
8 AC Circuits

8.1 Why use alternating current

• The oscillations in an RLC series circuit can be prevented from damping out if an
external EMF

E = Emax sin ωt (8.1)

is used to replace the energy dissipated as heat in the resistor.

• Circuits in homes, offices and factories (including countless RLC circuits) receive
such an EMF from electricity generating companies: in the UK, Emax = 230 V and
the period of oscillation is T = 2π

ω = 1
50 Hz = 1

50 seconds.

• This EMF delivers an ‘alternating current’ (AC):

I = Imax sin(ωt− φ) (8.2)

where φ is a phase angle.

• What does this look like at the microscopic level?

• The drift speed of electrons in household wiring is approximately 4× 10−5ms−1. If
we reverse their direction every 1

100 sec, the electrons can move only about 4×10−7m
in a half-cycle, which is about 100 atomic spacings before their motion is reversed.
Is this still useful?

• Yes, because if we consider a plane in the conductor a large current can still flow
across it if there are enough electrons in motion. Energy can still be dissipated in a
resistance, even if the electrons continually reverse their direction of motion.

• AC has other useful features:

– It is easy to generate

– It is easy to transform (change voltage)

– It is easy to use - for example to drive motors, where the oscillation of the
current is essential and to deliver energy, in light bulbs for example.
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8.2 AC generators and transformers

Figure 89 shows a simple model for an AC generator. As the conducting loop is
forced to rotate through the field B, the sinusoidal EMF of equation 8.1 is generated.

Figure 90 shows an ideal transformer. Two coils with different numbers of turns -
Np for the ‘primary’ coil, Ns for the ‘secondary’ coil - are wound around an iron
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core. The primary coil is connected to an AC source of EMF, symbol as shown -

which induces an alternating magnetic flux ΦB within the iron. Faraday’s law gives:

Ep = ∆Vp = −Np
dΦB

dt
(8.3)

and Es = ∆Vs = −Ns
dΦB

dt
(8.4)

for the induced voltage drop across the secondary, so that

�
�

�
�∆Vs =

Ns

Np
∆Vp (8.5)

• When Ns > Np the output voltage exceeds the input voltage (‘step-up’), and when
Ns < Np the output voltage is less than the input (‘step-down’).

8.3 Three simple circuits

We will consider, in turn, three simple circuits comprising an AC EMF generator
and a load of either a resistor, a capacitor or an inductor. In doing so we will
introduce ‘phasor diagrams’ to help us in more complex circuits where we will want
to combine sinusoidal currents and voltages with different phases.

8.3.1 A resistive load

• See Figure 91. Kirchhoff’s loop rule must be valid for all t, so

E −∆VR = 0 (8.6)

where ∆VR is the instantaneous voltage across the resistor.
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�
�

�
�∴ ∆VR = Emax sin ωt = ∆Vmax sin ωt (8.7)

since the maximum potential difference across the resistor ∆VR is the same as that
across the source of EMF, Emax. The instantaneous current in the resistor is

IR =
∆VR

R
=

∆Vmax

R
sin ωt (8.8)

�
�

�
�IR = Imax sin ωt (8.9)

• Both ∆VR and IR vary with sin ωt (see Figure 91), they are in phase with each
other.

8.3.2 A capacitative load

See Figure 92. Kirchhoff’s loop rule again gives

E −∆VC = 0 (8.10)

Hence �
�

�
�∆VC = ∆Vmax sin ωt (8.11)
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Now, from the definition of capacitance (C = Q
∆VC

), the instantaneous charge on the
capacitor is

Q = C.∆VC = C.∆Vmax sin ωt (8.12)

so the current in the circuit is

I =
dQ

dt
= ωC.∆Vmax cos ωt (8.13)

�
�

�
∴ I = Imax sin(ωt +

π

2
) (8.14)

We see that the potential difference across the capacitor and the current in the
circuit are π

2 radians out of phase (see Figure 92). The current leads the voltage by
π
2 radians. The maximum current

Imax = ω.C.∆Vmax (8.15)

can be written in terms of an equivalent resistance, called the ‘capacitive reactance’,
XC , �

�
�
�Imax =

∆Vmax

XC
, XC =

1

ωC
(8.16)
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XC has the units of ohms.

• Note: the phasor diagram is a way to represent the sinusoidal variations in current
and voltage in terms of rotating vectors of magnitude Imax and ∆Vmax.

8.3.3 An inductive load

See Figure 93. Kirchhoff’s rule again gives�
�

�
�∆VL = ∆Vmax sin ωt (8.17)

From the definition of inductance,

∆VL = L
dIL

dt
(8.18)

∴ dIL =
∆Vmax

L
sin ωtdt (8.19)

∴ IL =
∆Vmax

L

∫
sin ωtdt = −∆Vmax

ωL
cos ωt (8.20)
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�
�

�
IL = Imax sin(ωt− π

2
) (8.21)

so ∆VL and IL are again π
2 radians out of phase but now the current lags the voltage

by π
2 (see Figure 93).

• The maximum current, Imax = ∆Vmax

ωL can be written in terms of an equivalent resis-
tance, the ‘inductive reactance’, XL,�

�
�
�Imax =

∆Vmax

XL
, XL = ωL (8.22)

• XL has units of ohms.

8.4 The RLC circuit

We will now consider AC circuits comprising different combinations of R, L and C
in series with an AC source with voltage given by

E = ∆Emax cos ωt . (8.23)

Note that we are using cos ωt rather than the sin ωt of the previous sections. The
reason will shortly become apparent.

As it is a series circuit, the same current flows in all parts of the circuit,

I = Imax cos(ωt− φ) (8.24)
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and our aim will be to determine Imax and the phase angle φ in a given circuit.

It is useful to use complex notations in the calculations. Using the relation

exp(jωt) = cos ωt + j sin ωt ,

where1 j2 = −1, we may replace the cosine and sine functions by complex expo-
nentials on the understanding that we are interested in the real or imaginary parts
respectively.

We begin by writing the time-variation of the EMF,

E = Emax exp(jωt) (8.25)

where the bold face, E denotes a complex number and we understand that the real
physical EMF is

E = < (E) (8.26)

The current in the circuit will also vary with angular frequency ω so we can write

I(t) = I0 exp(jωt) (8.27)

where the presence of the complex I0 means that the current and voltage may not
vary in phase as we shall see later. The real physical current will be

I(t) = <(I0 exp(jωt)) . (8.28)

Kirchhoff’s loop rule is now

E −RI− L
dI

dt
− Q

C
= 0 . (8.29)

Differentiating through with respect to time we have

dE
dt

= R
dI

dt
+ L

d2I

dt2
+

I

C
. (8.30)

Now using equations 8.25 and 8.27, we have

jωEmax exp(jωt) = jωRI0 exp(jωt)− ω2LI0 exp(jωt) +
I0
C

exp(jωt) . (8.31)

1We note that the symbol j rather than i is used in the context of electromagnetism in order to avoid confusion with
current
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Dividing through by jω we find

Emax exp(jωt) = I0 exp(jωt)

[
R + j

(
ωL− 1

ωC

)]
. (8.32)

This equation has the form
E = IZ (8.33)

where

Z = R + j

(
ωL− 1

ωC

)
= R + j(XL −XC) (8.34)

is the complex impedance of the circuit. The complex impedance can be written in
exponential form as

Z = Z exp iφ (8.35)

where Z is the magnitude of the complex quantity Z

Z =
√

R2 + (XL −XC)2 (8.36)

and the angle φ is given by�
�

�
φ = tan−1 XL −XC

R
(8.37)

The current can be written as

I =
Emax

Z
exp j(ωt− φ) (8.38)

• The voltage leads the current if XL > XC (peaks in current occurr after the peaks
in voltage), and lags behind the current if XL < XC .

• Note that by changing the driving frequency ω of the EMF source we can ‘tune’ the
circuit. For example, at large ω we can be sure that XL = ωL > XC = 1

ωC , and
that the voltage leads the current.

• At the ‘resonant frequency’, ω0, we make XL = XC so that

ω0L =
1

ω0C
(8.39)

and hence
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�
�

�
�ω0 =

1√
LC

(8.40)

• At the resonant frequency

– the impedance equals the resistance, Z = R,

– the voltage is in phase with the current,

– the current has its maximum value, Imax = ∆Vmax

Z = ∆Vmax

R

8.5 Power in the RLC series circuit

• The energy source in the circuit is the AC EMF generator. This energy is

– stored in the electric field of the capacitor,

– stored in the magnetic field of the inductor, and

– dissipated as thermal energy in the resistor.

• In the steady state, the average energy stored in the capacitor and the inductor is
constant, so the net transfer of energy is from the source of EMF to the resistor.
The rate of energy transfer, ie the power, is then

P = I∆V = Imax cos(ωt− φ)∆Vmax cos ωt (8.41)

This is the instantaneous power delivered by the EMF to the resistor, as a function
of time.

• The average power delivered can be found by first noting that:

cos(ωt− φ) = cos ωt cos φ + sin ωt sin φ (8.42)

so that equation 8.41 becomes

P = Imax∆Vmax
[
cos2 ωt cos φ + sin ωt cos ωt sin φ

]
(8.43)

and secondly, noting that the time average of sin2 ωt is 1
2 , while the time average of

sin ωt cos ωt = 1
2 sin(2ωt) is zero. The average power is therefore�

�
�
Pav =

1

2
Imax∆Vmax cos φ (8.44)
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8.6 Average power in terms of rms current

• Equation 8.44 can be written in terms of the ‘root mean square’ (rms) values for
current and voltage:

Irms =
√

average value of I2 (8.45)

=
√

average value of I2
max sin2(ωt− φ) (8.46)

=

√
1

2
I2
max (8.47)

�
�

�
�∴ Irms =

1√
2
Imax (8.48)

and similarly, �
�

�
�∆Vrms =

1√
2
∆Vmax (8.49)

so that �
�

�
�∴ Pav = Irms∆Vrms cos φ (8.50)

where cos φ is called the ‘power factor’. Now, in an RLC circuit:

Imax = Vmax/|Z| (8.51)

tan−1 = (XL −XC)/R (8.52)
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which implies

cos φ =
ImaxR

∆Vmax
=

IrmsR

∆Vrms
(8.53)

which, when substituted in equation 8.50 gives�



�
	Pav = I2

rmsR (8.54)

which restates our original assumption that, in the ideal RLC circuit there is no
power loss in either the inductor or the capacitor.

8.7 Resonance in the RLC series circuit

• As already discussed, the RLC circuit is said to be in resonance when the current
is at its maximum value. For the rms current

Irms =
∆Vrms

Z
(8.55)

this occurs when the impedance

Z =
√

R2 + (XL −XC)2 (8.56)

is a minimum, which is when XL = XC , corresponding to ω = ω0, the resonance
frequency where

ω0 =
1√
LC

(8.57)

• The average power shows a resonance peak since

Pav = I2
rmsR =

∆V 2
rmsR

Z2 (8.58)

which can be written as�
�

�
�Pav =

(∆Vrms)
2Rω2

R2ω2 + L2(ω2 − ω2
0)

2 (8.59)

This expression shows that at resonance, ω = ω0,

Pav =
(∆Vrms)

2

R
(8.60)

and is at a maximum.
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• The sharpness of the Pav(ω) curve is described by the ‘quality factor’, Q,

Q =
ω0

∆ω
(8.61)

where ∆ω is the full width at half-maximum of the curve. A high-Q circuit responds
only to a narrow range of frequencies.

• The receiving circuit of a radio is an application of a resonant circuit. ‘Tuning’ the
radio involves varying a capacitor, which alters the circuit’s resonant frequency to
match that of the incoming electromagnetic wave.

8.8 Power transmission

• To get power from a generating station (eg a hydroelectric plant) to household
supplies, the EMF is passed along large conducting cables called ‘transmission’
lines. To minimise power losses in the transmission lines ( P = I2R), low resistance
metals are used (eg copper), coupled with relatively small currents (about 100 A).
To keep the transmitted power high, high voltages are used (about 440 kV).
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