).

2 Basic Kinetic Theory

In the simplest model, the following assumptions are made:

1. the gas consists of identical molecules, each of mass m;

2. the molecules have zero size, and do not collide with one another;

3. the molecules do not exert any forces on one another;

4. the molecules move at random within the gas and collide elastically with
the walls of their containment.

2.1 Gas pressure

The pressure is most easily evaluated by imagining the gas to comprise N molecules
contained in a cubic box of side L, with the total velocity v = (vx, vy, vz). When
a molecule strikes a wall, it rebounds with its components of velocity parallel to
the wall unchanged and its velocity perpendicular to the wall reversed. Thus a
molecule i with an x component of velocity v(i)

x will make vx(i)/2L impacts per
second on each wall perpendicular to x, in each of which the change of momen-
tum will be 2mvx(i). Thus the change in momentum per unit time, or force, is
mvx(i)2/L, arising from this molecule. If we now sum over all the molecules,
noting that

∑
i vx(i)2 = Nv2

x, we find the total force on each wall to be Nmv2
x/L,

corresponding to a pressure Nmv2
x/L

3, or if we write the number density N/L3

as n, nmv2
x.

Now we may invoke the isotropy of the system, which tells us that there is no
preferred direction and thus

v2
x = v2

y = v2
z =

1

3

(
v2

x + v2
y + v2

z

)
= v2 (1)

for the average over all the molecules, and so we have for the pressure

p =
1

3
nmv2. (2)
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2.2 Temperature

Immediately, we may write L3 as the volume V , and write pV = 1
3
Nmv2 and

hence, for a perfect gas in which pV = NkT , we may deduce that the mean
square velocity is proportional to temperature.

3 Distribution functions

It is not intellectually very satisfying to have to introduce an empirical equation
such as pV = NkT . A better approach is through the Boltzmann distribution.
The key element of this approach is that if the energy of a system may be written
in terms of positions and momenta of the constituents, {q} = q1,q2, ...qN and
{p} = p1,p2, ...pN respectively, and the corresponding energy is E({p}, {q}),
then the probability that the system is in the state between {p} and {p}+d{p},
{q} and {q}+ d{q} is

dw = Ae−E({p},{q})/kT d{p}d{q}, (3)

where A is a normalising constant.

3.1 Factorisation of the probability

Now we may note that, for the non-interacting gas, the energy may be separated
into separate kinetic energy terms K for each molecule, and internal potential
energy terms U for each molecule, so that dw factors into a product

dw = Ae−K(p(1)/kT dp(1)e−U(q(1)/kT dq(1).....e−K(p(N)/kT dp(N)e−U(q(N)/kT dq(N)(4)

= dw(1)dw(2)...dw(N) (5)

= dw
(1)
K dw

(1)
U dw

(2)
K dw

(2)
U ...dw

(N)
K dw

(N)
U . (6)

Furthermore, the form of the translational kinetic energy being as it is, K(p) =
1

2m
(p2

x + p2
y + p2

z), and the phase space volume element dp being dpxdpydpz, each
kinetic energy term factorizes as

dw(i)
p = A(i)ep

(i)2
x /2mkT dp(i)

x ep
(i)2
y /2mkT dp(i)

y ep
(i)2
z /2mkT dp(i)

z , (7)

and knowing that if we integrate over all momenta from −∞ to ∞ we cover all
possibilities, so the the integral must equal unity, we have

A(i) = (2πmkT )−3/2. (8)

The most significant feature of this factorisation is that if one wishes to ask
about the behaviour of one variable, say the x component of velocity of one
particle irrespective of the behaviour of the other particles and the other velocity
components of the same particle, this may be done by integrating over all the
redundant variables.
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3.1.1 Maxwell’s distribution

This gives us the Maxwellian distribution, more familiar in the form obtained by
writing px = mvx etc.,

dwv =
(

m

2πkT

)3/2

e−m(v2
x+v2

y+v2
z)/2kT dvxdvydvz, (9)

or for each component

dwvx =
(

m

2πkT

)1/2

e−mv2
x/2kT dvx. (10)

For some purposes, the directions of motion of the molecules are not important,
and only the speeds matter. Then we may write

(vx, vy, vz) = v(sin θ cos φ, sin θ sin φ, cos θ) (11)

and
dvxdvydvz = v2 sin θdθdφdv (12)

and then integrate over the two angles to obtain

dwv = 4π
(

m

2πkT

)
v2e−mv2/2kT dv (13)

as the probability of finding a molecule with speed between v and v + dv. It
immediately follows that the mean square speed is

v2 = 4π
(

m

2πkT

)3/2 ∫ ∞

0
v4e−mv2/2kT dv (14)

=
3kT

m
, (15)

and that for each component

v2
x =

(
m

2πkT

)1/2 ∫ ∞

0
v2

xe
−mv2/2kT dvx (16)

=
kT

m
. (17)

With equal facility we may evaluate the mean speed (as opposed to the root
mean square speed) for the Maxwellian distribution, which is

v = 4π
(

m

2πkT

)3/2 ∫ ∞

0
v3e−mv2/2kT dv (18)

=
2√
π

√
2kT

m
, (19)

and the most probable speed

v̂ =

√
2kT

m
. (20)

All these characteristic speeds lie in the range 102 to 103 m/s under ambient
conditions, comparable with the speed of sound in the gas.
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3.1.2 Verification of Maxwell distribution

The Maxwellian expression for the distribution of molecular speeds may be veri-
fied in several fairly direct ways:

spectral broadening The Doppler effect shifts the wavelength of light emitted
by an atom moving with a velocity vx in the line of sight of an observer
from a reference wavelength λ0 to λ where

λ− λ0

λ0

=
vx

c
, (21)

c being the speed of light. This leads immediately to a distribution of
wavelengths, and hence a characteristic spectral lineshape

I(λ)dλ = I0e
−mc2(λ−λ0)2/2λ2

0kT dλ. (22)

Lammert’s experiment Mercury heated in an oven was allowed to escape as
a molecular beam which was fed through a pair of slotted wheels before
condensing on a cold surface. Only molecules with a velocity which is
matched to the separation of the wheels and the speed with which they are
turned will pass through the two slits and reach the plate. Note that the
distribution function of the atoms in the beam is v3e−mv2/2kT rather than
the Maxwellian distribution (see section 3.4).

3.2 Atmospheric density

In most of what follows it is the kinetic energy term and the associated momentum
or velocity distribution which will be significant. It is worth including one case in
which we have to consider the potential energy term, namely the variation in the
density of a gas in a variational field. According to the Boltzmann distribution,
the probability of finding a molecule at a height between z and z + dz, assuming
a constant gravitational field g, will be

w(z)dz = A′e−mgz/ktdz, (23)

and because the molecule must be somewhere above ground level∫ ∞

0
w(z)dz = 1, (24)

whence A′ = mg/kT . The gas density, then, which is proportional to the number
of molecules in a given volume, varies with height according to

ρ(z) = ρ0e
−mgz/kT . (25)
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3.3 Gas pressure revisited

We are now in a position to derive the pressure of a gas without the artifice of
a specially shaped (cubic) container. Consider a plane wall perpendicular to the
x direction, and concentrate on the molecules with velocities in the range vx to
vx + dvx. Any such molecules less than vx from the wall will hit it in one second,
and if each is elastically it will impart an impulse 2mvx to the wall. The number
of molecules within that distance which strike unit area is then nvxw(vx)dvx,
and the corresponding pressure is therefore 2mnv2

xw(vx)dvx. The total pressure
is found by integrating from 0 to ∞ (molecules with negative x velocities are
moving away from the wall)

p = 2mn
∫ ∞

0
v2

xw(vx)dvx (26)

= 2mn
(

m

2πkT

)1/2 ∫ ∞

0
v2

xe
−mv2

x/2kT dvx (27)

= nkT. (28)

3.4 Effusion

A small hole of area dS in the wall of a vessel containing gas will be the subject
of

1

6
n(v)vdS

molecular ‘collisions’ per second from molecules with speed v. Actually, see sec-
tion 5.1 below, the prefactor should be 1/4 rather than 1/6. If th3 hole is small,
the molecules will pass straight through – this is the process of effusion. This
form of the equation shows that the spectrum of the molecules which emerge will
be non-Maxwellian, being weighted towards higher speeds. The total number of
molecules which emerges, by integrating over all velocities, is

1

6
nvdS =

p

3
√

πkT

√
2kT

m
dS (29)

for a perfect gas. This dependence on mass may be used as a means of separating
isotopes - a lighter isotope effuses more rapidly.

Effusion is relevant when the dimensions of the hole are small enough com-
pared with the mean free path that a molecule passes through the hole without
being affected by other molecules in the hole. Under other circumstances one may
have continuum choked flow, with gas flowing at the speed of sound, or viscous
flow.
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4 Transport processes

Considerations of symmetry lead us to assert that the average number of particles
travelling in a given direction (that is, ±x, ±y or ±z) will be one sixth of the
total, and thus that the mean rate at which molecules cross a plane is

1

6
nv per area in unit time. (30)

This differs slightly from the exact result, equation 62 below, but it is a suitable
form for the simplified arguments which we will use below.

This is, however, not enough to allow us to compute transport properties
(such as diffusion, thermal conductivity, and viscosity). In order to find them we
must know how far across the boundary the molecules travel – that is, how far
they transport the relevant property (themselves, their kinetic energy, or their
momentum). That is, we must consider intermolecular collisions.

4.1 Molecular collisions

In the first instance, imagine that the molecules may be represented as hard
spheres with radius a. Then two molecules collide if they reach a separation of
2a. Now the distance travelled by a molecule moving with speed v in time t is
vt, when it ‘sweeps’ a volume 4πa2vt. If the molecular density is n, and we treat
all the other molecules as though they were stationary, the molecule will make
4πna2vt collisions in that time t, whence the mean distance between collisions is

λ =
1

4πna2
(31)

or, defining the collision cross section σ as 4πa2,

λ =
1

nσ
. (32)

This simple picture needs two corrections:

• the molecules are not hard spheres – see section 4.1.1 below;

• we need to consider the relative motion of the molecules – this reduces λ
by a factor 1/

√
2.

It is useful to have some idea of how far a molecule does travel before colliding.
A few typical values are given in the table below.

Mean free paths for ideal gas
pressure temperature mean free path
1 atmosphere 300 K 7× 10−8m (200 diameters)
10−4 atmosphere 300 K 7× 10−4m
10−8 atmosphere 300 K 7m
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4.1.1 Intermolecular interactions

Molecules are not, of course, hard spheres. A glance at a typical intermolecular
potential curve shows two significant differences. At large separations, there is
an attractive interaction between molecules: thus the trajectories of molecules
are distorted and collisions are more frequent than a hard sphere model would
suggest. This is particularly important at low temperatures, when the interac-
tion energy is a significant fraction of the kinetic energy of the molecules, and the
collision cross-section increases quite rapidly at low temperature. At high tem-
peratures, it becomes important that the short-range repulsion is softer than the
hard-sphere model would suggest. The molecules are thus able to come closer to-
gether than the hard-sphere diameter, reducing the cross-section slightly at high
temperature.

Another effect which has so far been ignored is that molecules, as opposed to
atoms, may have internal degrees of freedom (vibration and rotation). In colli-
sions there is the possibility that kinetic energy of translation may be exchanged
with internal energy – indeed, it is necessary that this exchange should take place
in order to maintain thermal equilibrium between the various degrees of freedom.

4.1.2 Scattering times - apparent paradoxes

It is worth digressing at this point to discuss an apparent paradox associated
with scattering times, and hence mean free paths, as encountered in the transport
theory of metals and semiconductors. The definition of scattering time τ is that
the probability of a scattering event in time interval dt is dt/τ . This is not the
same as saying that, if we observe a particle at random, we will find it mid-way
between collisions so that the average velocity arising from constant acceleration
a would be aτ/2. The point is that if we select a sample of free times at random
points in time we automatically weight the result in favour of long free times,
and the average turns out to be 2τ .

To see how this works out for velocity, compute the change in velocity in time
interval dt:

dv〈〉 = a dt (33)

where 〈〉 denotes the average over all particles. In the same time interval, a frac-
tion dt/τ of the particles will be scattered into random directions, each particle
thus losing its own fraction of v〈〉, contributing

dv〈〉 = −v〈〉
dt

τ
. (34)

In a steady state,

a dt− v〈〉
dt

τ
= 0 (35)

so that v〈〉 = aτ .
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From a statistical viewpoint, let us seek the time variation of p(t), the fraction
of the particles that have not collided for a time t. We know the probability of a
collision in time dt is dt/τ , so

dp(t) = −p(t)dt/τ (36)

whence
p(t) = Ae−t/τ . (37)

Since p must be normalised, A = 1/τ .
Hence we may evaluate the mean time between collisions, t,

t =
∫ ∞

0
(t/τ)exp(−t/τ)dt = τ (38)

as we hoped. The confusing thing, though, is that if we ask for the mean time
since the last collision of a particular particle, it is also τ , as is the mean time to
the next collision.

4.2 Diffusion

Consider a gas in which there is a concentration gradient, either of one species
in another of of a radioactive isotope in a nonradioactive background. Suppose
the concentration at x is n, and those at x + λ and x − λ are n + (dn/dx)λ,
n − (dn/dx)λ respectively. Then the number of molecules per second per area
moving in the positive x direction will be

1

6

(
n− dn

dx
λ

)
v (39)

per unit area and the number per second per area moving in the negative x
direction will be

1

6

(
n +

dn

dx
λ

)
v (40)

leading to a net current of molecules in the positive direction

J = −1

3
λv

dn

dx
(41)

≡ −D
dn

dx
(42)

which defines the diffusion constant D = 1
3
λv.

This result may be used to discuss the diffusion of a material as a vapour
through air. If one imagines an open pool of liquid, and a condensing surface a
height h above it, then in a steady state there will be a constant concentration
gradient in the vapour from saturation just above the liquid to the condensing
plate.
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4.3 Thermal conductivity

The derivation here is very similar to that for diffusion, except that the quantity
which varies with position is temperature T rather than density n. Suppose
the temperature at x is T , and those at x + λ and x − λ are T + (dT/dx)λ,
T − (dT/dx)λ respectively. Then nett number of molecules per second per area
moving in the x direction will be zero, but if the specific heat of the gas is cV

then the rate of transport of thermal energy in the positive x direction will be

nvcV

6

(
T − dT

dx
λ

)
v (43)

per unit area and that moving in the negative x direction will be

nvcV

6

(
T +

dT

dx
λ

)
v (44)

leading to a net flux of energy in the positive direction

Q = −nvλcV

3

dT

dx
(45)

≡ −κ
dT

dx
(46)

which defines the thermal conductivity κ = 1
3
nλvcV .

If we substitute the form of v, replace λ from equation 32, and recall that the
specific heat cV is a constant for a classical gas, then we find that the conductivity
of a gas should increase with temperature as

√
T and be independent of pressure.

Measurements of thermal conductivity in gases, however, are notoriously difficult
to make. In particular, it is very hard to avoid the effect being swamped by
convective heat transport.

4.4 Viscosity

The viscosity of a gas is governed by the rate at which momentum can be trans-
ferred between layers of the gas. We assume lamellar flow, that is, flow in which
the gas may be treated as planes perpendicular to the x axis in each of which the
flow velocity (that is, the drift velocity as opposed to the individual molecular ve-
locities) is constant. Let the drift velocity be u(x), parallel to the y axis. Suppose
the velocity at x is u, and those at x+λ and x−λ are u+(du/dx)λ, u−(du/dx)λ
respectively. Then the rate of transport of momentum in the positive x direction
will be

nmv

6

(
u− du

dx
λ

)
v (47)
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per unit area and that moving in the negative x direction will be

nmv

6

(
u +

du

dx
λ

)
v (48)

leading to a net flux of momentum in the positive x direction

F = −nmvλ

3

du

dx
(49)

≡ −η
du

dx
(50)

which defines the viscosity η = 1
3
nmλv.

Note that this result, when we substitute the form of v, and replace λ from
equation 32, suggests that the viscosity of a gas should increase with tempera-
ture as

√
T and be independent of pressure. This is a reasonable result – as the

velocity of the molecules increases with temperature, so the rate of interchange
of molecules and hence of momentum between stationary and moving layers in-
creases. It is, of course, the opposite of what is found in liquids, where viscosity
decreases with increased temperature. For a real gas, however, the cohesive forces
between atoms cause the viscosity to increase more rapidly than this simple form
would suggest.

4.4.1 Relation of viscosity to conductivity

The equations derived above for η and κ lead us to expect

κm

ηcV

= 1. (51)

4.5 Properties of rarefied gases

In the previous derivations we have assumed that the mean free path λ was an
intrinsic property of the gas, unaffected by any confining surfaces. As long as λ is
small compared with the dimensions of the system, this is a good approximation,
but as the pressure is reduced the mean free path increases until it may be the
walls which limit the molecules’ travel.

4.5.1 Viscosity of rarefied gases

To analyse the viscosity of rarefied gases we need to consider a typical measure-
ment, in which we might have two plates, a distance L apart, perpendicular to
the x axis, with the one at x = 0 stationary and the one at x = L moving par-
allel to the y axis with speed u. If we imagine the molecules near the wall to
strike the wall, stick briefly, and then rebound, they will emerge with the same
y component of velocity as the walls. They will carry that velocity with them to
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a distance λ from the wall, where the average y velocity is v(λ) for the plate at
x = 0, v(L−λ) for the other. Thus within those layers of thickness λ the average
velocities are the average of the plate velocity and the gas velocity a distance λ
away. This is equivalent to saying that the molecules slip over the walls with a
speed equal to this average velocity. This, in turn, defines the velocity gradient
by

λ
dv

dx
=

v(λ)

2
(52)

and similarly near x = L. Between these slipping layers there is a layer of ‘normal’
behaviour, in which there will be a constant velocity gradient dv/dx. Thus the
difference in speed between the gas near the wall at x = 0 and the gas near the
wall at x = L will be

u− 2λ
dv

dx
. (53)

Thus the velocity gradient will be

dv

dx
=

u− 2λ(dv/dx)

L
(54)

or
dv

dx
=

u

L + 2λ
. (55)

Clearly, then, the apparent viscosity will be reduced by a factor L/(L + 2λ).
In very confined geometries, where λ is larger than L, the entire argument

breaks down. We may do two things

• assume that the geometry defines the mean free path;

• perform the calculation properly.

If we take the simpler approach, we would argue that the force between two plates
L apart moving with a relative velocity u should be, per unit area,

F = ηu/L (56)

=
1

3
nmvu (57)

simply replacing λ in the formula for η with L. This gives a force which is
independent of the plate separation.

Alternatively, we would argue that the number of molecules striking unit area
per second is 1

6
nv, and that each transfer of a molecule between one plate and

the other without colliding with other molecules on the way transfers momentum
of mu, leading to a force per area

F =
1

6
nmvu. (58)
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Although the coefficients are different, both results agree on the conclusion
that the force between the plates becomes proportional to the pressure (through
n) rather than independent of it as when the viscosity depends on the bulk gas
mean free path.

4.5.2 Thermal conductivity of rarefied gases

One crucial point here is the extent to which the molecules can equilibrate with
the walls. If the molecules rebound elastically, that is with no change of kinetic
energy, there is no transfer of thermal energy to the gas and the apparent ther-
mal conductivity will be zero. However efficient this heat transfer, however, the
thermal conductivity of a gas becomes negligible at low pressures.

5 More formal kinetic theory

Although the results for such quantities as viscosity, pressure, conductivity and
diffusivity derived above are correct, their derivation has lacked formality. Let
us now tighten up the arguments somewhat.

5.1 Collisions with a wall

More formally, consider a small area dS, which we may assume without loss of
generality to be normal to the z axis, and seek an expression for the number of
molecules which pass through dS after having their last collision in a volume ele-
ment dV whose position relative to dS is, in spherical polar coordinates, (r, θ, φ).
Note that at this stage we are just treating dS as an arbitrary surface in the gas,
so we do not mind which side of dS the volume dV is located. We will actually
compute a flux of molecules, which counts molecules crossing from positive to
negative z as positive, those crossing in the opposite direction as negative.

The number of molecules in dV is n dV , each of which collides, on average,
with frequency v/λ. Thus the frequency of collisions in dV is (nv/λ)dV . As the
collisions are assumed to randomise directions of travel, the fraction of these colli-
sions which dispatches molecules towards dS is given by the solid angle subtended
at dV by dS, that is, (dS cos θ)/(4πr2).

Not all the molecules which set off towards dS, however, will get there. Some
will collide again, and the fraction which reach dS unscathed will be those whose
mean free path exceeds r. As the probability of a mean free path being between
r and r + dr is (1/λ) exp(−r/λ)dr, the probability that it exceeds r is

1

λ

∫ ∞

r
e−r/λdr = e−r/λ. (59)
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Thus, the final expression for the number of molecules which collide within dV
and travel to dS without further collision is

dS cos θ
nv

4πr2λ
e−r/λr2 sin θdrdθdφ (60)

which we may integrate over all distances r and azimuthal angles φ to obtain
the number of molecules per second striking unit area at an angle between θ and
θ + dθ as

R(θ)dθ =
1

2
nv sin θ cos θdθ. (61)

If now we compute the total number of molecules striking unit area per second,
by integrating over θ from 0 to π/2, we find

1

4
nv. (62)

5.2 Pressure

Although we have followed the above argument for the average particle, it is
equally applicable to any subgroup of molecules, such as those with speeds in the
range v to v + dv. If the probability of a molecule having such a speed is p(v),
then the number of molecules in that speed range striking a wall at an angle θ is
w(v)R(θ), and if it rebounds elastically the impulse on the wall will be 2mv cos θ,
leading to a pressure

p =
∫ π/2

0
dθ
∫ ∞

0
dvR(θ)2mv cos θw(v) (63)

=
1

3
nm

∫ ∞

0
v2w(v)dv (64)

=
1

3
nmv2. (65)

Here we emerge with the same expression as before because the inclusion of the
angular factor cos θ in the angular integral yields the same result as our previous
treatment’s use of a smaller number of impacts (factor of 1/6 instead of 1/4) but
larger momentum change.

5.3 Viscosity, Diffusivity, Conductivity

Here we note that molecules crossing our reference plane at an angle θ come, on
average, from a distance λ cos θ from the plane. Again, on integrating over all
angles θ this provides the conversion between the factor of 1/4 and 1/6, and our
previous results still hold.
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6 A sample of Finals Questions on Kinetic The-

ory

1993.IA.2. Define the coefficient of viscosity η of a fluid. Show that, according
to simple kinetic theory, η for a gas is given by

η = A
(

Mc

πd2

)
where A is a constant of order unity, M is the mass of an atom, c is the mean
speed and d is the diameter of an atom. [7]

Show that, for a monatomic gas, simple kinetic theory leads to the following
expression relating η to the thermal conductivity κ:

κ =
3kB

2M
η

where kB is the Boltzmann constant. Explain why it is much easier to make
reliable measurements of η than of κ. [8]

Two flat discs, each of radius 50 mm, are mounted coaxially with their adja-
cent surfaces 1 mm apart. They are in a chamber containing helium gas (mass
number 4) at STP, and are free to rotate independently about their common
axis. One of them rotates with an angular velocity of 5 rad s−1. Use the results
of simple kinetic theory to estimate the couple which needs to be applied to the
other to keep it stationary. Take c ≈ vrms, the root mean square velocity, and
assume that the diameter of a helium atom is 0.1 nm. [10]

1992.IA.1. The Boltzmann postulate states that in a statistical assembly of
particles, the number of particles occupying a state of energy ε is proportional to
e−ε/kT . Briefly justify why the Maxwell-Boltzmann distribution of speeds v takes
the form:

n(v)dv ∝ v2e−mv2/2kT dv.

Find a formula for the average speed v of particles in a gas. [8]
Show that for a gas with n molecules per unit volume the rate R(θ) of particles

arriving per unit area on a plane surface, between angles θ and θ + dθ to the
normal, is given by

R(θ)dθ =
1

2
nv sin θ cos θdθ.

[7]
Gas molecules enter a small hole in the surface of an evacuated glass sphere,

striking the inside surface of the glass and sticking there. Prove that the inside
surface of the sphere becomes uniformly coated with a thin layer of the molecules.
Suggest a possible application of this result. [10]∫ ∞

0
x3e−ax2

dx =
1

2a2

∫ ∞

0
x2e−ax2

dx =
1

4

√
π

a3
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1991.IA.1. Justify the form of the Maxwellian distribution of speeds c for a
gas of molecules of mass m

n(c)dc = Ac2 exp
(
−mc2/2kT

)
dc,

and obtain an expression for the constant A. [6]
Hence calculate the mean speed and most probable speed for a molecule which

has effused out of an enclosure at temperature T . [8]
The deposition in vacuo of materials in the form of thin films requires high

vacuum if the necessary cleanliness of the surface is the be achieved. Given that
during the deposition process a surface can be coated with a monatomic layer
of film material in a time of 100 ms, estimate the greatest allowable background
pressure in the vacuum vessel if the surface contamination is the be kept to 1 in
105. [Assume the contaminant gas is nitrogen, and that all molecules that strike
the deposited layer stick there.] State any further assumptions you make. [11]

1990.IA.2. A thermally insulating thin partition separates an ideal gas into
two regions which are maintained at temperatures T1 and T2. A hole in the parti-
tion allows gas to move between the two compartments. Explain how the relative
steady state pressures, p1 and p2 respectively, in the compartments compare when
the hole is (i) very large and (ii) very small. In this context, what condition must
be satisfied for the hole to be considered small? [12]

A monatomic gas of relative atomic mass M at pressure p and temperature
T effuses through a very small of area S into a vacuum space where the effusing
molecules are all trapped on a cold adsorbing surface. Calculate the power input
to the surface from the kinetic energy of the molecules. [13][∫ ∞

0
x2e−ax2

dx =
1

4

(
π

a3

) 1
2

;
∫ ∞

0
x5e−ax2

dx =
1

a3
.

]
1989.IA.2. Derive an expression for the thermal conductivity of an ideal

gas according to elementary kinetic theory, and show that it is independent of
pressure. State the assumptions made in your derivation. [8]

Two flat plates at different temperatures are held a small distance apart in a
gas at low pressure. Show that at sufficiently low pressures, the rate of heat trans-
fer between the plates is a linear function of pressure, and derive an expression
for it, stating any approximations you may make. [9]

This device may be used as a pressure gauge if the power required to maintain
a given temperature difference is measured. Discuss the range of pressure over
which useful measurements can be obtained, and estimate both the upper and
lower limits for an apparatus of reasonable dimensions. Assume that the gauge is
operated so that one plate is held at about 10 K above the other, and that heat
transfer occurs only between the facing surfaces. [8]

1988.IA.1. Write down expressions for the pressure and for the number of
molecules per second crossing unit area in a gas according to the kinetic theory
and derive one of them stating clearly the assumptions you make. [7]
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A sample of molten metal is maintained at a temperature T in a silica pot
within an evacuated vessel. Atoms of vapour escape through a small hole in the
lid of the pot and are collected on a cooled target. Show that the rate of mass
deposition is given by

dm

dt
=
(

M

2πRT

)1/2

Sp

where p is the pressure of the vapour in the pot, S the area of the hole, R the
molecular gas constant and M the mass of one mole of the metal. You may
assume that

c2 =
8

3π
c2

where c is the mean speed and c2 is the mean square speed of molecules in the
gas. [10]

Calculate the vapour pressure of lead at 600 K if it takes 10 hours to deposit
0.12 mg of metal on the target through a hole of 1 mm radius. The relative
atomic mass of lead is 207. [8]

1987.IA.1. Define the coefficient of viscosity. Use kinetic theory to show
that the coefficient of viscosity of a gas is given, with suitable approximations,
by

η = Kρcl

where ρ is the density of the gas, l is the mean free path of the gas molecules,
c is their mean speed and K is a number which depends on the approximations
you make. [8]

In 1660 Boyle set up a pendulum inside a vessel which was attached to a pump
which could remove air from the vessel. He was surprised to find that there was
no observable change in the rate of damping of the swings of the pendulum when
the pump was set going. Explain this observation in terms of the above formula.

[6]
Make a rough order of magnitude estimate of a lower limit to the pres-

sure which Boyle obtained; use reasonable assumptions concerning the apparatus
which Boyle might have used. [The viscosity of air at atmospheric pressure and
at 293 K is 18.2 µN s m−2.] [5]

Explain why the damping is nearly independent of the pressure despite the
fact that fewer molecules collide with the pendulum as the pressure is reduced. [6]

A.H.Harker,
May 21, 2005


