
2 Electrostatics

2.1 Electric charge

Many very simple experiments show the existence of electric charges and forces. For
example:

• after running a comb through your hair, it will attract bits of paper;

• after rubbing an inflated baloon with wool, it will adhere to the walls for a long
time.

Figure 1: Rub the plastic rod with fur to negatively charge the rod. Rub the glass rod with silk to
positively charge the rod.

To be more precise, consider the following two situations (Fig. 2.1). First, a plastic
rod is rubbed with fur. Second, a glass road is rubbed with silk. In the first case electrons
(the elementary negative charge) are transfered from the fur to the rod, so that the plastic
rod becomes negatively charged. In the second case, electrons are transfered from the
glass rod to the silk, so that the rod becomes positively charged. It is important to
note that in the process of charging the objects, the electrons get redistributed and are
not created or destroyed. This is a general property: the total charge of an isolated
system is conserved. The simple system of plastic and glass rods can be used to show
the existence of electric forces and to demonstrate that there are actually two different
kinds of charges (positive and negative, as already mentioned). Indeed, by bringing two
rods together it is easy to verify that:

• two charged glass rods repel each other,

• two charged plastic rods repel each other,

• a plastic rod and a glass rod attract each other.
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This shows the existence of two different charges, and the existence of electric
forces between charged objects. Furthermore, we observe that: like charges repel
while unlike charges attract each other.

The SI unit for the electric charge is the coulomb (C). The smallest amount of charge
e known in nature is the charge of an electron (-e) or of a proton (+e), and it is equal to

e = 1.602 · 10−19C.

The electric charge is quantized, and an object can only carry a charge q multiple of
the elementary charge e: q = Ne (with N a positive or negative integer).

2.2 Coulomb’s law

Coulomb’s law states that the force F 21 between two charges q1 and q2 at a distance r21
is: �

�
�
�F 21 =

1

4πε0

q1q2

r2
21

r̂21 (2.1)

where r̂21 is the unit vector between the two charges q1 and q2. The constant ε0 is called
the permittivity of free space and is equal to

ε0 = 8.85× 10−12C2N−1m−2. (2.2)
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2.3 The electric field

In electromagnetism it is very convenient to introduce the concept of electric field. We
recall that by a ’field’ we mean a quantity whose value depends on position in space.

Consider once again two charges, q1 and q2, at a distance r21. We have seen that the
interaction between the two charges is described by the Coulomb law, which predicts a
force equal to

F 21 =
1

4πε0

q1q2

r2
21

r̂21 .

In the approach of fields, we say that one of the charges (say q1) creates an electric
field E in space:

E =
1

4πε0

q1

r2 r̂ . (2.3)

When another charge (in this case q2) is introduced, an electric force acts on it. This
force is given by:

F 21 = q2E , (2.4)

and we recover Coulomb’s law. In other words, the electric field can be defined as the
electric force acting on a charge at a point in space divided by the magnitude
of the charge.

The electric field has units of newtons per coulomb (N/C).

Consider now the problem of determining the electric field generated not by just one
charge, but by a group of charges. The electric field can be easily calculated by apply-
ing the superposition principle: the total electric field due to a group of charges
equals the vector sum of the electric fields of all the charges. Therefore, the
total electric field E(P ) at the point P due to the charges q1, q2...., qn is:

E =
1

4πε0

n∑
i=1

qi

r2
i

r̂i (2.5)

where ri is the distance from the position of the charge qi to the point P.

Consider now the case of a continuous charge distribution. Suppose that within a volume
V there is a charge density ρ = ρ(x, y, z). This means that at the point (x, y, z) there
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is a charge of ρ per unit volume.

The charge in an infinitesimal volume dV is then dq = ρdV and the infinitesimal electric
field produced by this charge at the point R is then

dE(R) =
1

4πε0

R− r

|R− r|3
ρ(r)dV (2.6)

where r = (x, y, z) is the position of the infinitesimal charge dq = ρdV . The total electric
field is then obtained by direct integration over the volume V�

�
�
�E(R) =

∫
V

1

4πε0

R− r

|R− r|3
ρ(r)dV . (2.7)

The treatment above applies also to the case of a charge distributed over a surface or
over a line. In the first case dq = σda, with σ the surface charge density, and da

the infinitesimal area element. In the second case dq = λdl, with λ the linear charge
density and dl an infinitesimal length element.

Exercise: A charge Q is uniformly distributed over a disk of radius R and axis Oz.
Determine the electric field at a point P on the z axis.

Exercise: Determine the electric field created by a segment of length L, carrying a linear
charge density λ, at a point P located on the medium plane of the wire.

Electric fields can be represented pictorially by electric field lines. These lines are
parallel to the electric field vector at any point in space. The basic properties of these
lines are:

• The lines must begin on a positive charge and terminate on a negative charge. If
the total charge of the system is non-zero, some lines will begin or end infinitely far
away.

• E is tangent to the electric field line at each point. The direction of the line is the
same of that of E;

• the number of lines per unit area through a surface perpendicular to the field lines
is proportional to the magnitude of the electric field in that region of space.
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Figure 2: Field lines for a single charge (positive and negative).

Figure 3: Field lines due to two equal positive charges.
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2.4 Gauss’ law

Gauss’ law relates the electric field on any closed surface to the net amount of charge
enclosed within the surface. We will see that Gauss’ law is very useful to determine the
electric field produced by a charge distribution with a simple geometry.

In order to derive Gauss’ law we first introduce two concepts: the flux of a vector field,
and the solid angle.

1. Flux of a vector field

The idea of flux of a vector field is easily explained for a fluid. In this case the vector
field is the velocity v. Consider a small area δa perpendicular to the direction of
flow of the fluid (see Fig. 4, left). The fluid flux is the rate of flow of the fluid
through the area, which is

vδa . (2.8)

Figure 4: Definition of the flux of a vector field

If the small area is not perpendicular to v, we have to consider the projection of δa

onto the plane perpendicular to the vector v (see Fig. 4), right. Such a projection
is equal to δa cos θ. Using vectorial notation, the flux is equal to

v · n̂δa , (2.9)

where n̂ is the unit vector normal to the surface δa. We note that the sense of the
unit vector has to be specified, as n̂ and −n̂ lead to fluxes of same magnitude but
opposite sign.

For a curved surface, it is necessary to split the surface in lot of small flat sur-
faces and then sum over these surfaces, i.e. we have to consider the sum∑

v · niδai , (2.10)
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which in the limit δa → 0 becomes

Φv =

∫
a

v · n̂ da . (2.11)

Equation (2.11) generalizes to any vector field, and in particular applies to the
electric field E whose flux through a surface S is�

�
�
�ΦE =

∫
a

E · n̂ da . (2.12)

2. Solid angle

In two dimensions, if we have an arc of a circle of radius r subtended by an angle
dθ, the length of that arc is

dt = rdθ.

We can use this relation to define the angle dθ as

dθ = dt/r.

Note that since dt and r both have dimensions of length, the angle dθ is a dimen-
sionless quantity.

In analogous way we can define a dimensionless solid angle dΩ in terms of an element
of area, da, subtended on the surface of a sphere

�



�
	dΩ = da/r2 (2.13)

If we integrate over the surface of the whole sphere we see that

Ω =

∫
sphere

dΩ =
1

r2

∫
sphere

da =
1

r2 4πr2 = 4π (2.14)
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3. Derivation of Gauss’ law

Now consider a point charge q surrounded by a closed surface, S, of arbitrary shape.
From Coulomb’s law we know that the electric field vector E is directed radially
outwards from the charge. Consider an infinitesimal area da on this surface. The
unit vector, n̂ normal to this surface will in general not be in the radial direction.
Define a vector area da by

da = n̂ da (2.15)

ie a vector of magnitude da in the direction of the normal to the surface.

The electric field due to the charge q is the usual

E =
q

4πε0r2 r̂ (2.16)

For an arbitrary shape of surface, E and da will not have the same direction.

Now consider the total flux of the electric field through the surface S given by the
integral

∫
S

E · da =
q

4πε0

∫
S

r̂ · n̂ da

r2 (2.17)

=
q

4πε0

∫
S

cosθ

r2 da (2.18)
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dacosθ = da′ is the area da projected perpendicular to r̂.

Now the solid angle element dΩ is defined by

dΩ =
da′

r2 (2.19)

Hence ∫
S

E · da =
q

4πε0

∫
S

dΩ =
q

4πε0
4π =

q

ε0
(2.20)

In the case of many charges contained within the surface, q1, q2, . . . qn, each gives
rise to an electric field E1, E2, . . . En. By applying the principle of superposition,
we conclude that the total electric field, E, at any point is the vector sum

E =
n∑
1

Ei . (2.21)

Then evaluating the same integral as above,
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∫
S

E · da =
∑

i

∫
S

Ei · da (2.22)

=
∑

i

qi

4πε0

∫
S

r̂i · n̂
da

r2
i

(2.23)

=
∑

i

qi

4πε0

∫
S

dΩi (2.24)

=
∑

i

qi

ε0
(2.25)

�
�

�
�

∫
S

E · da =
Qinternal

ε0
, (2.26)

where Qinternal is the sum of all charges within the surface S. Equation 2.26 is
Gauss’ law of electrostatics.

Note that the flux through the surface a does not depend on the shape or size of
the surface, only on the amount of charge it contains.

We have just derived Gauss’ law for a collection of discrete charges within a surface S.
We wish to extend the law to a ‘continuous’ charge distribution. Suppose that within a
volume V there is a charge density ρ = ρ(x, y, z). This means that at the point (x, y, z)
there is a charge of ρ per unit volume.

The charge in an infinitesimal volume dV is then ρdV and the total charge in the
volume V is an integral

Qinternal =

∫
V

ρdV (2.27)

Gauss’ law for a continuous charge distribution is then�
�

�
�

∫
S

E · da =

∫
V

ρ

ε0
dV (2.28)

2.5 Electrostatics in simple geometries

Now let us apply Gauss’ law to some simple examples of charges or charge distributions
with 1) spherical 2) cylindrical or 3) planar geometry.
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1. Spherical

(a) A uniformly charged solid sphere

Consider a sphere (radius a) with a uniform charge density ρ. Then the total
charge on the sphere is

Q =
4

3
πa3 ρ (2.29)

First, consider a spherical surface S that is concentric with and encloses the
charged sphere, with radius r ≥ a. From the symmetry of the system we can see
that the electric field is directed radially outwards and is the same everywhere
on the surface S. Let the magnitude of the electric field be E.

The LHS of equation 2.26 (Gauss’ law) is then

∫
S

E · da =

∫
S

E da (2.30)

= E

∫
S

da (2.31)

= E 4πr2 (2.32)

The RHS of equation 2.26 is just Q
ε0

, so that

4πr2E =
Q

ε0
(2.33)

therefore
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�
�

�
�E =

1

4πε0

Q

r2 (r ≥ a) (2.34)

which is the same as for a point charge Q.

Second, choose a surface S, inside the sphere, with radius r < a. Now the
RHS of 2.26 is ∫

V

ρ

ε0
dV =

ρ

ε0

4

3
πr3 (2.35)

while the LHS is the same as in 2.32 so that

4πr2 E =
4

3
πr3 ρ

ε0
(2.36)

therefore �
�

�
E =

ρr

3ε0
, r < a (2.37)

so the electric field varies linearly with distance from the centre of the charged
sphere.

(b) A hollow sphere

Consider a thin spherical shell of radius a and negligible thickness, with a con-
stant charge per unit area, σ.

The field outside the shell is the same as for a point charge or a solid sphere:
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E =
1

4πε0

Q

r2 (r ≥ a) (2.38)

where Q = 4πa2σ is the total charge on the shell.

Inside the shell the field is zero, as the RHS of 2.26 is zero.

2. Cylindrical geometry

Consider an infinitely long line of charge (eq a wire with negligible diameter) with
a constant charge per unit length λ.

Take a cylindrical surface S, with radius r, length l about this line.

By symmetry, E must be perpendicular to the line of charge, directed radially
outwards. Also E will be the same at all points on the curved part of S. Thus, for
the top and bottom surfaces of S, the LHS of 2.26 is zero since E · n̂ = 0 there. So
the LHS of 2.26 is ∫

S

E · da = E 2πrl (2.39)
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The RHS of 2.26 is

Q

ε0
=

λl

ε0
(2.40)

so

2πrl E =
λl

ε0
(2.41)

and �
�

�
�E =

1

2πrl

λl

ε0
=

λ

2πε0r
. (2.42)

Thus E falls of as the inverse of the distance from the wire.

3. Planar geometry

Consider an infinite plane of negligible thickness, with constant charge per unit area,
σ.

Take a cylindrical surface S (see Figure) with top and bottom faces of area A.

By symmetry, the flux is zero through the curved surfaces of S, so the LHS of
2.26 is 2 E A. The RHS is Q

ε0
= σA

ε0
. Therefore

�
�

�
E =

σ

2ε0
. (2.43)

So the field strength is constant and does not depend on the distance from the
(infinite) sheet.
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2.6 Differential form of Gauss’ law

Apply Gauss’ law to an infinitesimal volume and shrink to obtain a law that applies
at a point Consider the elementary volume shown. Suppose there is a charge density ρ

(charge per unit volume) in this region. The total charge in the elementary volume is
then ρdxdydz.

Suppose there is an electric field E with components Ex, Ey, Ez at A. The field at B
is then

Ex + dEx = Ex +

(
∂Ex

∂x

)
dx (2.44)

At all points on the surface (2), the x-component of E will be greater than that at
corresponding points on surface (1) (points with the same y, z) by

(
∂Ex

∂x

)
dx.

The net flux of E through the surfaces (1) and (2) is(
Ex +

∂Ex

∂x
dx

)
dydz − Exdydz =

(
∂Ex

∂x

)
dxdydz (2.45)

as δa has been taken outward normal to the surface.

We can make the same argument for the other two pairs of faces on the volume. We
then get for the total net outward flux from the volume(

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)
dxdydz (2.46)

From Gauss’ law this must equal the charge inside the volume divided by ε0

ρdxdydz

ε0
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therefore
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ

ε0
(2.47)

The LHS is the divergence of E, therefore�
�

�
divE = ∇ · E =

ρ

ε0
(2.48)

This is Gauss’ law of electrostatics in differential form.

Since the net outward flux from the volume dxdydz was divE dxdydz, divE must be
the flux per unit volume at a point. If there is no source of charge (ρ = 0), divE = 0
and there is not net flux. Hence, divE is only non-zero if there is a source or sink of field
lines at that point.

2.7 Electric potential

Consider the work done in carrying a charge, q0, from point a to point b in an electric
field (see Figure). It is the negative of the integral of F · ds along the path taken�

�
�
�W = −

∫ b

a

F · ds (2.49)

(negative because we do work when we move against the force, eg if F and ds are in
opposite directions, we do work and the potential energy increases.)
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Now the force and the electric field are related by

F = q0 E, (2.50)

so that �
�

�
�W = −q0

∫ b

a

E · ds. (2.51)

This is the work done against the electric force to move the charge q0. As energy
is conserved, this must equal the change in potential energy U of the charge-plus-field
system.

Now consider the work done on a unit charge (set q0 to unity):

Wunit = −
∫ b

a

E · ds. (2.52)

For the case of the field due to a single charge q, we know that
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E =
q

4πε0

1

r2 r̂ (2.53)

so that

Wunit = −
∫ b

a

q

4πε0

1

r2 r̂ · ds = − q

4πε0

∫ b

a

dr

r2 (2.54)

(since r̂ · ds = dr ).
Then �

�
�
�Wunit = − q

4πε0

(
1

ra
− 1

rb

)
, (2.55)

which depends only on the endpoints of the movement. We deduce from the principle
of superposition that this is true in all cases for an electric field. The line integral does
not depend on the path taken from a to b.

The RHS of 2.55 is the difference between two numbers. We can write it as

Wunit = −
∫ b

a

E · ds = V (b)− V (a) (2.56)

where V (x, y, z) is the electric potential at any given point (x, y, z). Note that equa-
tion 2.56 only defines the difference between V (a) and V (b), not the absolute value of
either.

For convenience, we therefore choose a reference point P0 (often taken as infinity) where
we define V = 0. We can then write the potential at a point P as�

�
�
�V (P ) = −

∫ P

P0=∞
E · ds. (2.57)

This is therefore the work done in bringing a unit charge from infinity to the point P
through an electric field E.

The units of electric potential are therefore joules per coulomb or volts.

Note that we can choose the path we take from ∞ to P0, the result will be the same.
In particular if part of the path is perpendicular to E then the integral over that part is
zero, while if the path is parallel to E, the contribution is just

∫
Eds.
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2.8 Electric field as gradient of the potential

From mechanics we know that the relation between a force F and the potential energy
associated with it, W , is

F = −∇W (2.58)

In the case of an electric field E, the force on a charge is F = qE and the electric
potential is V = W/q, the work or energy per unit charge. Therefore

qE = −∇(qV ) (2.59)

therefore �
�

�
�E = −∇V (2.60)

In the previous Sections we introduced the concept of field lines, useful to display the
electric field. For the electric potential, we introduce here the concept of equipotential
surfaces, i.e. surfaces characterized by the same potential. We notice that field lines
always cross equipotential surfaces orthogonally, in the direction in which the potential
decreases most rapidly (since E = −∇V ).

Remark: the explicit expression for Eq. 2.60 in the various systems of coordinates is:

in cartesian coordinates x, y, z:

E = −
(

∂V

∂x
x̂ +

∂V

∂y
ŷ +

∂V

∂z
ẑ

)

in cylindrical coordinates ρ, φ, z:

E = −
(

∂V

∂ρ
ûρ +

1
ρ

∂V

∂φ
ûφ +

∂V

∂z
ûz

)

in spherical coordinates r, θ, φ:

E = −
(

∂V

∂r
ûr +

1
r

∂V

∂θ
ûθ +

1
r sin θ

∂V

∂φ
ûφ

)

2.9 Electric potential for a point charge

For a point charge 2.55 to 2.57 give (as ra →∞)�
�

�
V (x, y, z) =

q

4πε0

1

r
(2.61)
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where r =
√

x2 + y2 + z2.
The equipotential surfaces (V = constant) about the point charge are spheres.

2.10 Electric potential for a discrete charge distribution

For a point charge we know that

V =
q

4πε0

1

r
(2.62)

and

E = −∇V =
q

4πε0

1

r2 r̂ (2.63)

where V is the potential at a distance r from the charge q.

For the general case of the potential due to a collection of point charges, we consider the
potential at some point (xi, yi, zi) due to a set of charges qj at (xj, yj, zj). We use the
principle of superposition:�

�
�
�

V (xi, yi, zi) =
1

4πε0

∑
j

qj

rij
(2.64)

where rij = |rij| = |ri − rj|.

2.11 Electric dipole

A dipole is a system with two charges of equal magnitude and opposite sign separated
by a distance 2d.

The potential at point P is

V =
q

4πε0

(
1

r+
− 1

r−

)
(2.65)

where, from the cosine rule,

r2
+ = r2 + d2 − 2dr cos θ (2.66)

r2
− = r2 + d2 − 2dr cos(π − θ) (2.67)

= r2 + d2 + 2dr cos θ (2.68)
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therefore

1

r±
= (r2

±)−
1
2 =

[
r2

(
1 +

d2

r2 ∓
2d cos θ

r

)]− 1
2

(2.69)

�
�

�
�

1

r±
=

1

r

(
1 +

d2

r2 ∓
2d cos θ

r

)− 1
2

(2.70)

Putting 2.70 into 2.65 gives an exact expression for the potential V , although it is not
very easy to differentiate. A long way from the dipole, where r � d, the terms

x =
d2

r2 ∓
2d cos θ

r
(2.71)

are small (� 1) and we can use the binomial expansion

(1 + x)n = 1 + n x +
n(n− 1)

2
x2 + . . . (2.72)

with n = −1
2 to get

(1 + x)−
1
2 ∼= 1− 1

2
x + . . . (2.73)

so that

1

r+
− 1

r−
=

1

r

[(
1− d2

2r2 +
d cos θ

r
+ . . .

)
−

(
1− d2

2r2 −
d cos θ

r
+ . . .

)]
(2.74)
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therefore
1

r+
− 1

r−
=

1

r

2d cos θ

r
(2.75)

and

�
�

�
�Vdipole =

q

4πε0

2d cos θ

r2 (r � d) (2.76)

which is the dipole potential at large distances. The quantity p = 2qd is called the
electric dipole moment.

Exercise (the electric quadrupole): consider the charge configuration formed by a charge
−2q at the origin and two charges +q at the points (±a, 0, 0). Show that the potential
V at a distance r large compared with a is approximately given by V = +qa2(3 cos2 θ −
1)/4πε0r

3, where θ is the angle between r and the line through the charges.

2.12 Potential for a continuous charge distribution

For a point charge

V =
q

4πε0

1

r
; E =

q

4πε0

1

r2 r̂ (2.77)

For the case of a continuous distribution of charge, we apply the principle of super-
position to a small element of charge dq (see Figure 25)
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V =
1

4πε0

∫
dq

r
(2.78)

More explicitly, if the distribution is described by a charge density ρ(x, y, z), then the
potential at (xi, yi, zi) is:�

�
�
�V (xi, yi, zi) =

1

4πε0

∫
all space containing charge

ρ(xj, yj, zj)

rij
dτ (2.79)

where dτ = dxdydz is a volume element and rij = |rij| = |ri − rj|.

Exercise: Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q. Find
an expression for the magnitude of the electric field at point P .

Exercise: A uniformly charged disk has radius a and surface charge density σ. Find the
electric potential along the perpendicular central axis of the disk. By differentiating the
electric potential, determine the magnitude of the electric field along the same axis.
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2.13 Electrostatic energy: the case of a collection of discrete charges

The electrostatic potential energy U of a system of point charges equals the work W

needed to bring the charges from an infinite separation to their final positions. Consider
a system of three charges Suppose q1 was there first. No work is required to place it in

position. The electric potential V1 due to q1 at a point r2 is

V1(r2) =
1

4πε0

q1

r12
(2.80)

where r12 = |r1− r2| To bring q2 from infinity to r2 we must do work against the field
from q1. This, from the definition of the potential, is

W2 = q2 V1 =
1

4πε0

q1q2

r12
(2.81)

To bring up q3 we do work against the fields due to both q1 and q2:

W3 = q3 V1 + q3 V2 =
1

4πε0

(
q3 q1

r13
+

q3 q2

r23

)
(2.82)

Thus the total potential energy of the three charges is

U = W2 + W3 =
1

4πε0

(
q1 q2

r12
+

q2 q3

r23
+

q3 q1

r31

)
(2.83)

This result can be generalised to a collection of n charges q1, q2, . . . , qn at positions
r1, r2, . . . , rn �

�
�
�

U =
1

4πε0

∑
all distinct pairs

qi qj

rij
(2.84)

Note that we could also write this as
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�

�

�

�
U =

1

4πε0

1

2

n∑
i,j=1,i6=j

qi qj

rij
(2.85)

where the factor of 1
2 is needed as every pair is counted twice in the sum in this case.

2.14 Electrostatic energy: the case of a continuous charge distribution

For continuous distributions the summations of equations 2.84 and 2.85 become integrals.
Here we consider only one special case - a uniform sphere of charge of radius a.

To find U , imagine that we assemble the sphere by building up a succession of spherical
shells of infinitesimal thickness.

Suppose that the sphere has been partially assembled and currently has a radius r

and a charge Qr. The potential due to the sphere at this stage is
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Vr =
1

4πε0

Qr

r
(2.86)

The work done to bring up a further spherical shell of charge dQ is then

dU = dQ Vr =
Qr dQ

4πε0 r
(2.87)

Suppose that the charge is uniformly distributed with a charge density ρ, then Qr is
given by

Qr =
4

3
π r3 ρ (2.88)

and the charge in the infintesimal shell is

dQ = 4π r2 ρ dr (2.89)

Substituting these two results in equation 2.87

dU =
1

4πε0r

(
4

3
πr3 ρ

) (
4πr2 ρ

)
dr (2.90)

therefore

dU =
4π ρ2

3 ε0
r4 dr (2.91)

Integrating from r = 0 to r = a gives

U =
4π ρ2

3 ε0

a5

5
(2.92)

which can be expressed in terms of the total charge on the sphere Q = 4
3π a3 ρ to give�

�
�
�U =

3

5

Q2

4πε0 a
(2.93)

Exercise: In the example of the charged sphere of radius a above, consider a sphere of
total charge Q whose charge distribution is given by ρ(r) = Ar where A is a constant.
By calculating the total charge on the sphere, show that A = Q

πa4 . Hence show that the

total electrostatic energy of the sphere is 4
7

Q2

4πε0a
.
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