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1 Matrices and transformations

1.1 Angles and rotations

A vector v =

(
x
y

)
in the plane is an arrow pointing x units to the right and y units up. By Pythagoras’s

theorem, the length of v is |v| =
√
x2 + y2. If it makes an angle θ with the horizontal then x = |v| cos θ

and y = |v| sin θ.

x = |v| cos θ

y = |v| sin θ
|v| =

√ x
2 +

y
2

θ

Theorem 1.1. Let v =

(
x
y

)
be a vector and let w be the vector obtained by rotating v an angle φ around

its basepoint. Then

w =

(
x cosφ− y sinφ
x sinφ+ y cosφ

)
.

Proof. We know that v =

(
x
y

)
=

(
|v| cos θ
|v| sin θ

)
where θ is the angle v makes with the horizontal. After

rotation, we know the following things about w:

• its length agrees with the length of v, i.e. |w| = |v|.

• the angle w makes with the horizontal is θ + φ.

Therefore

w =

(
|w| cos(θ + φ)
|w| sin(θ + φ)

)
=

(
|v| cos(θ + φ)
|v| sin(θ + φ)

)
=

(
|v| cos θ cosφ− |v| sin θ sinφ
|v| sin θ cosφ+ |v| cos θ sinφ

)
=

(
x cosφ− y sinφ
x cosφ+ y sinφ

)
.

1.2 Matrix notation

Inspired by Theorem 1.1, we introduce a new piece of notation which allows us to separate out the
dependence of a rotated vector w on the initial vector v and on the rotation angle φ.

Definition 1.2. A 2-by-2 matrix is a 2-by-2 array of numbers, like A =

(
a b
c d

)
. Given a matrix and a

vector v =

(
x
y

)
, we define Av to be the new vector

Av =

(
a b
c d

)(
x
y

)
:=

(
ax+ by
cx+ dy

)
. (1)

We say that Av is obtained from v by the action of A, in other words that matrices act on vectors.
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In the context of Theorem 1.1, the matrix of the rotation by angle φ is

A =

(
cosφ − sinφ
sinφ cosφ

)
(2)

and the rotated vector is w = Av.

Remark 1.3. Vector notation lets us think of arrows as pairs of numbers. Matrix notation lets us think
of transformations (rotations, reflections, etc) as grids of numbers.

Remark 1.4. How do you remember a formula like Eq. (1)? The mnemonic I like is as follows. To get
the first entry of Av, you “multiply the top row of A into v”, that is you perform the multiplications ax
and by (working across the top row of A and down the column of v) and sum them.(

a b
c d

)(
x
y

)
= ax+ by

To get the second entry, you multiply the second row of A into v.(
a b
c d

)(
x
y

)
= cx+ dy

1.3 Linear maps

Now, given any 2-by-2 array of numbers, we get a geometric transformation of the plane R2 → R2,
v 7→ Av. We call such a transformation arising from a matrix a linear map1.

Example 1.5. The matrix I =

(
1 0
0 1

)
represents the identity transformation, that is the map which

sends the vector
(
x
y

)
to itself. For this reason, this matrix is usually called the identity matrix. It plays

the same role in the theory of matrices that the number 1 plays in usual arithmetic, so sometimes I may
end up writing 1 instead of I (in my research I always write 1).

Example 1.6. The matrix A =

(
−1 0
0 1

)
defines a reflection in the y-axis: the vector

(
0
1

)
, pointing

along the y-axis, is fixed; the vector
(

1
0

)
pointing along the x-axis goes to

(
−1
0

)
.

Example 1.7. Rotation by π/2 radians (90 degrees) is represented by the matrix in Eq. (2) with

φ = π/2, that is
(

0 −1
1 0

)
.

Example 1.8. The matrix
(

1 1
0 1

)
represents a shear in the x-direction. For example, vectors along

the x-axis are fixed: (
1 1
0 1

)(
x
0

)
=

(
x
0

)
;

vectors at height y shear y units to the right:(
1 1
0 1

)(
x
y

)
=

(
x+ y
y

)
.

1We will see an equivalent definition of linear maps later, which makes no reference to matrices.

4



Example 1.9. Consider the matrix A =

(
0 1
1 0

)
. This has a fixed vector v =

(
1
1

)
such that Av = v

(indeed, if v =

(
x
y

)
and Av = v then

(
x
y

)
=

(
0 1
1 0

)(
x
y

)
=

(
y
z

)
,

so any vector with x = y is fixed. Moreover, Aw = −w where w =

(
1
−1

)
, which is orthogonal to v.

Therefore A represents a reflection in the line containing v.

u =

(
1
1

)

v =

(
1
−1

)

Av =

(
−1
1

)

Example 1.10. If A =

(
1 1
−1 1

)
then we see A

(
1
0

)
=

(
1
−1

)
and A

(
0
1

)
=

(
1
1

)
. Plotting these

vectors, we can see that A represents a rotation by −π/4 radians followed by a rescaling by
√

2.

(
1
0

)
(

0
1

)

A

(
1
0

)
A

(
0
1

)

Example 1.11. The matrix
(

1 0
0 0

)
. This gives the map

(
x
y

)
7→
(
x
0

)
, which projects the plane

vertically down to the x-axis.

Example 1.12. The matrix A =

(
1 1
1 1

)
sends both

(
1
0

)
and

(
0
1

)
to the vector

(
1
1

)
. This means

that the transformation defined by A is an orthogonal projection to the
(

1
1

)
-line, followed by a rescaling

by a factor of 2
√

2.

(
1
0

)
(

0
1

) A

(
1
0

)
= A

(
0
1

)
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1.4 Bigger matrices

Everything we’ve said so far generalises to higher dimensions.

Definition 1.13. An n-vector is a column of n numbers. We write Rn for the set of all n-vectors2. An
m-by-n matrix is a rectangular array of numbers with m rows and n columns. Given an n-vector v and
an m-by-n matrix A, we get an m-vector Av, whose ith entry is the result of multiplying the ith row of
A into the column vector v.

Example 1.14. A 3-by-3 matrix

a b c
d e f
g h i

 defines a linear map R3 → R3, which takes the 3-vectorxy
z

 to a b c
d e f
g h i

xy
z

 =

ax+ by + cz
dx+ ey + fz
gx+ hy + iz

 .

Again, the action of the matrix on the vector is defined by multiplying the rows of the matrix into the

column vector. For example, the matrix

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 defines a rotation by φ around the z-axis.

Example 1.15. A 2-by-3 matrix
(
a b c
d e f

)
defines a linear map R3 → R2:

xy
z

 7→ (
ax+ by + cz
dx+ ey + fz

)
.

For example, the matrix
(

1 0 0
0 1 0

)
represents the map

xy
z

 7→ (
x
y

)
, which is the projection from

3-dimensional space onto the xy-plane.

Example 1.16. In practice, matrices can be bigger than this. In special relativity, the maps which
change from one spacetime reference frame to another are given by 4-by-4 matrices called Lorentz ma-
trices; in statistics, in linear regression models, you work with matrices which have one row for each
sample, so that could be very large.

Example 1.17. The 3-by-2 matrix

1 1
2 0
0 1

 defines a linear map from R2 to R3 (an embedding from

the plane into 3-dimensional space): 1 1
2 0
0 1

(v1
v2

)
=

v1 + v2
2v1
v2

 .

This sends the vector
(

1
0

)
to

1
2
0

 and
(

0
1

)
to

1
0
1

. In the picture below we can see the image of the

plane under this linear map.
2We could also work with vectors of complex numbers, in which case we’d write Cn, or vectors of rational numbers, in

which case we’d write Qn, or something else entirely.
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z

x

y

1
0
1



1
2
0


Example 1.18. The matrix

(
1 0 −1
0 1 −1

)
defines a linear map from R3 to R2 (a projection from 3-

dimensional space to the plane) which sends the basis vectors

1
0
0

,

0
1
0

 and

0
0
1

 to the vectors
(

1
0

)
,(

0
1

)
and

(
−1
−1

)
respectively. Try to represent this projection in the picture below. The blue vectors

point along the coordinate axes in 3-d. The red vectors are the images of the blue vectors under the
projection (in two cases, the projection does nothing, so the blue and red vectors coincide; we draw them
as purple). The dotted lines are the lines along which we’re projecting. The grey shaded region is the
plane onto which we’re projecting.

z

x

y

Example 1.19. The matrix A =

−1 0 0
0 1 0
0 0 1

 defines a linear map R3 → R3. We can see that

A

0
y
z

 =

0
y
z

 , A

x0
0

 =

−x0
0

 .

This means that A can be interpreted as a reflection in the yz-plane.

Example 1.20. The matrix A =

0 −1 0
1 0 0
0 0 1

 defines a linear map R3 → R3 which fixes the vector0
0
1

 and effects a 90 degree rotation in the xy-plane. Similarly, the matrix B =

1 0 0
0 0 −1
0 1 0

 fixes the

vector

1
0
0

 and effects a 90 degree rotation in the yz-plane, and the matrix C =

 0 0 1
0 1 0
−1 0 0

 fixes the

vector

0
1
0

 and effects a 90 degree rotation in the xz-plane.

It is much harder (though still possible) to write down a general rotation matrix in three dimensions.
We will revisit some three-dimensonal rotation matrices later in the week.
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2 Matrix algebra

2.1 Matrix multiplication

Suppose we are given two matrices A =

(
A11 A12

A21 A22

)
, and B =

(
B11 B12

B21 B22

)
. They each define a

transformation of the plane. What happens if we first do the transformation associated to B, and then
do the transformation associated to A? We get a new transformation associated to a new matrix, which
we call AB.

A(B(v)) =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)(
x
y

)
=

(
A11 A12

A21 A22

)(
B11x+B12y
B21x+B22y

)
=

(
A11B11x+A11B12y +A12B21x+A12B22y
A21B11x+A21B12y +A22B21x+A22B22y

)
=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)(
x
y

)
=: (AB)v

Definition 2.1 (Matrix multiplication). Given matrices A =

(
A11 A12

A21 A22

)
, and B =

(
B11 B12

B21 B22

)
, we

define the matrix product

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11x+A22B21 A21B12 +A22B22

)
.

How on earth can we remember this formula? Here are two mnemonics.

• Just like when we act on a vector using a matrix, we can think of the entries of AB as “multiplying
a row of A into a column of B”. More specifically, to get the ijth entry of AB (i.e. ith row and
jth column) we multiply the ith row of A into the jth column of B:(

A11 A12

A21 A22

)(
B11 B12

B21 B22

) (
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

) (
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
• We can also write a formula for the ijth entry:

(AB)ij =

2∑
k=1

AikBkj .

For example, when i = 1, j = 2, this equation gives the entry of the product AB in the first row
and second column as

(AB)12 = A11B12 +A12B22.

Example 2.2. Consider the 90 degree rotation matrix A =

(
0 −1
1 0

)
. We have

A2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
.

This makes sense: two 90 degree rotations compose to give a 180 degree rotation, which sends every

point
(
x
y

)
to its opposite point

(
−x
−y

)
.
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Example 2.3. More generally, if

Rθ1 =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
Rθ2 =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
are two rotations then the composite is

Rθ1Rθ2 =

(
cos θ1 − sin θ1
sin θ1 cos θ1

)(
cos θ2 − sin θ2
sin θ2 cos θ2

)
=

(
cos θ1 cos θ2 − sin θ1 sin θ2 − cos θ1 sin θ2 − sin θ1 cos θ2
sin θ1 cos θ2 + cos θ1 sin θ2 − sin θ1 sin θ2 + cos θ1 cos θ2

)
=

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
= Rθ1+θ2 .

(using trigonometric addition formulas). This is what we expect, of course: rotating by θ2 and then θ1
amounts to rotating by θ1 + θ2.

Example 2.4. Let I =

(
1 0
0 1

)
be the identity matrix and A be any matrix. Then

IA =

(
1 0
0 1

)(
A11 A12

A21 A22

)
=

(
A11 A12

A21 A22

)
= A.

Similarly, AI = A. As you can see, the identity matrix really plays the role of the number 1 here.

2.2 Noncommutativity

Remark 2.5. You might be confused about why we write AB for the transformation which first applies
B and then applies A. This actually makes perfect sense if you think of A and B as functions acting on
vectors: remember that f(g(x)) means “apply f to the result of first applying g to x”.

Remark 2.6. Order matters: most of the time, AB is not equal to BA. In other words, matrix multi-
plication is not commutative. This makes matrices significantly more interesting algebraic objects than
numbers.

2.3 Bigger matrices

From these examples, and what we’ve seen for 2-by-2 matrices, hopefully you can guess the definition of
matrix multiplication.

Definition 2.7. If A is an m-by-n matrix and B is a n-by-p matrix then AB is the m-by-p matrix whose
ijth entry is

(AB)ij =

n∑
k=1

AikBkj .

In other words, the entry in the ith row and jth column is obtained by multiplying the ith row of A into
the jth column of B. Because A has n columns and B has n rows, this multiplication makes sense.

Remark 2.8. This kind of notation where you see entries of the matrix written out with subscripts and
sums all over the place is called index notation. It is extremely useful for when you would otherwise run
out of letters to write your matrices (for example, if your matrix was n-by-n and you didn’t know what
n was). If you want to see it being used to great effect, open any textbook on general relativity, and
glory in the “débauches des indices”.
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Example 2.9. Here are some examples of matrix multiplications:0 0 1
1 0 0
0 1 0

xy
z

 =

zx
y


(

1 2 3
−1 1/2 0

) 2 −3
−1 0
0 1

 =

(
0 0
−5/2 3

)

(
1 −1 1 −1

)
1
2
3
4

 =
(
−2
)


1
2
3
4

(1 −1 1 −1
)

=


1 −1 1 −1
2 −2 2 −2
3 −3 3 −3
4 −4 4 −4



2.4 Other operations

We have now seen that you can define the product of two matrices. In fact, you can do lots of other
operations.

Definition 2.10. Given two m-by-n matrices A and B, we define their sum A + B to be the m-by-n
matrix A+B whose ijth entry is

(A+B)ij = Aij +Bij .

That is, the entry in the ith row and jth column of A+B is the sum of the corresponding entries for A
and B.

Remark 2.11. Matrix addition is kind of boring in comparison to matrix multiplication. Nonetheless, it
plays an important role.

Definition 2.12 (Scaling). Given a matrix A and a number λ, we define λA to be the matrix

λA

whose ijth entry is (λA)ij = λAij . If A corresponds to some geometric transformation then λA corre-
sponds to the same geometric transformation followed by a rescaling by a factor of λ.

More interestingly, we can define exponentials of matrices.

Definition 2.13. Given an n-by-n matrix A, we define its exponential exp(A) to be the infinite sum

exp(A) = I +A+
1

2
A2 +

1

3!
A3 + · · · =

∑
n≥0

1

n!
An,

where we define A0 = I.

Example 2.14. Let A =

(
0 1
0 0

)
. Then

A2 =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
,

so 0 = A3 = A4 = · · · and the infinite sum reduces to:

exp(A) = I +A+ 0 + 0 + · · ·

=

(
1 1
0 1

)
.
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Example 2.15. Let A =

(
0 −θ
θ 0

)
. Then

A2 =

(
0 −θ
θ 0

)(
0 −θ
θ 0

)
=

(
−θ2 0

0 −θ2
)

= −θ2I.

Therefore

A3 = −θ2IA = −θ2A
A4 = −θ2A2 = (−θ2)2I = θ4I

A5 = θ4IA = θ4A

A6 = θ4A2 = −θ6I.

Following this pattern, we get A2n = (−1)2nθ2n and A2n = (−1)2nθ2nA. This means

exp(A) =

(
I +

1

2
A2 +

1

4!
A4 + · · ·

)
+

(
A+

1

3!
A3 + · · ·

)
=

(
1− θ2

2
+
θ4

4!
+ · · ·

)
I +

(
θ − θ3

3!
+ · · ·

)
A

= cos θI + sin θA

=

(
cos θ − sin θ
sin θ cos θ

)
.

This is, remarkably, the formula for a rotation matrix by an angle θ. Starting from a very simple matrix(
0 −θ
θ 0

)
and using the exponential function, we have ended up with the general formula for a rotation

matrix in the plane. You can probably imagine that this becomes even more useful as a way of encoding
rotations in 3-dimensions.
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3 Dot products and orthogonal matrices

3.1 Dot product

Given two vectors v, w ∈ Rn, how do you figure out the angle between them?

Definition 3.1 (Dot product). Given two vectors v =

v1...
vn

 and w =

w1

...
wn

, we define the dot product

of v and w to be the number
v · w := v1w1 + · · ·+ vnwn.

Theorem 3.2. If v and w are separated by an angle φ then v · w = |v||w| cosφ.

We will prove the theorem momentarily. Let us first explore it a little.

Example 3.3. The vectors v =

(
1
0

)
and w =

(
0
1

)
satisfy v · w = 1 × 0 + 0 × 1 = 0. Indeed, they

are orthogonal to one another (i.e. at right-angles), so are separated by an angle π/2 radians, and
cos(π/2) = 0.

Example 3.4. The vectors v =

(
1
1

)
and w =

(
1
0

)
satisfy v · w = 1, |v| =

√
2, |w| = 1, so if φ is the

angle separating them then
1 = v · w = |v||w| cosφ =

√
2 cosφ,

so cosφ = 1√
2
, and φ = π/4 radians.

Remark 3.5. You may be worried that cosφ doesn’t determine φ completely, for example cos(π/2) =
cos(3π/2) = 0. However, the ambiguity is precisely whether you are measuring the angle from v to w
clockwise or anticlockwise, so don’t worry unless that distinction is important to you.

We now move in the direction of proving Theorem 3.2. Notice that the definition of dot product looks a
lot like matrix multiplication. In fact,v1...

vn

 ·
w1

...
wn

 =
(
v1 · · · vn

)w1

...
wn

 .

In other words, we have turned one of our column vectors on its side to make it into a row vector. This
operation is called transposition.

Definition 3.6. Given an m-by-n matrix A with entries Aij , its transpose AT is defined to be the
n-by-m matrix with entries Aji. For example(

1 2
3 4

)T
=

(
1 3
2 4

)


1
2
3
4


T

=
(
1 2 3 4

)
.

In other words, we can write dot product as v · w = vTw.

Lemma 3.7. We have (AB)T = BTAT .
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Proof. Since ATkj = Ajk and BTik = Bki, we have

(AB)Tij = (AB)ji

=
∑
k

AjkBki

=
∑
k

ATkjB
T
ik

=
∑
k

BTikA
T
kj

= (BTAT )ij .

Therefore (AB)T = BTAT , because all the entries agree.

Remark 3.8. You may complain that matrix multiplication is not commutative, so the step where we
switch ATkjB

T
ik = BTikA

T
kj is not valid. Fortunately your objection is invalid: ATkj and BTik are matrix

entries (i.e. numbers!) not matrices themselves.

3.2 Orthogonal matrices

Definition 3.9. An n-by-n matrix A is called orthogonal if ATA = I.

Example 3.10. The rotation matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is orthogonal. To see this, note that

RTθ =

(
cos θ sin θ
− sin θ cos θ

)
= R−θ, so RTθ Rθ = Rθ−θ = I. In general, you should think of an orthogonal

matrix as giving a higher-dimensional version of a rotation or reflection.

Lemma 3.11. If A is an orthogonal matrix then (Av) · (Aw) = v · w. In particular, the action of an
orthogonal matrix doesn’t change the lengths of vectors.

Proof. We have

(Av) · (Aw) = (Av)TAw

= vTATAw

= vT Iw

= vTw

= v · w.

The length of a vector v is
√
v · v =

√
v21 + · · ·+ v2n by Pythagoras’s theorem, so |Av| =

√
(Av) · (Av) =√

v · v = |v|.

Proof of Theorem 3.2. Because we’re only interested in the two vectors v and w, we can look at the
plane which contains them, and we reduce to the case where v and w are 2-dimensional. Moreover, we
can rotate so that v points in the positive x-direction. Rotation is given by the action of an orthogonal
matrix, so v · w is unchanged by this. If v points in the positive x-direction then v =

(
|v| 0

)
and

v · w = |v|w1, where w =

(
w1

w2

)
. Since w makes an angle φ with v, w =

(
|w| cosφ
|w| sinφ

)
, so the formula

follows.
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4 3-dimensional rotations

4.1 3-dimensional rotations

Armed with our newfound understanding of angles, let’s take a look at some 3-by-3 rotation matrices
and figure out what rotation is being represented.

Example 4.1. The matrix A =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 is a rotation matrix; just by looking at it, we can

see that the z-axis is fixed:

A

0
0
1

 =

0
0
1


and the xy-plane gets rotated by φ; for example, the unit vector v =

1
0
0

 goes to the unit vector

w =

cosφ
sinφ

0

, and v · w = cosφ, so v gets rotated by an angle φ.

Example 4.2. In Example 1.20, I claimed that C =

 0 0 1
0 1 0
−1 0 0

 is a rotation matrix for R3. That

means there’s a fixed vector (the axis) and the plane orthogonal to the axis is rotated by some angle.
Let’s figure out what the axis is and what the angle is.

If u =

xy
z

 is a fixed vector then u = Cu, which in this case means

xy
z

 =

 0 0 1
0 1 0
−1 0 0

xy
z

 =

 z
y
−x

 .

This implies −x = z = x, so x = z = 0, and we see that the y-axis is fixed.

The xz-plane is orthogonal to the y-axis, so the next task is to find by what angle it is rotated. Let us

pick a vector (say v =

1
0
0

) in that plane and act using C to get a new vector Cv =

 0
0
−1

. We note

that v · Cv = 0, so in this case the rotation must be through 90 degrees.

Example 4.3. Here is a more involved example. The matrix D =

0 0 1
1 0 0
0 1 0

 defines a rotation in 3

dimensions. To find the axis u we need to solve u = Du:xy
z

 =

0 0 1
1 0 0
0 1 0

x
y
z

 =

zx
y

 ,

which means x = y = z, so the axis points in the direction of u =

1
1
1

. Now pick v =

 1
−1
0

 orthogonal

to u (u · v = 1− 1 = 0). Compute Av =

 0
1
−1

, and

v ·Av =

 1
−1
0

 ·
 0

1
−1

 = −1.
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Now |v| = |Av| =
√

2, so cosφ = v·Av√
2
√
2

= − 1
2 , so cos(φ) = −1/2 and φ = 2π/3.

Remark 4.4. How do I recognise when a matrix is a rotation matrix? It turns out that the rotations
are precisely the orthogonal matrices with determinant one (we will define the determinant of a matrix
later).

4.2 Logarithms of rotations*

We saw earlier that exp

(
0 −θ
θ 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
. This is a special case of a beautiful general fact.

Definition 4.5. We say that a matrix is symmetric (respectively antisymmetric) if AT = A (respectively
AT = −A).

Theorem 4.6. If A is an antisymmetric matrix then exp(tA) is orthogonal for all t. Conversely, if
exp(tA) is orthogonal for all t then A is antisymmetric.

Proof. If A is antisymmetric then exp(tA)T = exp(tAT ) = exp(−tA). We will see below that

exp(−B) exp(B) = I

for any matrix B, so this shows that exp(tA) is orthogonal for all t.

For the converse, you can differentiate the expression exp(tA) with respect to t. This is nothing scary:
exp(tA) is just a matrix whose coefficients are functions of t, and differentiation just means differentiating
the entries. Here are some properties of the matrix exponential which we need:

• d
dt exp(tA) = A exp(tA)

• exp(tA)T = exp(tAT )

• d
dt (M(t)N(t)) = dM(t)

dt N +M(t)dN(t)
dt (Leibniz rule).

Assuming these properties, we have

0 =
d

dt

∣∣∣∣
t=0

I =
d

dt

∣∣∣∣
t=0

(exp(tA) exp(tA)T ) = A+AT ,

so A is antisymmetric.

Let’s prove all the properties we wanted. I’ll just assume we don’t have to worry about convergence
issues for the power series defining exp (it’s one of the nicest power series around and you can always
rely on it behaving the way you want it to).

Lemma 4.7. If B is a matrix then exp(B) exp(−B) = I.

Proof. We have

exp(B) exp(−B) =
∑
m≥0

∑
n≥0

1

m!n!
Bm(−B)n

=
∑
p≥0

p∑
m=0

1

m!(p−m)!
Bm(−B)n

=
∑
p≥0

1

p!

p∑
m=0

p!

m!(p−m)!
Bm(−B)n

=
∑
p≥0

1

p!
(B −B)p

= exp(0) = I

where we substituted p = m+ n and rearranged the infinite sum on line 2, multiplied by p!/p! on line 3,
and used the binomial theorem on line 4.
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Lemma 4.8.
d

dt
exp(tA) = A exp(tA).

Proof.

d

dt
exp(tA) =

d

dt

∑
n≥0

tn

n!
An

=
∑
n≥1

tn−1

(n− 1)!
An

= A
∑
m≥0

tm

m!
Am relabelling m = n− 1.

Lemma 4.9.
exp(B)T = exp(BT ).

Proof. Clearly we have (B1+B2)T = BT1 +BT2 , and we also have (Bn)T = (BT )n (using (AB)T = BTAT

and induction). Therefore

exp(B)T =

∑
n≥0

1

n!
Bn

T

=
∑
n≥0

1

n!
(Bn)T =

∑
n≥0

1

n!
(BT )n = exp(BT ).

Lemma 4.10.
d

dt
(M(t)N(t)) =

dM(t)

dt
N +M(t)

dN(t)

dt
.

Proof. Let’s use index notation. The ij entry of M(t)N(t) is
∑
kMik(t)Nkj(t), so

d

dt
(M(t)N(t))ij =

d

dt

(∑
k

Mik(t)Nkj(t)

)

=
∑
k

dMik(t)

dt
Nkj(t) +

∑
k

Mik(t)
dNkj(t)

dt

using the usual Leibniz rule

=

(
dM(t)

dt
N +M(t)

dN(t)

dt

)
ij

.

Example 4.11. The general 3-d rotation matrix is therefore exp

 0 α γ
−α 0 β
−γ −β 0

.
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5 Simultaneous equations

5.1 Simultaneous equations

A system of simultaneous linear equations, like

x− y = −1

x+ y = 3

can be written as a single matrix equation Av = b, like(
1 −1
1 1

)(
x
y

)
=

(
−1
3

)
.

In fact, we often omit the xs and ys completely, and write instead the augmented matrix(
1 −1 −1
1 1 3

)

5.2 Row operations

When we try to solve a system of equations like this, there are a bunch of operations we perform, like
“add the second equation to the first” or “multiply the first equation by 5”, and we can interpret these in
terms of matrices. We illustrate this using the above example.

Start with:

x− y = −1

x+ y = 3.

Write the augmented matrix(
1 −1 −1
1 1 3

)
.

Subtract eq. 1 from eq. 2:

x− y = −1

2y = 4.

Subtract row 1 from row 2:(
1 −1 −1
0 2 4

)
.

Halve eq. 2

x− y = −1

y = 2

Halve row 2:(
1 −1 −1
0 1 2

)

Add eq. 2 to eq. 1:

x = 1

y = 2,

Add row 2 to row 1:(
1 0 1
0 1 2

)

and we’re done. i.e. (
1 0
0 1

)(
x
y

)
=

(
1
2

)
,

or x = 1, y = 2.

Definition 5.1 (Row operations). Given a matrix (possibly augmented with a vertical bar somewhere),
we define the row operations:

• (Type I) Ri 7→ Ri + λRj : “add λ times the jth row to the ith row”.
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• (Type II) Ri 7→ λRi: “multiply the ith row by λ”.

So the sequence of row operations used in the above example was: R2 7→ R2 − R1, R2 7→ 1
2R2, R1 7→

R1 +R2.

5.3 Echelon forms

The dream goal of solving simultaneous equations is to reduce to a system of the form

x = something, y = something else, . . .

If you can achieve this (which is not always possible, for example if your system has no solutions, or has
many solutions) then, in terms of matrices, you have reduced the left-block of your augmented matrix
to the identity matrix. In general, the best we can hope for is to reduce our matrix to so-called reduced
echelon form.

Definition 5.2 (Echelon forms). Given a nonzero row R of a matrix M , we define its leading entry to
be the leftmost nonzero entry.

• We say that M is in echelon form if, for every nonzero row Ri, the row Ri−1 immediately above it
is nonzero and the leading entry of Ri−1 sits to the left of the leading entry of Ri. In other words,
the bottom-left chunk of M consists of zeros sitting in a configuration like a set of steps3.

• We say that M is in reduced echelon form if it is in echelon form, every leading entry is a 1 and
every other entry in a column containing a leading entry vanishes. If the ith row of M has leading
entry Mij = 1 then we will call j the ith leading index. We call the other indices free and write F
for the set of free indices.

Example 5.3. Consider the following matrices

A =

1 2 3
0 1 2
0 0 1

 , B =
(
1 1

)
, C =

(
1 0 1 1
0 1 2 −1

)
,

D =

(
0 0 1 0
0 0 1 0

)
E =

2 0 1
0 3 0
0 0 0

 F =

(
0 1
1 0

)
,

G =


1 2 0 1
0 0 1 8
0 0 0 0
0 0 0 0
0 0 0 0

 H =

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 J =

0 0 1
0 1 0
1 0 0



A,B,C,E,G,H are in echelon form. B,C,G,H are in reduced echelon form. D,F, J are in neither. For
the matrices in reduced echelon form:

• B has one leading index, 1, and one free index 2.

• the leading indices of C are 1, 2; the free indices are 3, 4.

• the leading indices of G are 1, 3; the free indices are 2, 4.

• the leading indices of H are 2, 3, 5; the free indices are 1, 4.

5.4 Echelon form and simultaneous equations

If M is in reduced echelon form then it is very easy to understand the corresponding system of simulta-
neous equations Mv = b. Here are some illustrative examples.

3The word “echelon” comes from the French word “échelle” meaning “ladder”.
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Example 5.4. Suppose that M =

(
1 0 1 1
0 1 2 −1

)
and b =

(
b1
b2

)
. The system of simultaneous equa-

tions Mv = b we get is

x1 + x3 + x4 = b1

x2 + 2x3 − x4 = b2.

We can rearrange:

x1 = b1 − x3 − x4
x2 = b2 − 2x3 + x4.

In other words, for every value of the variables x3, x4, we get a solution v =


b1 − x3 − x4
b2 − 2x3 + x4

x3
x4

. The “free

variables” x3, x4 are associated with free indices 3, 4 and the “dependent variables” x1, x2 are associated
with leading indices. Here, dependent means that the values of x1, x2 are determined by x3, x4 via the
equations.

Example 5.5. Suppose thatM =


1 2 0 1
0 0 1 8
0 0 0 0
0 0 0 0
0 0 0 0

 and b =


b1
b2
b3
b4
b5

. The system of simultaneous equations

Mv = b we get is

x1 + 2x2 + x4 = b1

x3 + 8x4 = b2

0 = b3

0 = b4

0 = b5.

This has solutions if and only if b3 = b4 = b5 = 0. In the case when this condition holds, there are free
variables x2, x4 (for the free indices) and dependent variables x1 = b1 − 2x2 − x4, x3 = b2 − 8x4. The

general solution is then v =


b1 − 2x2 − x4

x2
b2 − 8x4
x4

 (provided b3 = b4 = b5 = 0).

More generally, the same reasoning shows:

Theorem 5.6. Suppose that:

• M is an m-by-n matrix in reduced echelon form,

• the first k ≤ m rows of M are non-zero and the final m− k rows are zero,

• the leading entry in row i ≤ k is in column ji (so the leading indices are j1, . . . , jk).

Then the general solution v =

x1...
xn

 exists if and only if bk+1 = · · · = bm = 0 and has free variables xp

(where p runs over the set F of free indices), dependent variables xji = bi −
∑
p∈F Mipxp.

Remark 5.7. In particular, the space of solutions has dimension equal to the number of free indices.

Example 5.8. Consider the matrix A =

(
1 0 2
0 1 1

)
. This is in reduced echelon form. If it is used to

form a system of equations Av = b then these equations have the form

x1 + 2x3 = b1

x2 + x3 = b2
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which can be solved immediately:

x1 = b1 − 2x3, x2 = b2 − x3.

In other words, for each x3, we get a solution v =

b1 − 2x3
b2 − x3
x3

.

Example 5.9. Consider the matrix A =

1 0 0
0 1 0
0 0 0

. This is in reduced echelon form. If it is used to

form a system of equations Av = b then these equations have the form

x1 = b1

x2 = b2

0 = b3

This system can be solved if and only if b3 = 0, in which case it has a solution v =

b1b2
x3

 for every

possible value of x3.

Example 5.10. Consider the n-by-n identity matrix I. This is in reduced echelon form. If it is used to

form a system of equations Iv = b then these equations have the unique solution v =

b1...
bn

. (Duh4.)

Example 5.11. Consider the n-by-n zero matrix. This is in reduced echelon form. If it is used to form
a system of equations 0v = b then these equations have solutions if and only if b = 0; if b = 0 then any
v is a solution.

In other words, once a matrix is in reduced echelon form, it becomes very transparent how to solve the
corresponding system of simultaneous equations.

4This is a colloquial form of the Latin QED.

20



6 Echelon form theorems

6.1 Putting a matrix into echelon form

We will soon see that any matrix can be put into echelon form by row operations of type I, and further
into reduced echelon form by row operations of types I and II. Let’s see some examples.

Example 6.1. Consider the matrix 
2 0 2 0
0 1 1 1
2 0 5 0
1 1 1 2


Clear column 1, row 3 using R3 7→ R3 −R1 

2 0 2 0
0 1 1 1
0 0 3 0
1 1 1 2


Clear column 1, row 4 using R4 7→ R4 − 1

2R1
2 0 2 0
0 1 1 1
0 0 3 0
0 1 0 2


Clear column 2, row 4 using R4 7→ R4 −R2

2 0 2 0
0 1 1 1
0 0 3 0
0 0 −1 1


Clear column 3, row 4 using R4 7→ R4 + 1

3R3
2 0 2 0
0 1 1 1
0 0 3 0
0 0 0 1


This is now in echelon form. We can go further to reduced echelon form.

Make leading entries in rows 1 and 3 equal to 1 using R1 7→ 1
2R1 and R3 7→ 1

3R3.
1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1


Clear column 3 using R1 7→ R1 −R3 and R2 7→ R2 −R3

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


Clear column 4 using R2 7→ R2 −R4 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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This means that for any b there is a unique solution to Mv = b (no free variables and no constraints on
b).

Example 6.2. In this example, we’ll keep track of the augmented column. We start with the matrix
1 −1 0 b1
1 1 −1 b2
4 0 −2 b3
0 2 −1 b4


Clear column 1, using R2 7→ R2 −R1 and R3 7→ R3 − 4R1

1 −1 0 b1
0 2 −1 b2 − b1
0 4 −2 b3 − 4b1
0 2 −1 b4


Clear column 2, using R3 7→ R3 − 2R2 and R4 7→ R4 −R2

1 −1 0 b1
0 2 −1 b2 − b1
0 0 0 b3 − 4b1 − 2(b2 − b1)
0 0 0 b4 − (b2 − b1)


Make leading entry in row 2 equal to 1 using R2 7→ 1

2R2.
1 −1 0 b1
0 1 −1/2 (b2 − b1)/2
0 0 0 b3 − 2b1 − 2b2
0 0 0 b4 + b1 − b2


Clear column 2 using R1 7→ R1 +R2

1 0 −1/2 (b1 + b2)/2
0 1 −1/2 (b2 − b1)/2
0 0 0 b3 − 2b1 − 2b2
0 0 0 b4 + b1 − b2


We see that the general solution exists if b4 + b1 − b2 = 0 and b3 − 2b1 − 2b2 = 0, in which case there is
one free variable x3 and two dependent variables

x1 = (b1 + b2 + x3)/2, x2 = (b2 − b1 + x3)/2.

For example, if b =


−3
0
−6
3

 then b4 + b1 − b2 = 3− 3− 0 = 0 and b3 − 2b1 − 2b2 = −6 + 6− 0 = 0, and

we get the general solution

(x3 − 3)/2
(x3 + 3)/2

x3

.

Example 6.3. Again, we’ll keep track of the augmented column. We start with the matrix 3 −2 −1 −5 b1
−5 3 2 −3 b2
0 −2 −1 1 b3


Clear column 1, row 2 using R2 7→ R2 + 5

3R13 −2 −1 −5 b1
0 −1/3 1/3 −34/3 5

3b1 + b2
0 −2 −1 1 b3
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Clear column 2, row 3 using R3 7→ R3 − 6R23 −2 −1 −5 b1
0 −1/3 1/3 −34/3 5

3b1 + b2
0 0 −3 69 −10b1 − 6b2 + b3


Make leading entries in rows 1 and 2 equal to 1 using R1 7→ 1

3R1 and R2 7→ −3R2.1 −2/3 −1/3 −5/3 1
3b1

0 1 −1 34 −5b1 − 3b2
0 0 −3 69 −10b1 − 6b2 + b3


Clear column 2 using R1 7→ R1 + 2

3R21 0 −1 21 −3b1 − 2b2
0 1 −1 34 −5b1 − 3b2
0 0 −3 69 −10b1 − 6b2 + b3


Make leading entry in row 3 equal to 1 using R3 7→ − 1

3R3.1 0 −1 21 −3b1 − 2b2
0 1 −1 34 −5b1 − 3b2
0 0 1 −23 10

3 b1 + 2b2 − 1
3b3


Clear column 3 using R1 7→ R1 +R3 and R2 7→ R2 +R31 0 0 −2 1

3 (b1 − b3)
0 1 0 11 − 1

3 (5b1 + 3b2 + b3)
0 0 1 −23 10

3 b1 + 2b2 − 1
3b3


We see that this always has a solution, and the general solution is

1
3 (b1 − b3) + 2x4

− 1
3 (5b1 + 3b2 + b3)− 11x4
10
3 b1 + 2b2 − 1

3b3 + 23x4
x4


with one free variable x4.

6.2 Echelon form theorems

Theorem 6.4 (Echelon form). Every m-by-n matrix A can be put into echelon form using only the row
operations Ri 7→ Ri + λRj.

Proof. We will prove the theorem by induction on the size of the matrix. Suppose we have proved the
theorem for all m′-by-n matrices with m′ < m. The base case for induction is then m = 1 but if there
is only one row then the matrix is automatically in echelon form, which proves the base case. Now for
the induction step.

If your matrix is zero then it’s already in echelon form, so without loss of generality, assume that there
is a nonzero row.

• Of all the nonzero rows, pick the row Ri whose leading entry Aij is furthest to the left (i.e. j is
minimal); if there are several such rows, pick the topmost (i.e. with i minimal).

• If i 6= 1 (i.e. if Ri is not the top row) then apply the row operation R1 7→ R1 +Ri so that the top
row also has leading entry Aij .

• For k = 2, . . . ,m, apply the row operation Rk 7→ Rk− Akj

Aij
R1. This ensures that the leading entries

of all nonzero rows below the top are to the right of the leading entry of the top row.
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Now consider the (m− 1)-by-n submatrix A′ you get by erasing the top row R1. By induction, we can
put this into echelon form using only row operations R′i 7→ R′i + λR′j . Such operations don’t introduce
any leading entries in column j or to the left of it because our submatrix A′ has zero entries in all
these columns. Therefore, if we pop R1 back on top of A′, the result in in echelon form. Since the row
operations didn’t affect R1, we can think of them as row operations on A, so we have put A into echelon
form using only row operations of the specified type.

Theorem 6.5 (Reduced echelon form). Every m-by-n matrix A can be put into reduced echelon form
by a sequence of row operations Ri 7→ Ri + λRj and Rk 7→ λRk (λ 6= 0).

Proof. First, use Theorem 6.4 to put A into echelon form. Now, for each nonzero row Ri, with leading
entry Aij , perform the row operation Ri 7→ 1

Aij
Ri to make the leading entry equal to 1. Finally, for

every nonzero row Ri and every row Rk with k 6= i, perform the row operation Rk 7→ Rk −AkjRi. This
clears out the nonzero entries in columns above and below the leading entry Aij of Ri. The result is in
reduced echelon form.
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7 Inverses

7.1 Definition and basic properties

We’ve seen how to multiply and even exponentiate matrices. Can we “divide” by a matrix?

Theorem 7.1. If A =

(
a b
c d

)
is a 2-by-2 matrix with ad− bc 6= 0 then the matrix

A−1 :=
1

ad− bc

(
d −b
−c a

)
is an inverse for A in the sense that AA−1 = A−1A = I.

Proof. We’ll just check A−1A = I.

A−1A =
1

ad− bc

(
d −b
−c a

)(
a b
c d

)
=

1

ad− bc

(
da− bc db− bd
−ca+ ac −cb+ ad

)
=

1

ad− bc

(
ad− bc 0

0 ad− bc

)
= I.

Remark 7.2. This is great. However, you should never write A−1 as 1
A . The reason is that B

A could
mean A−1B or BA−1 and these are in general different matrices (because matrix multiplication is not
commutative).

We want to generalise this idea to n-by-n matrices.

Definition 7.3. Let A be an n-by-n (square!) matrix. We say that A is invertible if there exists a
matrix A−1 such that A−1A = AA−1 = I.

Remark 7.4. Note that if an inverse exists, it is unique because if B,C are two inverses for A then
AB = AC = I and so B = BI = BAB = BAC = IC = C.

Lemma 7.5. If A and B are invertible with inverses A−1 and B−1 then AB is invertible with inverse
B−1A−1 (note the order is reversed!)

Proof. We have
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

Similarly, one can show (B−1A−1)(AB) = I.

In this section, we will see an algorithm to test if a matrix is invertible and, if it is, compute its inverse.
We will later introduce a quantity called the determinant of a square matrix which is the analogue of
ad−bc for 2-by-2 matrices in the sense that a matrix is invertible if and only if its determinant is nonzero
(and there’s a formula for the inverse in terms of determinants).

7.2 Inverse matrices and reduced echelon form

Observe that finding A−1 is equivalent to solving the simultaneous equations associated to Av = b.
Indeed, if A is invertible then v = A−1b is a solution to Av = b. Since we know how to solve simultaneous
equations, we also know how to find inverses! In fact, we were secretly doing this already in the chapter
on simultaneous equations.

The following theorem makes this precise.
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Theorem 7.6. Given an n-by-n matrix A, form the augmented matrix (A|In) (where In is the n-by-n
identity matrix). Use row operations on the augmented matrix to put A into reduced echelon form. Then
A is invertible if and only if the reduced echelon form of A is In, and in this case, the result of putting
(A|In) into reduced echelon form is (In|A−1).

We will first use the theorem to compute some examples of inverse matrices, then we will develop a little
more theory and prove the theorem.

7.3 Examples

Example 7.7. Let’s invert the matrix

−3 −2 −4
2 3 3
−1 4 −4

. We start by writing the augmented matrix

−3 −2 −4 1 0 0
2 3 3 0 1 0
−1 4 −4 0 0 1


Clear column 1, row 2 using R2 7→ R2 + (2/3)R1−3 −2 −4 1 0 0

0 5/3 1/3 2/3 1 0
−1 4 −4 0 0 1


Clear column 1, row 3 using R3 7→ R3 + (−1/3)R1−3 −2 −4 1 0 0

0 5/3 1/3 2/3 1 0
0 14/3 −8/3 −1/3 0 1


Clear column 2, row 3 using R3 7→ R3 + (−14/5)R2−3 −2 −4 1 0 0

0 5/3 1/3 2/3 1 0
0 0 −18/5 −11/5 −14/5 1


Make leading entry in row 1 equal to 1 using R1 7→ (−1/3)R1.1 2/3 4/3 −1/3 0 0

0 5/3 1/3 2/3 1 0
0 0 −18/5 −11/5 −14/5 1


Make leading entry in row 2 equal to 1 using R2 7→ (3/5)R2.1 2/3 4/3 −1/3 0 0

0 1 1/5 2/5 3/5 0
0 0 −18/5 −11/5 −14/5 1


Clear column 2 using R1 7→ R1 + (−2/3)R21 0 6/5 −3/5 −2/5 0

0 1 1/5 2/5 3/5 0
0 0 −18/5 −11/5 −14/5 1


Make leading entry in row 3 equal to 1 using R3 7→ (−5/18)R3.1 0 6/5 −3/5 −2/5 0

0 1 1/5 2/5 3/5 0
0 0 1 11/18 7/9 −5/18
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Clear column 3 using R1 7→ R1 + (−6/5)R31 0 0 −4/3 −4/3 1/3
0 1 1/5 2/5 3/5 0
0 0 1 11/18 7/9 −5/18


Clear column 3 using R2 7→ R2 + (−1/5)R31 0 0 −4/3 −4/3 1/3

0 1 0 5/18 4/9 1/18
0 0 1 11/18 7/9 −5/18


Now the right-hand block is the inverse of the matrix we started with.

Example 7.8. We start with the matrix
1 −1 0 3 1 0 0 0
−1 2 1 0 0 1 0 0
−1 1 1 −3 0 0 1 0
1 0 1 7 0 0 0 1


Clear column 1, row 2 using R2 7→ R2 + (1)R1

1 −1 0 3 1 0 0 0
0 1 1 3 1 1 0 0
−1 1 1 −3 0 0 1 0
1 0 1 7 0 0 0 1


Clear column 1, row 3 using R3 7→ R3 + (1)R1

1 −1 0 3 1 0 0 0
0 1 1 3 1 1 0 0
0 0 1 0 1 0 1 0
1 0 1 7 0 0 0 1


Clear column 1, row 4 using R4 7→ R4 + (−1)R1

1 −1 0 3 1 0 0 0
0 1 1 3 1 1 0 0
0 0 1 0 1 0 1 0
0 1 1 4 −1 0 0 1


Clear column 2, row 4 using R4 7→ R4 + (−1)R2

1 −1 0 3 1 0 0 0
0 1 1 3 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1


Clear column 2 using R1 7→ R1 + (1)R2

1 0 1 6 2 1 0 0
0 1 1 3 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1


Clear column 3 using R1 7→ R1 + (−1)R3

1 0 0 6 1 1 −1 0
0 1 1 3 1 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1
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Clear column 3 using R2 7→ R2 + (−1)R3
1 0 0 6 1 1 −1 0
0 1 0 3 0 1 −1 0
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1


Clear column 4 using R1 7→ R1 + (−6)R4

1 0 0 0 13 7 −1 −6
0 1 0 3 0 1 −1 0
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1


Clear column 4 using R2 7→ R2 + (−3)R4

1 0 0 0 13 7 −1 −6
0 1 0 0 6 4 −1 −3
0 0 1 0 1 0 1 0
0 0 0 1 −2 −1 0 1


Now the right-hand block is the inverse of the matrix we started with.
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8 Inverses from echelon form

8.1 Elementary matrices

Definition 8.1 (Elementary matrices I). If i 6= j, we write Eij(λ) for the matrix with ones on the
diagonal and zeros elsewhere, except for a λ in position ij (ith row, jth column). For example, if we’re
working with 3-by-3 matrices then

E12(2) =

1 2 0
0 1 0
0 0 1

 , E32(7) =

1 0 0
0 1 0
0 7 1

 , E13(t) =

1 0 t
0 1 0
0 0 1

 .

Lemma 8.2. If A and Eij(λ) are n-by-n matrices then Eij(λ)A is the matrix obtained from A by the
row operation Ri 7→ Ri + λRj.

Proof. Let’s consider the case i < j (the other case is similar so we omit it). Consider the product

1 col i col j
. . . ↓ ↓

row i → 1 λ
. . .

1
. . .

1





A11 · · · · · · · · · · · · A1n

...
...

Ai1 Ain
...

...
Aj1 Ajn
...

...
An1 · · · · · · · · · · · · Ann


The only difference the λ makes is when we multiply the ith row into a column of A (say the kth column).
Instead of just picking up 1×Aik, we get 1×Aik+λ×Ajk. In other words, the result Eij(λ)A is obtained
from A by adding λ times row j to row i.

Definition 8.3 (Elementary matrices II). We define the elementary matrix Ei(λ) to be the matrix with
1s on the diagonal and zeros elsewhere, except that the ii entry is λ. For example, if we’re working with
4-by-4 matrices then

E1(5) =


5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , E3(F ) =


1 0 0 0
0 1 0 0
0 0 F 0
0 0 0 1

 .

Lemma 8.4. If A and Ei(λ) are n-by-n matrices then Ei(λ)A is the matrix obtained from A by the row
operation Ri 7→ λRi.

Proof. The only difference between multiplying by the identity and multiplying by Ei(λ) is that when
you multiply the ith row of Ei(λ) into the jth column of A, you pick up a factor of λ. Therefore Ei(λ)A

differs from A only in that every element on the ith row is multiplied by λ. For example, if A =

(
a b
c d

)
then

E1(λ)A =

(
λ 0
0 1

)(
a b
c d

)
=

(
λa λb
c d

)
.

Lemma 8.5. An elementary matrix Eij(λ) is invertible with inverse Eij(−λ). An elementary matrix
Ei(λ) is invertible if λ 6= 0, in which case its inverse is Ei(1/λ).

Proof. Consider the product

1
. . .

1 λ
. . .

1
. . .

1





1
. . .

1 −λ
. . .

1
. . .

1
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The only difference between this and II = I is when you multiply row i into column j, when you get
1× (−λ) + λ× 1 = 0. Therefore this product equals I.

Consider the product 

1
. . .

λ
. . .

1





1
. . .

1/λ
. . .

1


The only difference between this product and II = I is when you multiply row i into column i, at which
point you get λ× (1/λ) = 1, so this product equals I.

8.2 Proof of Theorem 7.6

Proof of Theorem 7.6. Suppose we have put A into reduced echelon form using a sequence of row opera-
tions r1, . . . , rk. Each row operation is equivalent to multiplying (on the left) by some elementary matrix
M1, . . . ,Mk. Therefore the reduced echelon form of A is

C := MkMk−1 · · ·M1A.

If C is the identity then Mk · · ·M1A = I, so Mk · · ·M1 = A−1. If we perform the same row operations
to the identity matrix (sitting on the right hand side of the augmented matrix (A|In)) then we get
Mk · · ·M1I = A−1.

If C is not the identity matrix, then, since C is a square matrix in reduced echelon form, there must
be a row of C which vanishes. Say this is the ith row. If v is the vector with zeros everywhere except
a 1 in the ith row then Cv = 0. Now Cv = Mk · · ·M1Av = 0, and M1, . . . ,Mk are invertible, so
Av = M−11 · · ·M−1k 0 = 0. Therefore A has nontrivial kernel. If A were invertible then the only solution
to Av = 0 is v = A−10 = 0, so the kernel would be trivial. Therefore A is only invertible if its reduced
echelon form is the identity matrix.

Corollary 8.6. A product of elementary matrices is invertible and, conversely, any invertible matrix is
a product of elementary matrices.

Proof. Each elementary matrix is invertible, so in for a product Mk · · ·M1 of elementary matrices, the
inverse is M−11 · · ·M−1k . Conversely, if A is invertible then its reduced echelon form is the identity and
its inverse is a product of elementary matrices Mk · · ·M1 by Theorem 7.6. The inverse of an elementary
matrix is again elementary, therefore A = M−11 · · ·M−1k is a product of elementary matrices.
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9 Determinants

9.1 Definition and basic examples

We have seen that a 2-by-2 matrix A =

(
a b
c d

)
is invertible if and only if ad − bc 6= 0. We would

like a similarly nice characterisation of invertibility for n-by-n matrices. We will see that a matrix is
invertible if and only if its determinant is nonzero.

Definition 9.1 (Determinant). If A is an n-by-n matrix with entries Aij then we define the determinant
det(A) to be the number obtained as follows.

• Pick n entries of A with no two in the same row and no two in the same column. If we write
the entry from the ith row as Aiσ(i) (i.e. it’s in the σ(i)th column) then this means that the map
i 7→ σ(i) is a permutation of {1, . . . , n}; there are n! ways of making such a choice.

• Multiply these entries together to get the number ±A1σ(1) · · ·Anσ(n). The sign in this expression
is taken to be −1 if your permutation is “odd” (i.e. if it involves an odd number of swaps) and +1
if your permutation is “even” (involves an even number of swaps). We will write sgn(σ) for this
sign.

• Repeat this for every possible choice σ and sum the numbers that you get.

In brief:
det(A) =

∑
σ

sgn(σ)A1σ(1) · · ·Anσ(n),

where the sum is taken over all permutations σ.

Example 9.2. If n = 2 then there are n! = 2 choices:

• σ could be the identity permutation 1 7→ 1, 2 7→ 2. This is an even permutation (it involves zero
swaps and zero is even) so we get A1σ(1)A2σ(2) = A11A22.

• σ could be the swap 1 ↔ 2. This is an odd permutation (it involves one swap and one is odd) so
we get −A1σ(1)A2σ(2) = −A12A21.

If A =

(
a b
c d

)
then this translates into the two terms ad and −bc, which we sum to get det(A) = ad−bc.

Example 9.3. If n = 3 and A =

a b c
d e f
g h i

 then we get n! = 6 choices:

σ identity 1↔ 2 1↔ 3 2↔ 3 cyclic (123) cyclic (132)
contribution aef −bdi −ceg −afh bfg cdh

so
det(A) = aei+ bfg + cdh− bdi− ceg − afh.

Example 9.4 (Diagonal matrices). If D is a diagonal matrix with entries λ1, . . . , λn:
λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


then there is only one way to pick a nonzero entry from each row, which gives det(D) = λ1 · · ·λn.

Example 9.5 (Upper triangular matrices). Suppose that T is an upper triangular matrix, in other words
all the entries below the diagonal are zero:

A11 A12 · · · A1n

0 A22 A2n

...
. . .

...
0 · · · 0 Ann
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Then we need to pick something from the first column, which has to be A11, then something from the
second column but this may not be on the first row as we already picked something from the first row,
so this must be A22, then something from the third column, but this cannot be on the first or second
rows, so it must be A33, and so on, so we see that det(A) = A11 · · ·Ann (i.e. det(A) is the product of
the diagonal entries). Similarly if A is lower-triangular.

Example 9.6. If Eij(λ) is an elementary matrix with ones on the diagonal and zeros elsewhere except
for a λ in position ij then det(Eij(λ)) = 1. This is because Eij(λ) is upper (respectively lower) triangular
(when i < j or i > j respectively).

Example 9.7. If Ei(λ) is the elementary matrix with ones on the diagonal and zeros elsewhere except
for a λ in position ii, then Ei(λ) is diagonal and its determinant is λ.

9.2 Some properties of the determinant

Lemma 9.8. If two rows of A coincide (that is, for some i 6= j, we have Aik = Ajk for all k) then
det(A) = 0.

Proof. If two rows coincide then each term

sgn(σ)(· · · )Aiσ(i)(· · · )Ajσ(j)(· · · )

cancels with the term
sgn(σ′)(· · · )Aiσ′(i)(· · · )Ajσ′(j)(· · · )

where σ′ is the permutation obtained by performing σ and then switching i↔ j. The point is that this
doesn’t change the value of the product (because Aiσ(i) = Ajσ(i) and Aiσ(j) = Ajσ(j)) but it does change
the sign of the permutation (it introduces an extra swap).

Lemma 9.9. If A′ is obtained from A by a row operation Ri 7→ Ri + λRj then det(A′) = det(A).

Proof. We have

det(A′) =
∑
σ

sgn(σ)(· · · )(Aiσ(i) + λAjσ(i))(· · · )

=
∑
σ

sgn(σ)(· · · )Aiσ(i)(· · · ) + λ
∑
σ

sgn(σ)(· · · )Ajσ(i)(· · · )

= det(A) + λ det(B),

where B is the matrix obtained from A by replacing the ith row with the jth row. Since B has two rows
equal, its determinant vanishes, so det(A′) = det(A).

Theorem 9.10. Suppose we put A into echelon form using only row operations Ri 7→ Ri + λRj. Then
det(A) is the product of the diagonal entries in the echelon form.

Proof. These row operations do not change the determinant, so if C is the echelon form of A thus
obtained, we have det(A) = det(C). By definition, matrices in echelon form are upper triangular, so
det(C) is just the product of its diagonal entries, by Example 9.5.

Lemma 9.11. If A′ is obtained by swapping two of the rows of A then det(A′) = −det(A).

Proof. Each term (for a permutation σ) in det(A′) also appears in det(A) for a permutation σ followed
by the swap, and hence with the opposite sign.

Remark 9.12. This means you can also swap rows around to reach echelon form and compute the
determinant, provided you multiply by −1 each time you swap two rows. This can be useful, for example:

det


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 = −1

immediately without the mess of adding row 4 to row 1 and subtracting row 1 from row 4.

32



10 Computing determinants

10.1 Examples of computing determinants

Example 10.1. Let A =

 1 4 −4
−2 −2 −4
3 −3 3

.

Clear row 2 using R2 7→ R2 + (2)R1 1 4 −4
0 6 −12
3 −3 3


Clear row 3 using R3 7→ R3 + (−3)R1 1 4 −4

0 6 −12
0 −15 15


Clear row 3 using R3 7→ R3 + (5/2)R2 1 4 −4

0 6 −12
0 0 −15


This is now in echelon form and has the same determinant as the matrix we began with, so the determi-
nant is the product of the diagonal entries, which is −90.

Example 10.2. Let B =


2 −3 −1 4
2 −3 2 4
2 −1 −4 −3
2 −3 4 2

.

Clear row 2 using R2 7→ R2 + (−1)R1 
2 −3 −1 4
0 0 3 0
2 −1 −4 −3
2 −3 4 2


Clear row 3 using R3 7→ R3 + (−1)R1 

2 −3 −1 4
0 0 3 0
0 2 −3 −7
2 −3 4 2


Clear row 4 using R4 7→ R4 + (−1)R1 

2 −3 −1 4
0 0 3 0
0 2 −3 −7
0 0 5 −2


Add row 3 to row 2 

2 −3 −1 4
0 2 0 −7
0 2 −3 −7
0 0 5 −2


Clear row 3 using R3 7→ R3 + (−1)R2 

2 −3 −1 4
0 2 0 −7
0 0 −3 0
0 0 5 −2
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Clear row 4 using R4 7→ R4 + (5/3)R3 
2 −3 −1 4
0 2 0 −7
0 0 −3 0
0 0 0 −2


This is now in echelon form and has the same determinant as the matrix we began with, so the determi-
nant is the product of the diagonal entries, which is 24.

Example 10.3. Let C =


3 −3 −5 −4
2 −5 2 0
2 3 −5 −2
0 3 −1 0

.

Clear row 2 using R2 7→ R2 + (−2/3)R1
3 −3 −5 −4
0 −3 16/3 8/3
2 3 −5 −2
0 3 −1 0


Clear row 3 using R3 7→ R3 + (−2/3)R1

3 −3 −5 −4
0 −3 16/3 8/3
0 5 −5/3 2/3
0 3 −1 0


Clear row 3 using R3 7→ R3 + (5/3)R2 

3 −3 −5 −4
0 −3 16/3 8/3
0 0 65/9 46/9
0 3 −1 0


Clear row 4 using R4 7→ R4 + (1)R2 

3 −3 −5 −4
0 −3 16/3 8/3
0 0 65/9 46/9
0 0 13/3 8/3


Clear row 4 using R4 7→ R4 + (−3/5)R3

3 −3 −5 −4
0 −3 16/3 8/3
0 0 65/9 46/9
0 0 0 −2/5


This is now in echelon form and has the same determinant as the matrix we began with, so the determi-
nant is the product of the diagonal entries, which is 26.
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11 Formulas for determinants and for inverses

11.1 Inductive formula for determinants

We can expand the determinant as follows. First make your choice of entry from the first row, say in
the jth column. Now remove the first row and the jth column. You’re left with a smaller square matrix,
which we’ll call C1j , from which you have to select the remaining entries. The picture below shows how
to extract C12 from a 4-by-4 matrix.

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 C12 =

A21 A23 A24

A31 A33 A34

A41 A43 A44


As you run over these choices, you obtain the determinant of this submatrix C1j . Now allow the choice
of j to vary, and you obtain the following useful inductive formula for the determinant:

det(A) = A11 det(C11)−A12 det(C12) +A13 det(C13) + · · ·+ (−1)nA1n det(C1n).

In fact, we could have started from any row (say the ith) and obtained a similar expression

det(A) = (−1)i+1 (Ai1 det(Ci1)−Ai2 det(Ci2) +Ai3 det(Ci3) + · · ·+ (−1)nAin det(Cin)) ,

where Cij is the submatrix obtained by deleting the ith row and the jth column.

In fact, we could have expanded by going down the jth column instead:

det(A) = (−1)j+1 (A1j det(C1j)−A2j det(C2j) + · · ·+ (−1)nAnj det(Cnj))

The only non-obvious thing about these formulas is how to get the signs. The contribution to Aij det(Cij)
to one of these formulas is the sign (−1)i+j in the ij position of the grid below:

+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

 .

You can prove this using index notation if you start from our formula for the determinant, but rather
than go through this, we will simply use the formula to compute some determinants.

Remark 11.1. The determinants of submatrices are called minors. Historically, the mathematician
Sylvester introduced the word “matrix” (the Latin word for womb) because...

I have in previous papers defined a “Matrix” as a rectangular array of terms, out of which
different systems of determinants may be engendered as from the womb of a common parent.

Let it never be said that mathematicians don’t have vivid imaginations.

Example 11.2. Let’s calculate the determinant of

A =

1 2 3
4 5 6
7 8 9


using this inductive formula. We have

det(A) = det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= (5× 9− 6× 8)− 2(4× 9− 6× 7) + 3(4× 8− 5× 7)

= (45− 48)− 2(36− 42) + 3(32− 35)

= −3 + 12− 9

= 0.
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Example 11.3. Let’s calculate the determinant of

B =


1 1 2 3
0 0 4 5
−1 2 1 1
0 0 2 3


using the inductive formula. Note that every entry on the first row is nonzero, so expanding along the
first row would involve calculating four 3-by-3 minors. If, instead, we expand along the second column
then we only have two nonzero entries, so only need to compute two 3-by-3 minors (first column, second
row or fourth row would also have this advantage; I picked the second column because it makes the signs
more interesting). This gives

det(B) = −det

 0 4 5
−1 1 1
0 2 3

− 2 det

1 2 3
0 4 5
0 2 3


= −

(
−
(
−det

(
4 5
2 3

)))
− 2 det

(
4 5
2 3

)
= −3(4× 3− 5× 2)

= −6.

Let’s check we did it right using row operations. Add row 1 to row 3:
1 1 2 3
0 0 4 5
0 3 3 4
0 0 2 3


Switch rows 2 and 3 (picking up a minus sign in the determinant)

1 1 2 3
0 3 3 4
0 0 4 5
0 0 2 3


Subtract twice row 4 from row 3, then switch them (another sign, which cancels the previous one).

1 1 2 3
0 3 3 4
0 0 2 3
0 0 0 −1


The determinant is the product of the diagonal entries, which is indeed −6.

11.2 Inverses in terms of determinants

Definition 11.4. Define the adjugate matrix of A to be the matrix

adj(A) :=


+ det(C11) −det(C12) + det(C13) · · ·
det(C21) + det(C22) −det(C23) · · ·

+ det(C31) −det(C32) + det(C33) · · ·
...

...
...


T

.

Theorem 11.5. If det(A) 6= 0 then A−1 = 1
det(A) adj(A).

Proof. We can compute A adj(A). The ijth entry is precisely the expression

±(Ai1 det(Cj1)−Ai2 det(Cj2) + · · · ±Ain det(Cjn))
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which equals det(A) if i = j. If i 6= j then this expression is the determinant of the matrix obtained
from A by replacing the jth row with the ith row, so two rows coincide and the determinant vanishes.

Therefore A adj(A) =


det(A) 0 · · · 0

0 det(A) 0
...

. . . 0
0 · · · 0 det(A)

, and so 1
det(A) adjA is an inverse for A.
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12 More on determinants

12.1 Further properties of determinants

Lemma 12.1. If A′ is obtained from A by a row operation of the form Ri 7→ λRi then det(A′) = λ det(A).

Proof.

det(A′) =
∑
σ

sgn(σ)A1σ(1) · · · (λAiσ(i)) · · ·Anσ(n)

= λ
∑
σ

sgn(σ)A1σ(1) · · ·Aiσ(i) · · ·Anσ(n)

= λ det(A).

Theorem 12.2. An n-by-n matrix A is invertible if and only if its determinant is nonzero.

Proof. Put A into echelon form using only row operations of type Ri 7→ Ri +λRj . You don’t change the
determinant. Now use row operations of type Ri 7→ λRi (λ 6= 0) to put A into reduced echelon form.
You change the determinant by a nonzero factor (the product of all the λs that you used in the row
operations). By Theorem 7.6, a matrix is invertible if and only if its reduced echelon form is the identity
matrix, which has determinant 1, so:

• if A is invertible then its determinant differs from 1 by a nonzero factor, and

• if A is not invertible then its reduced echelon form has a zero row somewhere, so the reduced
echelon form has determinant zero and det(A) is a multiple of zero, hence zero.

Theorem 12.3. If A and B are n-by-n matrices then

det(AB) = det(A) det(B).

Proof. First, we show this under the assumption that A is an elementary matrix.

• If A = Eij(λ) then AB is the result of the row operation Ri 7→ Ri+λRj on B, so det(AB) = det(B)
by Lemma 9.9. Moreover, det(A) = 1 by Example 9.6. Therefore det(A) det(B) = det(B) too, so
the theorem is proved in this case.

• If A = Ei(λ) then AB is the result of the row operation Ri 7→ λRi on B, so det(AB) = λ det(B)
by Lemma 9.9. Moreover, det(A) = λ by Example 9.7. Therefore det(A) det(B) = λ det(B) too,
so the theorem is proved in this case.

Now, if we assume that A is a product of elementary matrices then the theorem follows from these two
special cases by induction.

If A is not a product of elementary matrices then A is not invertible, so its determinant is zero by
Theorem 12.2. Moreover, AB is also noninvertible because A is not invertible, so det(AB) = 0 by
Theorem 12.2, so det(AB) = 0 = det(A) det(B), and the theorem is proved in this case too.

12.2 Geometric interpretation of determinants

Theorem 12.4. Suppose that A =

(
a b
c d

)
. Let S be the unit square sitting in the plane and let A(S)

denote the image of S under the linear map defined by A. Then |det(A)| is the area of A(S).

Proof. The shape A(S) is a parallelogram with sides parallel to the vectors
(
a
c

)
and

(
b
d

)
. This paral-

lelogram has area ad− bc as we can see by dissection, using the following picture:
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Take the grey parallelogram A(S), draw the rectangle with sidelengths a (along) and d (up) over it.
Move the green and blue pieces of the parallelogram inside the rectangle as shown. Now the red, green
and blue areas inside the square have the same area as A(S). The remaining (purple) part comprises
two triangles which have height c and base b, so the area of A(S) is ad− bc.

It is much harder to see the following theorems, but they are true:

Theorem 12.5. If A is an n-by-n matrix then |det(A)| is the volume of A(S), where S is the unit cube
in n-dimensions.

Remark 12.6. The shape A(S) is called a parallelopiped, the higher-dimensional analogue of a parallelo-
gram.

Theorem 12.7. Let a1, . . . , an be n vectors in Rn. Consider the simplex with vertices at the origin and
at a1, . . . , an. The volume of this simplex is 1

n! |det(A)|, where A is the matrix with columns a1, . . . , an.

Example 12.8. If A =

1 0 0
0 1 0
0 0 1

 then the simplex we get is the tetrahedron shown below. Its volume

is 1/6 (because of the above formula, but also because you can dissect and rearrange a cube into six such
tetrahedra).

Example 12.9. The regular tetrahedron (or d4, for any Dungeons & Dragons fans out there) has vertices

a0 =

 1/2
0

1/
√

2

 , a1 =

 −1/2
0

−1/
√

2

 , a2

 0
1/2

−1/
√

2

 , a3

 0
−1/2

1/
√

2

 .

By translating this so that the vertex a0 is at the origin, we get the vertices

a1 − a0, a2 − a0, a3 − a0,

so the volume is
1

6
|det(a1 − a0, a2 − a0, a3 − a0)|,

or
1

6

∣∣∣∣∣∣det

−1 −1/2 −1/2
0 1/2 −1/2

0
√

2
√

2

∣∣∣∣∣∣ =
1

6
√

2
.

Remark 12.10. From this geometric point of view, the fact that det(AB) = det(A) det(B) is obvious:
det(M) is the scaling factor for volumes under the linear map M , so under the composite AB we first
scale by det(B) and then by det(A), so det(AB) = det(A) det(B). Unfortunately, we haven’t proved the
theorems above which establish the connection between determinants and scaling of volumes.
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13 Eigenvectors and eigenvalues

13.1 Definition and basic ideas

If someone gives you a complicated matrix A, it can be very difficult to determine salient information
about the underlying linear map associated to A. For example, A could be a very simple transformation
like a rotation, but happening around an axis that points in some random direction, which makes the
matrix very complicated. For this reason, we want to look for geometric features like fixed vectors of
A, just as we did for 2-by-2 matrices. It turns out that the most fruitful thing to study is the following
notion.

Definition 13.1 (Eigenvectors, eigenvalues). Let A be a matrix. A vector v is called an eigenvector for
A with eigenvalue λ if v 6= 0 and

Av = λv.

For example, a fixed vector is an eigenvector with eigenvalue 1. “Eigen” is a German prefix meaning
“self”. An eigenvector is mapped by A back to itself rescaled by its eigenvalue.

Remark 13.2. It is hard to overemphasise the importance of eigenvectors and eigenvalues. We will see
some fun applications in this course, but you will encounter them again and again in courses throughout
your time as an undergraduate. They are one of the most important notions in mathematics and science.
For example, in quantum mechanics the most important equation is the Schrödinger equation, which
is the eigenvector equation5 Hψ = Eψ. Here H is a linear map called the Hamiltonian, ψ is a vector
describing the state of the quantum system, and E is the energy of the state ψ. For example, if H is
the Hamiltonian for the hydrogen atom then the eigenvalues of H are the possible energies of light that
can be absorbed/emitted by hydrogen (the spectrum of the hydrogen atom). The fact that Schrödinger’s
equation predicts the hydrogen spectrum so well was an early confirmation that quantum mechanics was
on the right track.

13.2 Finding the eigenvectors

Suppose someone tells you that some matrix A (say
(

2 −1
1 0

)
) has some eigenvectors with eigenvalue λ

(say 1). It’s now very easy to find all the eigenvectors with this eigenvalue: you just need to solve the
simultaneous equations Av = λv, in our case(

2 −1
1 0

)(
x
y

)
=

(
x
y

)
,

or

2x− y = x

x = y.

These equations both reduce to y = x, so the eigenvectors must be
(
x
x

)
.

Remark 13.3. Note that if v is an eigenvector with eigenvalue λ then any rescaling µv is also an eigenvector
with eigenvalue λ because

A(µv) = µAv = µλv ⇒ A(µv) = λ(µv).

Therefore you shouldn’t be surprised that we have found a one-parameter family of eigenvectors instead
of just one!

“By George!” you might say, “the fellow is right, there is indeed an eigenvector with eigenvalue λ... but
how did he know which λ to tell me?” For example, if we tried λ = 2, we would fail:

2x− y = 2x

x = 2y

5Caveat: H is more like an infinite-by-infinite matrix, i.e. an operator on a Hilbert space, which makes the Schrödinger
equation into a differential equation.

40



have no solution other than x = y = 0, because the first implies y = 0 and the second implies x = y = 0.

Remember than eigenvectors are required to be nonzero. Therefore there is no eigenvector of
(

2 −1
1 0

)
with eigenvalue 2.

13.3 Finding the eigenvalues

Theorem 13.4 (Characteristic polynomial). The eigenvalues of a matrix A are the roots of the charac-
teristic polynomial χA(t) of A. This is the polynomial defined by χA(t) = det(A− tI).

Proof of Theorem 13.4. If v 6= 0 and Av = λv then (A− λI)v = 0, so A− λI has nontrivial kernel and
fails to be invertible. In particular, det(A − λI) = 0. Conversely, if det(A − λI) = 0 then A − λI has
nontrivial kernel, so there exists a vector v such that Av − λv = 0.

Example 13.5. For the matrix A =

(
2 −1
1 0

)
above, we have

χA(t) = det

(
2 −1
1 0

)
−
(
t 0
0 t

)
= det

(
2− t −1

1 −t

)
= −t(2− t) + 1

= t2 − 2t+ 1.

This polynomial has 1 as a repeated root, so the only eigenvalue is 1 and, as we saw above, the only

eigenvector (up to scaling) is
(

1
1

)
.

Example 13.6. The matrix A =

(
2 1
1 1

)
has characteristic polynomial

det(A− tI) = det

(
2− t 1

1 1− t

)
= (2− t)(1− t)− 1 = t2 − 3t+ 1,

which has roots λ1 = 3+
√
5

2 and λ2 = 3−
√
5

2 . As eigenvectors, we can take

v1 =

(
1

1+
√
5

2

)
, v2 =

(
1

1−
√
5

2

)
.

Example 13.7. The matrix A =

 3
2

5
2 3

− 1
2 − 3

2 −3
1 1 2

 has characteristic polynomial

det(A− tI) = det

 3
2 − t

5
2 3

− 1
2 − 3

2 − t −3
1 1 2− t


=

(
3

2
− t
)

det

(
− 3

2 − t −3
1 2− t

)
− 5

2
det

(
− 1

2 −3
1 2− t

)
+ 3 det

(
− 1

2 − 3
2 − t

1 1

)
=

(
3

2
− t
)(
−
(

3

2
+ t

)
(2− t) + 3

)
− 5

2

(
−1

2
(2− t) + 3

)
+ 3

(
−1

2
+

3

2
+ t

)
=

(
3

2
− t
)

(t2 − t/2)− 5

2
(t/2 + 2) + 3t+ 3

= −t3 + 2t2 + t− 2.
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What are the roots of this polynomial? With cubics, the easiest method is to guess one of the roots
(say α), divide the polynomial by t − α (using polynomial long division) and then solve the quadratic
equation you get. Here, we can see that t = 1 is a solution6 and dividing −t3 + 2t2 + t− 2 by t− 1 gives
−t2+t+2, which has solutions −1±

√
3

−2 = −1, 2. Therefore the eigenvalues are −1, 1, 2. The corresponding

eigenvectors are

−1
1
0

,

 1
−5
4

 and

 1
−1
1

. For example, to get the 1-eigenvector, we solve v = Av

xy
z

 =

 3
2

5
2 3

− 1
2 − 3

2 −3
1 1 2

xy
z

 ,

that is

3x

2
+

5y

2
+ 3z = x

−1

2
x− 3

2
y − 3z = y

x+ y + 2z = z.

These equations imply x + 5y + 6z = 0 and x + y + z = 0, so 4y + 5z = 0, therefore if we pick y = −5
we get z = 4 and x = −y − z = 1.

6You’d be surprised how often that happens in carefully-constructed examples.
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14 Applications of eigenvectors

14.1 Application I: Differential equations

Let v(t) =

x1(t)
...

xn(t)

 be a vector-valued function, let A be an n-by-n matrix, and consider the system of

differential equations

ẋ1 = A11x1 + · · ·+A1nxn

...
ẋn = An1x1 + · · ·+Annxn,

or, more succinctly,
v̇ = Av.

Example 14.1. Consider the system of differential equations

ẋ = 2x+ y

ẏ = x+ y.

We can rewrite this as
d

dt

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
.

Suppose that A has n eigenvalues λ1, . . . , λn with eigenvectors v1, . . . , vn. We can write v in terms of
the basis of eigenvectors:

v =

n∑
i=1

fivi

for some collection of numbers f1, . . . , fn. We have

v̇ =

n∑
i=1

ḟivi

and

Av = A

n∑
i=1

fivi =

n∑
i=1

fiAvi =

n∑
i=1

fiλivi.

Since v̇ = Av, we can equate the coefficients of the vectors v1, . . . , vn in these two expressions. We get
the much simpler equation

ḟi = λifi,

with solution fi(t) = Cie
λit for some constant Ci. The general solution to the differential equation is

therefore

v =

n∑
i=1

Cie
λitvi.

Let’s apply this to solve the differential equations from Example 14.1

Example 14.2. The matrix A =

(
2 1
1 1

)
has eigenvalues λ1 = 3+

√
5

2 , λ2 = 3−
√
5

2 and eigenvectors

v1 =

(
1

1+
√
5

2

)
and v2 =

(
1

1−
√
5

2

)
. Therefore, the general solution is

C1e
(3+
√
5)t/2

(
1

1+
√
5

2

)
+ C2e

(3−
√
5)t/2

(
1

1−
√
5

2

)
,

or

x(t) = C1e
(3+
√
5)t/2 + C2e

(3−
√
5)t/2,

y(t) =
1 +
√

5

2
C1e

(3+
√
5)t/2 +

1−
√

5

2
C2e

(3−
√
5)t/2.
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Example 14.3. Consider the system of differential equations

ẋ = 2x+ y

ẏ = 2y − x.

We can rewrite this as
d

dt

(
x
y

)
=

(
2 1
−1 2

)(
x
y

)
.

The matrix A =

(
2 1
−1 2

)
has characteristic polynomial

det(A− tI) = det

(
2− t 1
−1 2− t

)
= (2− t)(2− t) + 1 = t2 − 4t+ 5,

which has roots 2± i. The eigenvectors for these eigenvalues are the solutions to(
(2 + i)x
(2 + i)y

)
=

(
2x+ y
2y − x

)
,

(i.e.
(

1
i

)
) and (

(2− i)x
(2− i)y

)
=

(
2x+ y
2y − x

)
(i.e.

(
1
−i

)
). Therefore the general solution to the system of differential equations in this example is

C1e
(2+i)t

(
1
i

)
+ C2e

(2−i)t
(

1
−i

)
,

or
x(t) = C1e

(2+i)t + C2e
(2−i)t, y(t) = iC1e

(2+i)t − iC2e
(2−i)t.

You should not worry about the appearance of imaginary numbers here: if the initial condition you pick
is real then all the imaginary terms will group together to give trigonometric functions, using the facts
that

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it

2i
.

For example, let’s try and find the solution for the initial condition x(0) = 0, y(0) = 1. This means

C1 + C2 = 0, i(C1 − C2) = 1,

that is, C1 = −C2 = −i/2. Substituting these values for C1, C2 we get

x(t) = − i
2

(e(2+i)t − e(2−i)t) = e2t
eit − e−it

2i
= e2t sin(t)

and
y(t) =

1

2
(e(2+i)t + e(2+it)) = e2t cos(t).

Finally, we should investigate what happens when A has fewer than n eigenvectors.

Example 14.4. Suppose that A =

(
1 1
0 1

)
. The differential equations we get out of A are

ẋ = x+ y

ẏ = y.

We can solve the second equation immediately and get y = C1e
t. Substituting back into the first, we get

ẋ = x+ C1e
t.
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Rearranging gives
ẋe−t − xe−t = C1,

and we note (using the Leibniz rule for differentiation) that

d

dt
(xe−t) = ẋe−t − xe−t,

so
d

dt
(xe−t) = C1,

which gives
x = (C1t+ C2)et.

In a later course on linear algebra, you will see the Jordan normal form theorem for matrices, which tells
you that, as long as you work over C, viewed in suitable coordinates, your matrix always looks like a
bunch of blocks which look like this: 

λ 1 0 · · · 0

0 λ 1
...

0
. . . . . . 0

... λ 1
0 · · · 0 0 λ


.

For such matrices, you can do something similar to the previous example.

14.2 Application II: Ellipsoids

Definition 14.5. We say that A is a positive definite matrix if vTAv > 0 for any vector v 6= 0.

Example 14.6. The identity matrix is positive definite because vT Iv = v · v ≥ 0 with equality if and
only if v = 0.

Example 14.7. The matrix A =

(
1 0
0 −1

)
is not positive definite because

(
0 1

)
A

(
0
1

)
= −1.

Definition 14.8. An ellipsoid is a subset in n-dimensional space having the form

{v ∈ Rn : vTAv = c},

where A is a positive definite symmetric matrix with real entries and c > 0 is a positive real constant.

Example 14.9. Given two numbers a, b ∈ R, the matrix

A =

(
1
a2 0
0 1

b2

)
is positive definite. If c = 1 then the corresponding ellipsoid is the ellipse{

(x, y) ∈ R2 :
x2

a2
+
y2

b2
= 1

}
having semimajor axis a and semiminor axis b.

a

b

45



Theorem 14.10. An ellipsoid defined by a positive definite symmetric matrix A can be rotated to the
ellipsoid

{(u1, . . . , un) ∈ Rn :

n∑
i=1

λiu
2
i = c}

where λ1, . . . , λn are the eigenvalues of A and c is some positive number.

We won’t prove this theorem in full, because it relies on the fact that a positive definite symmetric matrix
has a basis of eigenvectors (which is beyond what we have time for). But we’ll at least check that if A
has a basis of eigenvectors then the result holds. First, an important lemma.

Lemma 14.11. Suppose that A is a symmetric matrix with real entries. Then the eigenvalues of A are
real and if λ, µ are distinct eigenvalues with eigenvectors v, w respectively then v · w = 0.

Proof. Suppose that Av = λv. Consider the expression v̄TAv, where v̄ denotes complex conjugation.
Then, because A = AT = ĀT , we have

λ̄v̄T v = (Av)T v = v̄TAv = λv̄T v.

Note that if v =

x1...
xn

 then v̄T v =
∑
|x1|2 + · · · + |xn|2 > 0 if v 6= 0, so dividing through by v̄T v we

get λ̄ = λ and deduce that λ is real.

If v and w are two eigenvectors for distinct eigenvalues λ, µ then

λwT v = wT (Av)

= (Aw)T v

= µwT v

so, since λ 6= µ, we must have wT v = 0, i.e. v · w = 0.

Now suppose that A is a real symmetric matrix which has a basis of n eigenvectors v1, . . . , vn with
eigenvalues λ1, . . . , λn. By the lemma above, these eigenvalues are all real and the eigenvectors are
orthogonal. Let’s rescale the eigenvectors so that they each have unit length. If we write a vector v as∑n
i=1 uivi then we have

vTAv =

n∑
i=1

n∑
j=1

uixjv
T
i Avj =

n∑
i,j=1

λiu
2
i ,

since vTi vj = δij . These u1, . . . , un are the coordinates referred to in Theorem 14.10. In particular,
the principal axes (the higher-dimensional analogues of the semi-major and semi-minor axes) are the
eigenvectors of A and the principal radii are 1√

λi
, i = 1, . . . , n.

Example 14.12. Let A =

(
3/2 −1/2
−1/2 3/2

)
. This defines an ellipse vTAv = 1, in other words

3

2
(x2 + y2) = 1 + xy.

The characteristic polynomial of A is

det

(
3/2− t −1/2
−1/2 3/2− t

)
= t3 − 3t+ 2,

so the eigenvalues are 1 and 2. The (unit length) eigenvectors are v1 =

(
1/
√

2

1/
√

2

)
and v2

(
1/
√

2

−1/
√

2

)
. If

we work with coordinates u1, u2 related to x, y via(
x
y

)
= u1

(
1/
√

2

1/
√

2

)
+ u2

(
1/
√

2

−1/
√

2

)
(that is, x = u1+u2√

2
, y = u1−u2√

2
) then the equation of the ellipse vTAv = 1 becomes u21 + 2u22 = 1. We

see that the change of coordinates between x, y and u1, u2 is actually a 45 degree rotation.
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14.3 Application III: Dynamics

Consider the matrix
(

2 1
1 1

)
. We have seen (Example 13.6) that its eigenvalues are λ± := 3±

√
5

2 , with

eigenvectors v± =

(
1

1±
√
5

2

)
.

Suppose we pick a point v ∈ R2 and write it as v = av+ + bv−. Then Av = λ+av+ + λ−bv−. Suppose
that a 6= 0 and b 6= 0. Since λ+ > 1 and λ− < 1, this means that the point moves inwards along v− and
outwards along v+. If we apply A again and again, we get

Anv = λn+av + λn−bv−.

As n→∞, λn+ →∞ and λn− → 0, so the point gets closer and closer to the v+-eigenline, but gets pushed
outwards along the eigenline. If we draw a rectangle in R2 and apply A many times, this square will get
stretched outwards in the v+ direction and squished inwards in the v−-direction.

v+
v−

This is typical behaviour of a “hyperbolic” dynamical system. Here are two fun facts which are not
unrelated to this.

Example 14.13 (Fibonacci numbers). The Fibonacci sequence

F1, F2, F3, F4, F5, F6, F7, . . . = 1, 1, 2, 3, 5, 8, 13, . . .

satisfies the recursion Fn+2 = Fn+1 + Fn, which we can write as a matrix equation:(
F1

F2

)
=

(
1
1

)
,

(
Fn+1

Fn+2

)
=

(
0 1
1 1

)(
Fn
Fn+1

)
.

The eigenvalues of
(

0 1
1 1

)
are λ± = 1±

√
5

2 with eigenvectors v± =

(
1

1±
√
5

2

)
. Although λ− is negative,

its magnitude is nonetheless < 1, so λn− → 0. Also, λn+ →∞. Therefore
(
Fn
Fn+1

)
= An

(
1
1

)
tends in the

limit n→∞ to a vector pointing along the v+-eigenline, which has slope 1+
√
5

2 . This means

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2
.

This number is known as the golden ratio.

Example 14.14 (Arnol’d’s cat map). Let A be the example above. If you take a square picture of a
cat and use it to tile the plane, then you apply An to the plane and let n increase, the picture will get
distorted very quickly. However, at some point, the picture will reappear more-or-less exactly as you
had it to begin with. In fact, if you have a digital image, it will reappear exactly how it started (because
there’s only a finite number of pixels involved). This is due to a phenomenon called ergodicity of the flow,
whereby every point, at some time, comes back close to where it started (except possibly in a different
tile). Eventually, many points come back close to where they started (except possibly in a different tile)
and you see something resembling the image you started with.

You can see dramatic realisations of this in videos and applets online.
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15 Subspaces I

15.1 Subspaces

Definition 15.1 (Subspaces). A subset V ⊂ Rn is called a linear subspace (or just subspace) if it satisfies
the following conditions:

• v, w ∈W implies v + w ∈ V .

• v ∈ V , λ ∈ R implies λv ∈ V .

In other words, V is closed under addition and rescaling. Subspaces are the natural higher-dimensional
generalisation of lines and planes through the origin in 3-d.

Sometimes you want to consider lines or planes which don’t pass through the origin, in which case the
following definition comes in handy:

Definition 15.2 (Affine subspaces). A subset V ⊂ Rn is called an affine subspace if there exists a vector
w ∈ Rn and a linear subspace V ′ ⊂ Rn such that V = {w + v : v ∈ V ′}. In other words, V is obtained
by translating V ′ by the vector w.

Remark 15.3. A line is a 1-dimensional subspace. A plane is a 2-dimensional subspace.

Definition 15.4 (Codimension). The codimension of a subspace V ⊂ Rn is p if dimV = n− p.

Example 15.5. A line in R3 has codimension 2. A plane in R4 has codimension 2, while a line in R4

has codimension 3.

Definition 15.6. A hyperplane is a subspace of codimension 1. For example, a line in R2, or a plane in
R3.

Suppose someone asks you to give them a subspace of Rn. You can answer them in one of two ways:

• You can write down equations for the subspace, for example you can say something like:

– “it’s the line x+ y = 0 in R2”,

– “it’s the plane in R3 cut out by the equation z = 0”.

• You can give them a collection of vectors which “span” the subspace, for example you can say
something like:

– “it’s the line through the origin pointing in the
(

1
−1

)
-direction”.

– “it’s the plane in R3 spanned by the vectors

1
2
0

 and

1
0
1

”.

We’ll focus on these two methods in order, then talk about how to relate them.

15.2 Equations for subspaces; kernel

Example 15.7. A linear hyperplane is cut out by a single linear equation. More precisely, a row vector
r =

(
r1 · · · rn

)
defines a linear hyperplane in Rn, namely:x =

x1...
xn

 ∈ Rn : rx = 0

 .

Equivalently, this is the hyperplane orthogonal to the column vector rT .

Definition 15.8. Given a linear subspace V ⊂ Rn and a vector w, we define the translate w + V =
{v + w ∈ Rn : v ∈ V } of V by w to be the affine subspace obtained by translating the elements of V
along the vector w.
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Example 15.9. A row vector r =
(
r1 · · · rn

)
together with a number b defines an affine hyperplane

in Rn, namely: x =

x1...
xn

 ∈ Rn : rx = b

 .

Equivalently, this is the hyperplane orthogonal to rT translated by brT

|r|2 , i.e. translated a certain amount
in the rT direction. Note that this is a linear subspace if and only if b = 0.

Example 15.10. An m-by-n matrix A define m linear hyperplanes, cut out by the equations

A11x1 + · · ·+A1nxn = 0

...
...

...
Am1x1 + · · ·+Amnxn = 0.

A solution v =

x1...
xn

 to this system of equations is then a vector v ∈ Rn satisfying Av = 0; in other

words a vector v which belongs to all m of the hyperplanes; in other words a point where the hyperplanes
intersect.

Definition 15.11. There is a fancy name for the linear subspace given by {v ∈ Rn : Av = 0}. It is
called the kernel of A, written ker(A).

Example 15.12. An m-by-n matrix A and a vector b ∈ Rm define m affine hyperplanes, cut out by the
equations

A11x1 + · · ·+A1nxn = b1

...
...

...
Am1x1 + · · ·+Amnxn = bm.

The set of solutions to Av = b is the intersection of these affine hyperplanes.

Example 15.13. Consider the matrix A =

1 1
1 −1
0 1

 and the vector b =

1
1
1

. The equations Av = b

define three lines (hyperplanes in R2):

x+ y = 1, x− y = 1, y = 1

drawn red, purple and blue respectively in the diagram below.

x

y

x+ y = 1

x− y = 1

y = 1

Since the lines don’t have a common intersection, we know the system of equations has no solutions (the
lines intersect in pairs, so any two of the equations admit a solution, but there is no one point contained
in all three lines).

We see that the intuition that an overdetermined system (more hyperplanes than dimensions) has no
solutions is justified, because you need your n + 1 hyperplanes in Rn to be in very special position to
make them have a common intersection. Nonetheless, it can happen.
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Example 15.14. Let A be as before but b =

3
1
1

. This has the effect of translating one of the lines

from Example 15.13 so that it becomes x + y = 3. As we see below, these lines below have a common

intersection at
(

2
1

)
, so the overdetermined system has a solution x = 2, y = 1 (marked with a dot

below).

x

y

x+ y = 3

x− y = 1

y = 1•

Remark 15.15. Given a subspace V ⊂ Rn of dimension n− p (codimension p) and a subspace W ⊂ Rn
of dimension n − q (codimension q), we “expect” the intersection V ∩W to have dimension n − p − q
(codimension p + q). In other words, codimension is usually additive under intersection. For example,
in R3, a plane (codimension 1) and a line (codimension 2) will usually intersect at a point (codimension
3), unless you’re in the exceptional situation that the line is contained inside the plane. As a corollary
of this, we expect the space of solutions to a system of m equations in n unknowns to be n −m (each
equation cuts down the set of solutions by one dimension)...except when it isn’t!

Having made this remark, let us give a more precise characterisation of the dimension of the space of
solutions.

Theorem 15.16. Let A be an m-by-n matrix and b ∈ Rm be a vector. Suppose that ker(A) has dimension
k (this number is called the nullity of A). Then, the dimension of the space of solutions to Av = b,
assuming it is nonempty, is equal to k. Indeed, the space of solutions is a translate of ker(A).

Proof. If v1, v2 are solutions to Av = b then A(v1 − v2) = b − b = 0, so the difference v1 − v2 is in the
kernel of A. Similarly, if Av1 = b and Av = 0 then A(v1 + v) = b + 0 = b, so adding elements of the
kernel to a solution gives another solution. Therefore, if we fix one solution v1, the space of solutions is
v1 + ker(A) = {v1 + v : v ∈ ker(A)}, i.e. a translate of ker(A).

Theorem 15.17. Given a matrix A, its nullity is equal to the number of free indices once A has been
put into reduced echelon form.

Proof. We saw that the general solution to Av = b has one parameter for each free index. Therefore it
is a space with dimension equal to the number of free indices.
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16 Subspaces II

16.1 Spanning sets for subspaces

Definition 16.1. Given a collection of vectors v1, . . . , vk, a linear combination of these vectors is an
expression of the form

v = λ1v1 + · · ·+ λkvk

for some choice of coefficients λ1, . . . , λk. We define the linear subspace spanned by v1, . . . , vk (or the
span of v1, . . . , vk, written span(v1, . . . , vk)) to be the set of all linear combinations of v1, . . . , vk.

Lemma 16.2. For any collection of vectors v1, . . . , vk ∈ Rn, the set span(v1, . . . , vk) is a linear subspace
of Rn.

Proof. If we rescale a linear combination
∑
i λivi by µ then we get the linear combination

∑
i(µλi)vi. If

we add two linear combinations
∑
i λivi and

∑
i µivi then we get the linear combination

∑
i(λi + µi)vi.

Therefore linear combinations form a linear subspace.

Example 16.3. The set of all linear combinations of v1 is just the set of all vectors λ1v1, λ1 ∈ R. In
other words, it’s the set of all rescalings of v1, otherwise known as the line that points in the v1-direction.

Example 16.4. Let v1 =

1
0
0

 and v2 =

0
1
0

. The subspace spanned by v1, v2 is the set of all vectors

λ1v1 + λ2v2 =

λ1λ2
0

, in other words, it is the xy-plane.

Example 16.5. The plane spanned by v1 =

1
0
0

, v2 =

0
1
0

 and v3 =

1
1
0

 is also the xy-plane,

because adding multiples of v3 doesn’t take you out of this plane. The issue here is that v3 is itself a
linear combination of v1 and v2 (v3 = v1 + v2) so it doesn’t change the spanning set.

Definition 16.6. A spanning set is called a basis if it has minimal size.

Theorem 16.7. All bases for the same subspace have the same size. This size is called the dimension
of the subspace. (I haven’t actually given you a formal definition of dimension until now).

Proof. This will be proved in your next course on linear algebra, next year.

16.2 Image of a matrix

Definition 16.8. The image of an m-by-n matrix A is the set of all b ∈ Rm such that Av = b has a
solution v ∈ Rn.

Lemma 16.9. The image of A is spanned by the columns of A.

Proof. If the columns of A are a1, . . . , an ∈ Rm then

A

x1...
xn

 = x1a1 + · · ·+ xnan,

so the image of A is the set of linear combinations of the columns, as required.

Example 16.10. If A =

1 1
2 0
0 1

 then the image of A is the plane spanned by

1
2
0

 and

1
0
1

 (see

Example 1.17).

Definition 16.11. The rank of A is defined to be the dimension of the image.
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Theorem 16.12. The rank of A is equal to the number of leading indices when A is put into reduced
echelon form.

Proof. First note that row operations do not change the rank: if A and A′ are related by a row operation
then A′ = EA for some elementary matrix E, and now the map b 7→ Eb gives an isomorphism between
the image of A and the image of A′ (isomorphism in the sense that E is an invertible linear map).
Therefore we may assume that A is in reduced echelon form by Theorem 6.5.

So suppose that A is in reduced echelon form with the first k rows nonzero (so that k equals the number
of leading indices). The equation Av = b has a solution if and only if bk+1 = · · · = bm = 0, so the image
of A is equal to the subspace spanned by the first k basis vectors, which has dimension k.

Here is a useful theorem relating the rank and the nullity of an m-by-n matrix:

Theorem 16.13 (Rank-nullity theorem). If A is an m-by-n matrix, the rank and the nullity of A sum
to n.

Proof. In reduced echelon form, the number of leading indices and free indices sum to n (number of
columns), so this follows from Theorem 15.17 and Theorem 16.12.

16.3 Kernel, image and simultaneous equations

To relate this to what we said about simultaneous equations, we can summarise everything we’ve said
as follows:

Theorem 16.14. Let A be an m-by-n matrix and b ∈ Rm be a vector. Then Av = b has a solution if
and only if b ∈ im(A). If Av = b has a solution then the space of solutions is a translate of ker(A).

The following diagram may help you to remember whereabouts the kernel and image of anm-by-n matrix
A live:

Rn Rm

ker(A) im(A)

A

⊆ ⊆
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17 Linear maps

This lecture is intended as a foretaste of things to come. We introduce an extra layer of abstraction,
which suddenly elevates us above the clouds and we see how to apply linear algebra in contexts we had
not formerly imagined.

17.1 Linearity

We defined a linear map Rn → Rm to be a map of the form v 7→ Av where A is an m-by-n matrix. There
is a different way to characterise linear maps, which we now discuss.

Definition 17.1. An (R-)vector space7 is a set V together with:

• a map V × V → V , written (v, w) 7→ v + w,

• a map R× V → V , written (λ, v) 7→ λv,

• an element 0 ∈ V ,

such that:

u+ (v + w) = (u+ v) + w v + w = w + v

v = 0 + v = v + 0, v + (−v) = 0

1v = v λ(µv) = (λµ)v

(λ+ µ)v = λv + µv λ(v + w) = λv + λw

for all u, v, w ∈ V and λ, µ ∈ R.

For example, Rn equipped with the usual addition and rescaling action of R is a vector space.

Definition 17.2. Let V,W be vector spaces. A map T : V → W is called linear8 if the following
conditions are satisfied:

• for all v, w ∈ Rn and we have T (v + w) = T (v) + T (w).

• for all λ ∈ R and v ∈ Rn, we have T (λv) = λT (v).

Theorem 17.3. If T : Rn → Rm is linear then there exists an n-by-m matrix A such that T (v) = Av for
all v ∈ Rn. Conversely, if A is an m-by-n matrix then a map Rn → Rm of the form v 7→ Av is linear.

Proof. If T is linear then it is determined by its values on the basis vectors e1, . . . , en. To see this,

observe that if v =

v1...
vn

 =
∑n
i=1 viei then T (v) = T (

∑n
i=1 viei) =

∑n
i=1 viT (ei) by linearity, so the

vectors T (e1), . . . , T (en) determine T completely. If we pick A to be the matrix whose columns are
T (e1), . . . , T (en) then Av =

∑n
i=1 viT (ei) = T (v), so the matrix we were looking for exists (and is

uniquely specified by T ).

Conversely, if A is a matrix then the identity A(v + w) = Av + Aw is just the distributivity of matrix
multiplication and A(λv) = λAv is easy to check.

In fact, one can prove that any finite-dimensional vector space V is isomorphic to Rn for some n.
(Isomorphic here means that there is an invertible linear map V → Rn; finite-dimensional means that
there is a finite spanning set). However, there’s nothing to stop you using infinite-dimensional vector
spaces, and then things get interesting.

7You can replace R by any field k (like Q or C) in this definition and get a k-vector space. Usually we just omit the
field from the notation and call it a vector space.

8Again, if we’re working with k-vector spaces (e.g k = Q,C) then you need to talk about k-linear maps and replace R
with k everywhere in this definition.
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Example 17.4. The space of continuous functions f : R → R is a vector space, usually called C0(R).
You can add two functions (f + g)(x) = f(x) + g(x) and you can rescale a function (λf)(x) = λf(x) and
these operations satisfy the conditions required of a vector space (the zero function is f(x) = 0).

Example 17.5. The space of once-continuously-differentiable functions is a subspace of C0(R), usually
written C1(R) ⊂ C0(R).

Example 17.6. Differentiation defines a linear map d
dx : C1(R)→ C0(R). It is linear because

d

dx
(f + g)(x) =

df

dx
(x) +

dg

dx
(x),

d

dx
(λf)(x) = λ

df

dx
(x).

Can we write a matrix for differentiation? We need to pick a basis for C1(R), which is a highly nontrivial
task. Let’s be a little less ambitious and restrict to the subspace of analytic functions, i.e. functions
f whose Taylor series converges to f . This is usually written Cω(R). The functions fn(x) = xn,
n = 0, 1, 2, . . ., form a Schauder basis for this space, which means that any function f ∈ Cω(R) can be
written as an infinite sum of these functions (namely its Taylor series!). In other words, we are thinking
of the coefficients of the Taylor expansion as coordinates on the space Cω(R). That is, a function f can

be thought of as an infinite vector


f(0)
df
dx (0)

1
2
d2f
dx2 (0)

1
3!
d3f
dx3 (0)
...

.

If f(x) =
∑
n≥0 anx

n then df
dx =

∑
n≥1 nanx

n−1 =
∑
n≥0(n+1)an+1x

n, so our “matrix” for differentiation
is 

0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3
...

...
...



a0
a1
a2
...

 =


a1
2a2
3a3
...

 .

If one restricts instead to periodic functions f(x+ 2π) = f(x) then there is an alternative basis, coming
from the functions sin(nx), cos(nx). The expansion of a function in terms of this basis is called its
Fourier expansion, and again differentiation of a function can be thought of as a linear transformation of
its Fourier series. This leads to the powerful method of Fourier transform, which allows you to convert
differential equations into much simpler linear equations.

Example 17.7. What is the kernel of differentiation? It is the set of functions whose derivative is
identically zero, in other words, the constant functions. What is the inverse of differentiation? Well,
because there is a kernel it has no inverse, strictly speaking, but clearly integration should define an
inverse in some sense. This is why it doesn’t make sense to say “the integral of f ” unless you also say
“plus an unknown constant”.

Example 17.8. Consider the linear map d
dx : Cω(R)→ Cω(R). What are the eigenvalues and eigenvectors

of this map? A λ-eigenvector will be a function f which solves the equation

df

dx
= λf.

We can solve this by dividing through by f and integrating:

ln f =

∫
df

f
=

∫
λdx = λx+ c,

i.e. f = Ceλx. So the λ-eigenline is spanned by f(x) = eλx and every λ ∈ R arises as an eigenvalue.

Example 17.9. Similarly, cos(x
√
−λ) and sin(x

√
−λ) are λ-eigenvectors for d2

dx2 , that is they solve the
differential equation

d2f

dx2
= λf.

We often say “eigenfunction” rather than eigenvector in this context. Finding eigenfunctions and eigen-
values of differential operators is an incredibly important problem; essentially all of quantum mechanics
boils down to solving this problem for particular operators.
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