
3 Conductors

3.1 Electric field and electric potential in the cavity of a conductor

Conductors (eg metals) are materials in which charges move freely, whereas insulators
(eg glass, rubber, wood) are materials in which charges do not move freely.

We can deposit a net charge on a conductor. If left isolated, the charges will distribute
themselves to achieve electrostatic equilibrium ie so that they become stationary.

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside a conductor (otherwise the charges would
not be stationary, since F = qE).

2. If an isolated conductor carries a charge, the charge resides on its surface. Gauss’
law tells us that if there is no field within the conductor there can be no charge
contained within it.

3. The electric field just outside a charged conductor is perpendicular to the surface of
the conductor (the tangential component of E at the surface must be zero, otherwise
the charges would move).
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It is straighforward to calculate the electric field just outside a conductor as a function
of the surface charge density σ. Indeed by using Gauss’ law, and considering that: (a)
the electric field is zero inside the conductor, (b) the tangential component of E is zero
just outside the conductor, we find that the component En of the electric field normal to
the surface is

En =
σ

ε0
. (3.1)

3.2 Field from an infinite conducting plate

Consider a plate of finite width carrying an excess positive charge. In isolation, the
charge will migrate to both surfaces.

To evaluate the electric field, we use Gauss’ law. Take a cylindrical surface, as before,
but with one face inside the conductor.

The LHS of Gauss’ law is now EA and the RHS is σA
ε0

, so

�
�

�

E =

σ

ε0
, (3.2)

which is double that for an insulator with the same surface charge density σ.
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3.3 Field of two, oppositely charged conducting plates

If we have two infinite plates with equal and opposite excess charge, then bring them
together:

where between the plates

E =
2 σi

ε0
(3.3)

and
E = 0 (3.4)

outside the pair of plates.
If the positively charged plate is in isolation there is no field within it. The nearby

negatively charged plate causes an electric field which drives the positive charges to the
right in the diagram. Similarly the negative charges are driven to the left. All the charge
resides on the inner surfaces of the conductors with twice the density of the original
distributions.

3.4 Fields outside charged conductors: method of images

It is in general quite difficult to calculate the electric field and potential outside charged
conductors. Indeed this requires to solve the equation

∇ · E =
ρ

ε0
(3.5)
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which, substituting E = −∇V , becomes the Poisson equation

∇2V = − ρ

ε0
, (3.6)

where we introduced the operator

∇2 = ∇ · ∇ . (3.7)

Poisson equation is then completed by the boundary conditions: the potential is con-
stant over the conductor. To solve Eq. (3.6) is in general a difficult task. In some cases
the ”method of electrical images” allows us to easily solve the problem. This method
consists in replacing a conductor by a point charge placed so that the surface previously
corresponding to the conductor surface is still an equipotential surface.

Example: Find the electric potential for a point charge q placed at a distance a from an
infinite conducting plate at zero potential.

Solution: It is easy to see that V = 0 behind the conductor: this is a solution of
Poisson equation and satisfy the boundary conditions. To find the potential on the other
side of the conductor, we use the method of images. We replace the conductor by a
charge −q at a distance a behind the plane, so that the surface previously occupied by
the conductor is still an equipotential plane. The potential is then

V (P ) =
q

4πε0

[
1

r
− 1√

r2 + 4a2 + 4ar cos θ

]
. (3.8)
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3.5 Vacuum capacitor: definition of capacitance

Any combination of two conductors carrying charges of equal magnitude but opposite
sign is called a capacitor.

Regardless of the shape of the conductors, they are referred to as ‘plates’. There is a
field E between the plates A and B, and a potential difference ∆V = |VA − VB|. Note
that ∆V is always expressed as a positive quantity.

The priciple of superposition implies that “the amount of charge Q on a capacitor”
(ie on either plate, not the net charge on both plates, which equals zero) is proportional
to ∆V , which we write as �

�
�
�Q = C∆V (3.9)

where the capacitance

C =
Q

∆V
(3.10)

is a constant that depends on the shape and separation of the conductors. C is always
positive. It is a measure of a capacitor’s ability to store charge and electric potential
energy. The SI unit of capacitance is the farad (F), and one farad = one coulomb per volt
which is a very large unit. In practice values range from pico (10−12) to nano (10−9) to
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micro (10−6). One microfarad = 1µF = 10−6F. Note: As the unit of potential difference
∆V is the volt, ∆V is often called the ‘voltage’ eg ‘the voltage between the plates’.

3.6 Parallel-plate capacitors

We have seen in Sec. 3.3 that for two infinite plates, Gauss’ law gives

E =
σ

ε0
(3.11)

where σ is the surface charge density on either plate.

If the plates are of area A and carry a charge ±q, then σ = q
A , and the potential

difference

∆V = Ed =
qd

ε0A
(3.12)

where d is the separation of the plates. Note that equation 3.12 corresponds

∆V = |V (x = 0)− V (x = d)| =
∫ d

0
Edx = E[x]d0 = Ed (3.13)

since E is uniform and in the x-direction.
So, ignoring edge effects (non-uniform E),�

�
�

C =

q

∆V
' ε0A

d
(3.14)

which is bigger for larger plates and smaller separations.
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3.7 Spherical capacitors

Imagine two concentric spherical shells. Note that for r > b, the net enclosed charge
is zero so Gauss’ law gives E = 0, V = constant. Between the shells, a ≤ r ≤ b, the
potential is the same as that of a point charge Q, so that at r = b

Vb =
1

4πε0

Q

b
(3.15)

and the potential of the inner shell (radius a) is

Va =
1

4πε0

Q

a
(3.16)

Therefore

∆V = |Va − Vb| =
Q

4πε0

(
1

a
− 1

b

)
=

Q

4πε0

b− a

ab
(3.17)

therefore �
�

�

C =

Q

∆V
= 4πε0

ab

b− a
(3.18)

We can use 3.18 to derive the capacitance of an isolated spherical conductor: as
b →∞, b

b−a → 1, therefore �
�

�
�Csingle sphere = 4πε0a (3.19)
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3.8 Cylindrical capacitors

A solid conductor of radius a, a cylindrical shell of radius b and length l. If l � b we can
neglect end effects and use the result for an infinite line of charge with density λ, that

E =
λ

2πε0

1

r
r̂ a ≤ r ≤ b (3.20)

where we put λ = Q/l.

Note the physical assumptions and arguments here -

• Neglecting end effects means that the field is radially outward and perpendicular to
the axis.

• The charge on the outer cylinder does not contribute to the field inside it (Gauss’
law).

• Outside the central conductor, r ≥ a, the field is that due to a line of charge.

The potential difference between a and b is

∆V = |Va − Vb| =
∫ b

a

E · dr =
Q

2πε0l

∫ b

a

dr

r
=

Q

2πε0l
ln

(
b

a

)
(3.21)

therefore

C =
Q

∆V
=

2πε0l

ln( b
a)

(3.22)

Note that the cylindrical geometry is that of a coaxial cable as used in electricity and
signal transmission.
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3.9 Combinations of capacitors

In electric circuits we often use two or more capacitors either arranged ‘in parallel’ or ‘in
series’, represented as

where the capacitor symbol

reflects the common parallel-plate design. Note the difference between the capacitor
and battery symbols.

Parallel combination

What single capacitor has the same capacitance as two others wired in parallel?
The wires are conductors - they connect things with the same potential. Thus the

potential difference across the battery terminals ∆V is the same as across the plates of
C1 and C2.
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∆V =
Q1

C1
=

Q2

C2
(3.23)

In the equivalent circuit we want to store the same total charge

∆V =
Q

Cparallel
, Q = Q1 + Q2 (3.24)

Combining these two equations

Cparallel =
Q

∆V
=

Q1 + Q2

∆V
=

C1∆V + C2∆V

∆V
(3.25)

therefore �
�

�
�Cparallel = C1 + C2 (3.26)

The capacitance increases.

Series combination

What single capacitor has the same capacitance as two wired in series?
In the diagram, the right hand plate of C2 and the left hand plate of C1 are connected

to the battery terminals. The battery drives electrons away from the negative terminal
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so that they accumulate on the right hand plate of C2, giving the charge −Q. An equal
and opposite charge must accumulate on the left hand plate of C1.

Now consider the right hand plate of C1 and the left hand plate of C2. They are con-
nected but isolated from the rest of the circuit. If no battery is present the net charge
on these two plates is zero and it must remain so once a battery is connected. So they
must carry equal and opposite charges also. The positive charge on the left hand plate
of C1 creates an electric field that attracts negative charge to the right hand plate of C1.
This process will continue until there is electrostatic equilibrium which occurs when the
charges on the plates are equal in magnitude (but of opposite sign).

The final configuration has charge of the same magnitude on all four plates as shown.
The potential difference across each capacitor may be different as shown.

The total potential difference is

∆V = ∆V1 + ∆V2 =
Q

C1
+

Q

C2
(3.27)

will be the same in the equivalent circuit

∆V =
Q

Cseries
(3.28)
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therefore �
�

�



1

Cseries
=

1

C1
+

1

C2
(3.29)

the capacitance decreases

3.10 Energy stored in a charged capacitor?

How much work is done to charge a capacitor?

Imagine that charge is passed from one plate to the other, against the electric field
between the plates. The work done to transfer an element of charge dq when the plates
carry a charge q and the potential difference between the plates is ∆V is

dW = ∆V dq (3.30)

where ∆V = q/C. Remember that ∆V is the work required to move a unit charge.
The total work done is

W =

∫ Q

0

q

C
dq =

1

2

Q2

C
(3.31)

which equals the total electric potential energy U stored in the capacitor:�
�

�

U =

1

2

Q2

C
(3.32)

or, since C = Q/∆V

U =
1

2
Q ∆V (3.33)
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or

U =
1

2
C (∆V )2 (3.34)

These results apply to any capacitor, whatever its geometry. Note that sometimes ∆V

is written just as V , so U = 1
2QV etc. Devices that use capacitors to store and rapidly

deliver electrical energy to a conductor include

1. the medical defibrillator, the conductor in this case being the human heart.

2. the camera flash unit - the conductor is the flash bulb.

3.11 Energy density

The potential energy stored in a capacitor can be seen as being stored in the electric
field. eg a parallel plate capacitor, plate area A, plate separation d. Neglecting edge
effects

E =
∆V

d
(3.35)

The volume of the capacitor is A d, so the energy density, u, (energy stored per unit
volume) is

u =
U

A d
(3.36)

Now

U =
1

2
C (∆V )2 =

1

2
d2 C E2 (3.37)

We saw that (equation 3.14) we saw that C = ε0 A
d therefore

u =
U

A d
=

1
2 d2 ε0 A

d E2

a d
=

1

2
ε0 E2 (3.38)

This result applies generally to the energy density of a charged capacitor.
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