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Abstract: Broere and Hattingh proved that the Kronecker product of two circulants whose

orders are co-prime is a circulant itself. This paper builds on this result to construct a family

of efficient three-colorable, six-regular circulants representable as the Kronecker product of

a Möbius ladder and an odd cycle. The order of each graph is equal to 4d2 − 2d− 2 where

d denotes the diameter and d ≡ 3, 5 (mod 6). Additional results include (a) distance-wise

vertex distribution of the circulant leading to its average distance that is about two-thirds

of the diameter, (b) routing via shortest paths, and (c) an embedding of the circulant on a

torus with a half twist. In terms of the order-diameter ratio and odd girth, the circulants

in this paper surpass the well-known triple-loop networks having diameter d and order

3d2 + 3d+ 1.

Key words: Six-regular circulants; Kronecker product; Möbius ladder; twisted torus;

network topology; routing; embedding; graphs and networks.

1



1 Introduction

Circulant graphs constitute a subfamily of Cayley graphs [17]. They possess attractive

properties such as high symmetry, high connectivity and scalability, which lend them to an

application as a network topology in areas like parallel computers, distributed systems and

VLSI [3, 4, 5, 19, 25, 32, 29, 34].

Over the years, the four-regular circulants have received a lot of attention leading to

sharp results relating to their isomorphism, connectivity, routing, and several other issues.

See the surveys [3, 19, 27] and the references therein. On the other hand, higher-degree cir-

culants have not been studied at length. This is probably because the associated problems

in the latter case are relatively challenging [18].

This paper presents a family of six-regular circulants, each representable as the Kro-

necker product of the Möbius ladder of order p and the odd cycle Cp+3, where p ≡ 4, 8 (mod

12). The order of each graph turns out to be 4d2 − 2d − 2, where d denotes its diameter

and d ≡ 3, 5 (mod 6).

Prominent circulant graphs of degree six include the triple-loop networks [35], hexagonal

meshes [9] and Eisenstein-Jacobi networks [26]. It turns out that C3d2+3d+1(1, 3d+1, 3d+2) is

a representative in these cases [31], where d is its diameter. See Table 1 for a comparison,

where order-diameter ratio refers to order of the graph relative to its diameter. (The

definitions and proofs appear later.)

Each graph admits an embedding (with edge crossings) on a torus with a half twist.

Additionally, (a) the graph admits an efficient routing via shortest paths, (b) its odd girth

is equal to 2d+1, where d denotes its diameter, (c) its average distance is about two-thirds

of the diameter, (d) its chromatic number is equal to three, (e) its vertex connectivity

is equal to its degree that is six, and (f) it admits a Hamiltonian decomposition. (High

odd girth, low average distance, low chromatic number, high connectivity and Hamiltonian

Table 1: Comparison of C4d2−2d−2(1, s, t) and C3d2+3d+1(1, 3d+ 1, 3d+ 2)

C4d2−2d−2(1, s, t) C3d2+3d+1(1, 3d+ 1, 3d+ 2)

order-diameter ratio 4d (approx.) ¨̂ 3d (approx.)

odd girth 2d+ 1 ¨̂ 3

chromatic number 3 3

connectivity 6 6

s = 1
3
d(2d+ 1)− 1 and t = 2s+ 1 if d ≡ 3 (mod 6)

s = 1
3
(d− 2)(2d+ 1) + 1 and t = 2s− 1 if d ≡ 5 (mod 6)
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decomposition are a big plus in a network.)

1.1 Definitions and preliminaries

When we speak of a graph, we mean a finite, simple, undirected and connected graph.

Let G be a graph, and let dG(u, v) denote the shortest distance between vertices u and v

in G. Further, let diam(G) represent its diameter, i.e., max{dG(u, v): u, v ∈ V (G)}. A

distance-preserving subgraph of a graph is called an isometric subgraph [16]. We employ

vertex and node as synonyms, and write “G is isomorphic to H” as G ∼= H.

Say that a vertex v in G is at level i relative to a fixed vertex u if dG(u, v) = i. A level

diagram of G relative to u consists of a layout of the graph in which vertices at a distance

of i from u appear on a “line at a height” of i above u, for 0 ≤ i ≤ diam(G). Vertices

at a distance of diam(G) from u are called diametrical relative to u. If G is known to be

vertex-transitive, a property held by a circulant [17], then the form of its level diagram is

independent of the choice of the source vertex. A related term is distance-wise vertex count

that refers to the number of vertices at each of the i-th level, 0 ≤ i ≤ diam(G).

The average distance of a graph G = (V,E) relative to a fixed vertex u is given by(
1
|V |
∑

i≥0 ini

)
, where ni represents the number of vertices at a distance of i from u in G.

Vertex transitivity of a circulant ensures that its average distance is computable relative

to any vertex, and the sum in the previous expression runs from i = 0 to i = diam(G).

The Kronecker product (also known as the tensor product, direct product, and graph

conjunction) G×H of graphs G = (U,D) and H = (W,F ) is defined as follows: V (G×H) =

U ×W , and E(G × H) = {{(a, x), (b, y)} | {a, b} ∈ D and {x, y} ∈ F}. It is one of the

most important products, with numerous applications [16].

Let Cn denote the cycle on the vertex set {0, . . . , n − 1}, n ≥ 3, where adjacencies

{i, i + 1} exist in the natural way. A spanning cycle in a graph (if one exists) is called a

Hamiltonian cycle. Further, a graph is said to admit a Hamiltonian decomposition if its

edge set can be partitioned into Hamiltonian cycles. The length of a shortest (induced) odd

cycle in a nonbipartite graph G is called its odd girth, denoted by og(G). Let χ(G) denote

the chromatic number of G, and let κ(G) denote its vertex connectivity. For undefined

terms, see Hammack et al. [16].

Proposition 1.1 [16, 7]

(1) G×H is connected iff G and H are both connected and at least one of them is nonbi-

partite.

(2) The degree of a vertex (u, v) in G ×H is equal to the product of the degrees of u and

v in the respective graphs.

(3) χ(G×H) ≤ min{χ(G), χ(H)}.
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(4) If G and H are both nonbipartite, then og(G×H) = max{og(G), og(H)}.

(5) If G and H are both vertex-transitive, then so is G×H.

Let n, s1, . . . , sk be such that n ≥ 3, and 1 ≤ s1 < s2 < . . . < sk ≤ bn/2c. The circulant

Cn(s1, . . . , sk) is a graph on the vertex set {0, . . . , n− 1}, where each vertex i is adjacent to

each of (i± s1) mod n, . . . , (i± sk) mod n. The parameters s1, . . . , sk are called the step

sizes or jumps. If n is even and sk = n/2, then the graph is (2k − 1)-regular, otherwise

it is 2k-regular. It is known that (i) Cn(s1, . . . , sk) is connected iff gcd(n, s1, . . . , sk) = 1,

and (ii) Cn(s1, . . . , sk) is bipartite iff n is even, and each of s1, . . . , sk is odd. Here is the

baseline of the present study.

Proposition 1.2 [7] If G and H are circulants such that |V (G)| and |V (H)| are co-prime,

then G×H is a circulant itself.

1.2 Related work

Yebra et al. [35] were probably the first to study six-regular circulants. Among other

things, they proved that the maximum order of Cn(a, b, a + b) with diameter d is equal to

nd := 3d2 + 3d+ 1. They further showed that Cnd
(1, 3d+ 1, 3d+ 2) achieves the preceding

upper bound, and that this graph is amenable to a hexagonal tessellation. Interestingly

enough, this circulant arose in projects such as HARTS (Hexagonal Architecture for Real-

Time System) [9], Mayfly [10] and FAIM-1 [11]. Thomson and Zhou recently showed that

Cnd
(1, 3d+1, 3d+2) admits optimal routing and gossiping [30], and it is a special instance of

an interesting family of first-kind Frobenius circulants of degree six [31]. (See the references

therein for relevant definitions.)

In another development, Mart́ınez et al. [26] came up with a family of graphs called

EJ networks based on the Eisenstein-Jacobi integers. It turns out that the six-regular

first-kind Frobenius graph [31] is exactly the EJ network EJa+bρ with gcd(a, b) = 1 and

order congruent to 1 modulo 6, where ρ = 1
2
(1 +

√
−3). For other studies, see Decayeux

and Semé [13] and Garcia et al. [14], and for theoretical upper bounds on the order of a

six-regular circulant relative to its diameter, see Aguiló-Gost [2] and the surveys [3, 19, 27].

1.3 Möbius ladder

For p even and p ≥ 4, the Möbius ladder Mp is a three-regular graph on p vertices obtainable

from the cycle Cp by introducing edges that connect “opposite” pairs of vertices in the cycle.

Fig. 1(a) illustrates this definition in respect of M16, while Fig. 1(b) presents another view

of the same graph.

Möbius ladders play an important role in the study of graph minors [33], and integer

programming approaches to solve problems in set packing and linear ordering [6].
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Figure 1: Two drawings of the Möbius ladder M16

Figure 2: Level diagrams of (a) M8, (b) M12 and (c) M16

Proposition 1.3 [1, 15, 24] Let p ≡ 0 (mod 4).

(1) Mp
∼= Cp(1, 12p).

(2) χ(Mp) = 3.

(3) og(Mp) = 1
2
p+ 1.

(4) diam(Mp) = 1
4
p.

(5) κ(Mp) = 3.

Proposition 1.4 [24] For p ≡ 0 (mod 4), the distance-wise vertex partition of Mp is as

follows:

(1) Level 0 : {0}

(2) Level 1 : {1, 1
2
p, p− 1}

(3) Level i : {i, 1
2
p− i+ 1, 1

2
p+ i− 1, p− i}, where 2 ≤ i ≤ 1

4
p.

See Fig. 2 for level diagrams of M8, M12 and M16, each relative to vertex 0. The (four)

nodes at the diametrical level of Mp induce a path, viz., (1
4
p+ 1) (1

4
p) (3

4
p) (3

4
p− 1)

that is of length three. On the other hand, nodes at each of the lower levels are mutually

nonadjacent.
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Definition 1 The nodes 0, 1, . . . , 1
2
p in Mp induce an odd cycle, which we refer to as the

canonical cycle C 1
2
p+1, where p ≡ 0 (mod 4).

Lemma 1.5 The canonical cycle is an isometric cycle whose diameter is equal to that of

Mp itself.

Proof. The length of the canonical cycle is equal to the odd girth of the graph. Further,

a shortest odd cycle in a graph is known to be an isometric subgraph [16] (Prop. 3.3, p.

29). Finally, it is clear that the diameter of C 1
2
p+1 is equal to 1

4
p that coincides with the

diameter of Mp itself.

Lemma 1.6 For every walk between two nodes u and v in Mp, where u and v lie on the

canonical cycle, there exists a walk of the same length between u and v in which all nodes

belong to the canonical cycle itself.

Proof. Let u and v be as stated, where 0 ≤ u ≤ v ≤ 1
2
p. It is clear that there are two

simple paths, say P and Q, between u and v along the canonical cycle. Their lengths are

|u− v| and 1
2
p+ 1− |u− v|, respectively, which themselves are of distinct parities. Assume

without loss of generality that |P | = |u− v| < |Q| = 1
2
p+ 1− |u− v|.

Consider a walk, say W , from u to v in which all intermidiate nodes are from {1
2
p +

1, . . . , p− 1}. The canonical cycle being an isometric cycle, every shortest path between u

and v must be of length |P |. If |W | and |P | are of the same parity, then |W | ≥ |P | and

|W | − |P | is even. Here is a desired walk between u and v: Follow the path P , and retrace

one of its edges |W | − |P | times.

On the other hand, if |W | and |Q| are of the same parity, then |W | ≥ |Q|. This is

because every odd cycle in Mp is of length at least 1
2
p + 1, hence a path between u and v

whose length is of a parity different from that of |P | must be of length at least |Q|. In this

case, too, there exists a walk between u and v that is of the same length as W and that is

obtainable from Q by retracing one of its edges |W | − |Q| times.

1.4 Distances in the Kronecker product

Unlike the (shortest) distance between two vertices in other products, the distance in the

Kronecker product is based on a shortest even walk and a shortest odd walk (and the

respective even distance and odd distance) between two vertices in the factor graphs [22].

To that end, let deG(a, b) and doG(a, b) denote the shortest even distance and the shortest

odd distance, respectively, between vertices a and b in a graph G. (If G is nonbipartite,

then the even distance and the odd distance between two vertices, not necessarily distinct,

are well-defined and finite.)
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Proposition 1.7 [22] If G and H are both nonbipartite graphs, then dG×H((a, x), (b, y)) =

min{max{deG(a, b), deH(x, y)},max{doG(a, b), doH(x, y)}}.

Proposition 1.8 [22] If m and n are both odd and m ≥ n, then

diam(Cm × Cn) =

 n− 1 if m = n

max{1
2
(m− 1), n} if m > n.

Structure of the paper

Sec. 2 presents the main result, viz., Mp × Cp+3 is a low-diameter six-regular circulant,

while Sec. 3 computes the average distance of the graph. Whereas Sec. 4 presents a routing

scheme via shortest paths, Sec. 5 determines the precise jump sequence associated with

the circulant, and Sec. 6 presents an embedding (with edge crossings) of the circulant on a

torus with a half twist. The paper ends with certain concluding remarks in Sec. 7.

2 Main result

This section shows that diam(Mp×Cn) reaches its minimum relative to its order iff n = p+3,

where p ≡ 0 (mod 4). That, in turn, leads to the low-diameter six-regular circulant

Mp × Cp+3, where p ≡ 4, 8 (mod 12).

Lemma 2.1 For p ≡ 0 (mod 4) and n odd, C 1
2
p+1×Cn is an isometric subgraph of Mp×Cn,

where C 1
2
p+1 is the canonical cycle 0 1 . . . 1

2
p 0 of Mp.

Proof. The distance between two nodes cannot go down in a subgraph. In that light,

let (u, i), (v, j) ∈ V (C 1
2
p+1 × Cn), and let P = (w1, x1) . . . (wr, xr) be a shortest path

between (u, i) and (v, j) in Mp × Cn, where w1 = u, wr = v, and x1 = i, xr = j. In the

process, (a) w1, . . . , wr is a sequence of nodes corresponding to a walk between u and v in

Mp, and (b) x1, . . . , xr is a sequence of nodes corresponding to a walk between i and j in

Cn.

By Lemma 1.6, there exists a sequence y1, . . . , yr that defines a walk between u and

v in which each yk belongs to the canonical cycle itself, where y1 = u, yr = v. That, in

turn, leads to the path (y1, x1), . . . , (yr, xr) between (u, i) and (v, j) that lies entirely in

C 1
2
p+1 × Cn. The length of this path is equal to that of P , hence the distance between

(u, i) and (v, j) relative to the subgraph C 1
2
p+1×Cn is equal to that between the same two

vertices relative to Mp × Cn itself. Isometry follows.

Lemma 2.2 For p ≡ 0 (mod 4) and n odd, diam(Mp × Cn) = diam(C 1
2
p+1 × Cn).
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Figure 3: The level diagrams of (a) M8, (b) C11 and (c) M8 × C11

Proof. By Lemma 2.1, diam(Mp ×Cn) ≥ diam(C 1
2
p+1 ×Cn). For the reverse inequality, it

suffices to show that the set of diametrical vertices of Mp × Cn relative to (0, 0) includes

at least one node that belongs to C 1
2
p+1 × Cn. To that end, let (v, i) be a vertex that is in

Mp×Cn but not in C 1
2
p+1×Cn. Then 1

2
p+1 ≤ v ≤ p−1. Note that v− 1

2
p+1 ∈ V (C 1

2
p+1).

By Prop. 1.4(3), v and v− 1
2
p+ 1 are equidistant from 0 in Mp. (See Fig. 2.) By symmetry

between v and v − 1
2
p + 1 relative to 0 in Mp, (v, i) is a diametrical vertex of Mp × Cn iff

so is (v − 1
2
p+ 1, i). See Fig. 3 that presents the level diagrams of M8, C11 and M8 × C11.

The nodes belonging to the canonical cycle C5 in M8 and those belonging to C5 × C11 in

M8 × C11 are “circled.”

Corollary 2.3 If p ≡ 0 (mod 4) and n is odd, then

diam(Mp × Cn) =



1
4
p 3 ≤ n ≤ 1

4
p

n 1
4
p+ 1 ≤ n < 1

2
p+ 1

n− 1 n = 1
2
p+ 1

1
2
p+ 1 1

2
p+ 3 ≤ n ≤ p+ 3

1
2
(n− 1) n ≥ p+ 5.

Proof. By Prop. 1.8 and Lemma 2.2.

8



Figure 4: diam(M64 × Cn) vs. n, 3 ≤ n ≤ 101

Table 2: Determining the minimality of 1
n
diam(Mp × Cn) for a given p

p ≡ 0 (mod 4) and n odd 1
n
diam(Mp × Cn) minimum of 1

n
diam(Mp × Cn)

3 ≤ n ≤ 1
4
p p

4n
1 when n = 1

4
p

1
4
p+ 1 ≤ n < 1

2
p+ 1 1 1

n = 1
2
p+ 1 1− 2

p+2
1− 2

p+2

1
2
p+ 3 ≤ n ≤ p+ 3 p+2

2n
1
2
(1− 1

p+3
) when n = p+ 3

n ≥ p+ 5 1
2
(1− 1

n
) 1

2
(1− 1

p+5
) when n = p+ 5

Fig. 4 illustrates Corollary 2.3 in respect of M64 × Cn, where 3 ≤ n ≤ 101.

Lemma 2.4 For a given p ≡ 0 (mod 4) and n odd, the graph Mp × Cn achieves its least

diameter relative to its order iff n = p+ 3.

Proof. The order of Mp ×Cn being equal to pn, it suffices to find an n for which the ratio

of diam(Mp × Cn) to n is the minimum. To that end, see Table 2 that itself is based on

Corollary 2.3.

The diameter relative to the order of M64 × Cn reaches its minimum when n = 67, cf.

Fig. 4.

The following is the main result of this paper.

Theorem 2.5 (1) For p ≡ 4, 8 (mod 12), Mp × Cp+3 is a six-regular circulant, where

diam(Mp × Cp+3) = 1
2
p+ 1, og(Mp × Cp+3) = p+ 3, and χ(Mp × Cp+3) = 3.

9



Table 3: Set S of vertices at a distance of i from 0 in Mp, 0 ≤ i ≤ 1
2
p+ 1

i even

S if |S|

{0} i = 0 1

{i, 1
2
p− i+ 1, 1

2
p+ i− 1, p− i} 2 ≤ i ≤ 1

4
p 4

{i, 1
2
p− i+ 1, 1

2
p+ i− 1, p− i} 1

4
p+ 1 ≤ i ≤ 1

2
p

 4 if i < 1
2
p

3 if i = 1
2
p

i odd

S if |S|

{1, 1
2
p, p− 1} i = 1 3

{i, 1
2
p− i+ 1, 1

2
p+ i− 1, p− i} 3 ≤ i ≤ 1

2
p− 1 4

{0} i = 1
2
p+ 1 1

(2) The order of Mp×Cp+3 is 4d2−2d−2, where d denotes its diameter and d ≡ 3, 5 (mod

6).

Proof. For (1), refer to Prop. 1.2, Prop. 1.1(1)–(4) and Lemma 2.4. For (2), diameter

d = 1
2
p+ 1, and if p ≡ 4 (mod 12), then d ≡ 3 (mod 6), and if p ≡ 8 (mod 12), then d ≡ 5

(mod 6). Further, p(p+ 3) = 4d2 − 2d− 2.

3 Average distance of Mp × Cp+3

We build the distance-wise node distribution of Mp ×Cp+3 relative to (0, 0) leading to the

average distance of the graph, where p ≡ 4, 8 (mod 12). To that end, the set of nodes in

Mp (resp. Cp+3) at a distance of i from 0 appears in Table 3 (resp. Table 4). It is easy to

verify the correctness of the entries.

Lemma 3.1 The distance-wise vertex count in Mp ×Cp+3 from Level 0 to Level 1
2
p+ 1 is

as follows: 1 + 8i− 2︸ ︷︷ ︸
1≤ i≤ 1

2
p− 1

+ (7
2
p− 3) + 5

2
p.

Proof. The claim is trivially true for levels 0 and 1. For i ≥ 2, the set of vertices at the

i-th level is equal to S ∪ T , where S and T are as follows:
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Table 4: Set S of vertices at a distance of i from 0 in Cp+3, 0 ≤ i ≤ 1
2
p+ 1

S if |S|

{0} i = 0 1

{i, p+ 3− i} 1 ≤ i ≤ 1
2
p+ 1 (i even or odd) 2

• S = {(x, y) | dMp(x, 0) = i and dCp+3(y, 0) = j ≤ i, where i and j are of the same

parity}, and

• T = {(x, y) | dMp(x, 0) = j < i and dCp+3(y, 0) = i, where i and j are of the same

parity}.

Note that S ∩ T = ∅. We distinguish three cases: (i) 2 ≤ i ≤ 1
2
p − 1, (ii) i = 1

2
p and

(iii) i = 1
2
p+ 1.

i. Let 2 ≤ i ≤ 1
2
p− 1.

a. Let i be even. The cumulative number of vertices in Cp+3 at an even distance of

0, 2, 4, . . . , i from 0 is equal to 1 + 2 × 1
2
i = i + 1, so |S| = 4(i + 1). Next, the

cumulative number of vertices in Mp at an even distance of 0, 2, 4, . . . , i− 2 from 0

is equal to 1 + 4 × 1
2
(i − 2) = 2i − 3, so |T | = (2i − 3) × 2 = 4i − 6. Accordingly,

|S|+ |T | = 8i− 2.

b. Let i be odd. The cumulative number of vertices in Cp+3 at an odd distance of

1, 3, 5, . . . , i is equal to 2× 1
2
(i+ 1) = i+ 1, so |S| = 4(i+ 1). Next, the cumulative

number of vertices in Mp at an odd distance of 1, 3, 5, . . . , i − 2 form 0 is equal to

3+4× 1
2
(i−3) = 2i−3, so |T | = (2i−3)×2 = 4i−6. Accordingly, |S|+ |T | = 8i−2.

ii. Let i = 1
2
p that is even. The number of vertices in Mp at an even distance of 1

2
p

from 0 is equal to 3 (that is the number of vertices at Level 1), while the cumulative

number of vertices in Cp+3 at an even distance of up to 1
2
p from 0 is equal to 1 + 1

2
p, so

|S| = 3(1 + 1
2
p) = 3

2
p + 3. Next, the cumulative number of vertices in Mp at an even

distance of up to 1
2
p− 2 from 0 is equal to 1 + 4× 1

2
(1
2
p− 2) = p− 3, so |T | = 2(p− 3).

Accordingly, |S|+ |T | = 7
2
p− 3.

iii. Let i = 1
2
p + 1 that is odd. In this case |S| = 1 × (1

2
p + 2) and |T | = (p − 1) × 2, so

|S|+ |T | = 5
2
p.

Theorem 3.2 The average distance of Mp×Cp+3 relative to its order is equal to 1
12(p+3)

(p+

2)(4p+ 13).
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Proof. The average distance (cf. Lemma 3.1) is given by

1
p(p+3)

(
1× 0 + (

∑ 1
2
p− 1

i=1 (8i− 2)i) + (7
2
p− 3)1

2
p+ 5

2
p(1

2
p+ 1)

)
= 1

p(p+3)

(
8(
∑ 1

2
p−1

i=1 i2)− 2(
∑ 1

2
p−1

i=1 i) + 3p2 + p
)

= 1
12p(p+3)

p(p+ 2)(4p+ 13)

= 1
12(p+3)

(p+ 2)(4p+ 13).

Observe that the average-distance(Mp × Cp+3) is equal to about two-thirds of diam(Mp ×
Cp+3) = 1

2
p+ 1.

4 A routing scheme via shortest paths

The objective of this section is to build a shortest path from the fixed node (0, 0) to a node

(r, s) in Mp × Cp+3, where r and s are not both 0. By Prop. 1.7, the shortest distance

depends on the relative parities of r and s.

Algorithm 1 traces a shortest even path and a shortest odd path from 0 to r in Mp.

There are two major cases: 0 ≤ r ≤ 1
2
p and 1

2
p+ 1 ≤ r ≤ p− 1. (If r = 0, then a shortest

even path consists of node 0 itself, and a shortest odd path consists of the canonical cycle.)

For each r, the sum of the length of a shortest 0-to-r even path and the length of a shortest

0-to-r odd path is equal to the odd girth, i.e., 1
2
p+ 1. See Fig. 3(a) for an illustration.

Algorithm 2 corresponds to Cp+3. See Fig. 3(b) for an illustration. In this case, the

sum of the length of a shortest even path and the length of a shortest odd path is equal to

p+ 3.

Fact 1 Let u1−u2−. . .−ua be a 0-to-r path in Mp, and let v1−v2−. . .−vb be a 0-to-s path

in Cp+3, where a and b are of the same parity, and u1 = 0, ua = r, and v1 = 0, vb = s. If

a = b, then (u1, v1)−(u2, v2)−. . .−(ua, va) is a valid path from (0, 0) to (r, s) in Mp×Cp+3. If

a < b, then append the preceding path by (ua−1, va+1)− (ua, va+2)− . . .− (ua, vb)︸ ︷︷ ︸, in which

ua−1 and ua alternate as the first co-ordinate. The situation is similar if a > b.

Theorem 4.1 Algorithm 3 correctly traces a shortest (0, 0)-to-(r, s) path in Mp × Cp+3,

where p ≡ 0 (mod 4).

Proof. By Prop. 1.7.
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Algorithm 1 A shortest even/odd path in Mp, p ≡ 0 (mod 4)

Ensure: 0 ≤ r ≤ p− 1
Require: Trace a shortest even path and a shortest odd path from 0 to r

if 0 ≤ r ≤ 1
2
p then

if r is even then
a shortest even path is 0− 1− 2− . . .− r, and
a shortest odd path is 0− (1

2
p)− (1

2
p− 1)− . . .− r;

else if r is odd then
a shortest even path is 0− (1

2
p)− (1

2
p− 1)− . . .− r, and

a shortest odd path is 0− 1− 2− . . .− r;
end if

end if
.
if 1

2
p+ 1 ≤ r ≤ p− 1 then
if r is even then

a shortest even path is 0− (p− 1)− (p− 2)− . . .− r, and
a shortest odd path is 0− (1

2
p)− (1

2
p+ 1)− . . .− r;

else if r is odd then
a shortest even path is 0− (1

2
p)− (1

2
p+ 1)− . . .− r, and

a shortest odd path is 0− (p− 1)− (p− 2)− . . .− r;
end if

end if

5 Jump sequence associated with Mp × Cp+3

This section determines the jump sequence associated with the circulants.

Theorem 5.1 [20] If gcd(r, t) = 1, then Cr × Ct admits a Hamiltonian cycle.

Proof. The following sequence of vertices in Cr × Ct corresponds to a Hamiltonian cycle:

x0, . . . , xrt−1, where xk = (k mod r, k mod t). Intuitively, the cycle is obtainable as follows.

Start at (0, 0), and at each step, increment the first co-ordinate modulo r and simulta-

neously increment the second co-ordinate modulo t. Fig. 5 illustrates the construction in

respect of C8 × C5.

Note: There exists a result more general than Theorem 5.1, viz., Cr × Ct is Hamiltonian

decomposable iff r and t are not both even [16].

Theorem 5.2 If p ≡ 4 (mod 12), then Mp × Cp+3
∼= Cp(p+3)(1, s, 2s + 1), where s =

1
6
(p+ 2)(p+ 3)− 1.
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Algorithm 2 A shortest even/odd path in Cp+3, p ≡ 0 (mod 4)

Ensure: 0 ≤ s ≤ p+ 2
Require: Trace a shortest even path and a shortest odd path from 0 to s

if s is even then
a shortest even path is 0− 1− 2− . . .− s, and
a shortest odd path is 0− (p+ 2)− (p+ 1)− . . .− s;

else if s is odd then
a shortest even path is 0− (p+ 2)− (p+ 1)− . . .− s, and
a shortest odd path is 0− 1− 2− . . .− s;

end if

Algorithm 3 A shortest (0, 0)-to-(r, s) path in Mp × Cp+3, p ≡ 0 (mod 4)

Ensure: 0 ≤ r ≤ p− 1 and 0 ≤ s ≤ p+ 2.
Require: r and s are not both 0.
1: invoke Algorithm 1 to obtain a shortest 0-to-r even path, say, Π0 and a shortest 0-to-r

odd path, say, Π1, both in Mp;
2: invoke Algorithm 2 to obtain a shortest 0-to-s even path, say, ∆0 and a shortest 0-to-s

odd path, say, ∆1, both in Cp+3;
3: employ Fact 1 to build a (0, 0)-to-(r, s) path, say, Π in Mp × Cp+3 using Π0 and ∆0;
4: employ Fact 1 to build a (0, 0)-to-(r, s) path, say, ∆ in Mp × Cp+3 using Π1 and ∆1;
5: return shorter of the two paths Π and ∆;

Proof. First recall that ±1 and ±1
2
p are the jumps associated with the circulant Mp, and

±1 are the jumps associated with the circulant Cp+3. Next, let x0, · · · , xp(p+3)−1 be the

sequence of vertices corresponding to a Hamiltonian cycle in Mp × Cp+3 that is based on

the proof of Theorem 5.1. It suffices to show that each of {xk, xk+s} and {xk, xk+2s+1} is

in E(Mp ×Cp+3), 0 ≤ k ≤ p(p+ 3)− 1, where k + s and k + 2s+ 1 are each taken modulo

p(p+ 3).

Let xk = (i, j), so xk+s = (i + s, j + s) and xk+2s+1 = (i + 2s + 1, j + 2s + 1), where

the arithmetic is modulo p in the first co-ordinate, and modulo p + 3 in the second. The

following statements ensure the membership of each of {i, i + s} and {i, i + 2s + 1} in

E(Mp). (Verification is left to the reader.)

• s = 1
6
(p+ 2)(p+ 3)− 1 ≡ 1

2
p (mod p), and

• 2s+ 1 = 1
3
(p+ 2)(p+ 3)− 1 ≡ 1 (mod p).

Next, the statements below show that {j, j + s}, {j, j + 2s+ 1} ∈ E(Cp+3):

• s = 1
6
(p+ 2)(p+ 3)− 1 ≡ −1 (mod p+ 3), and

• 2s+ 1 = 1
3
(p+ 2)(p+ 3)− 1 ≡ −1 (mod p+ 3).
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Figure 5: A Hamiltonian cycle in C8 × C5

Figure 6: M4 × C7
∼= C28(1, 6, 13)

It follows that each of {xk, xk+s} and {xk, xk+2s+1} is in E(Mp×Cp+3). Fig. 6 illustrates

the proof in respect of M4 × C7
∼= C28(1, 6, 13).

Theorem 5.3 If p ≡ 8 (mod 12), then Mp × Cp+3
∼= Cp(p+3)(1, s, 2s − 1), where s =

1
6
(p− 2)(p+ 3) + 1.

Proof. The argument is similar to that in the proof of Theorem 5.2. The essential facts

are as follows:

• s = 1
6
(p− 2)(p+ 3) + 1 ≡ 1

2
p (mod p), and

• 2s− 1 = 1
3
(p− 2)(p+ 3) + 1 ≡ −1 (mod p);

and

• s = 1
6
(p− 2)(p+ 3) + 1 ≡ 1 (mod p+ 3), and
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Figure 7: M8 × C11
∼= C88(1, 12, 23)

• 2s− 1 = 1
3
(p− 2)(p+ 3) + 1 ≡ 1 (mod p+ 3).

Fig. 7 illustrates the proof in respect of M8 × C11
∼= C88(1, 12, 23).

Remark: By Lemma 2.1, C 1
2
p+1×Cp+3 is an isometric subgraph of Mp×Cp+3. Interestingly

enough, C 1
2
p+1×Cp+3 itself is a circulant. More precisely, C 1

2
p+1×Cp+3

∼= C( 1
2
p+1)(p+3)(1, 2p+

5) [21]. In that light, the six-regular circulant Mp×Cp+3 may be viewed as an extension of

the four-regular circulant C 1
2
p+1 × Cp+3. The odd girth, diameter and chromatic number

of Mp × Cp+3 are equal to the respective parameters of C 1
2
p+1 × Cp+3.

The following result adds a distinctive property to the graphs.

Theorem 5.4 The circulants appearing in Theorems 5.2 and 5.3 are each Hamiltonian

decomposable, and their vertex connectivity is equal to six.

Proof. Dean [12] proved that a six-regular circulant on n vertices admits a Hamiltonian

decomposition if one of its step sizes corresponds to an element of order n. It is clear that

each circulant in Theorem 5.2 as well as 5.3 includes the step size of one that is of order n.
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That the vertex connectivity is equal to six follows from a theorem by Boesch and Felzer

[4] relating to a six-regular circulant, one of whose step sizes is equal to one.

6 Embedding of Mp × Cp+3 on a twisted torus

This section presents an algorithm to embed Mp × Cp+3 on a torus with a half twist. (See

Algorithm 4.) This kind of placement has certain advantages. As noted by Sequin [28], for

instance, embedding on a (twisted) torus means homogeneous multiprocessor configuration

without boundaries. In the present embedding, every processor has six nearest neighbors,

and connections between all pairs of processors are approximately of an equal length. In a

related development, Cámara et al. [8] presented twisted torus topologies derived from the

Cartesian product [16] of up to three cycles.

Lemma 6.1 Algorithm 4 correctly builds the embedding of Mp × Cp+3.

Proof. First consider Step 1, and note that φ(i1, j1) 6= φ(i2, j2) if j1 6= j2, i.e., nodes not in

the same row are distinct. Next, p and 1
2
p− 1 being coprime, (1

2
p− 1)i1 6≡ (1

2
p− 1)i2 (mod

p) if i1 6= i2, i.e., nodes in the j-th row are pairwise distinct if j is even. Similarly, nodes

in the j-th row are distinct if j is odd. It follows that the vertices on the array at Step 1

are well-defined, mutually distinct and exhaustive with respect to V (Mp × Cp+3).

For validity of the three kinds of edges at Step 2, it suffices to show that the first

coordinate of φ(i, j) is adjacent to the first coordinate of each of φ(i, j + 1), φ(i+ 1, j + 1)

and φ(i− 1, j + 1) in Mp. To that end, we prove that the absolute difference between the

respective coordinates taken modulo p is equal to 1, p − 1 or 1
2
p. The statements below

establish the claim for even j. (The case for odd j is similar.) The correctness itself is based

on the following fact: If x, y and n are integers, where n is positive and 0 < |x − y| < n,

then |(x mod n)− (y mod n)| mod n = |x− y| or n− |x− y|.

a.
∣∣((1

2
p− 1)i mod p)− (((1

2
p− 1)i+ 1

2
p) mod p)

∣∣ mod p = 1
2
p.

b.
∣∣((1

2
p− 1)i mod p)− (((1

2
p− 1)(i+ 1) + 1

2
p) mod p)

∣∣ mod p = 1 or p− 1.

c.
∣∣((1

2
p− 1)i mod p)− ((1

2
p− 1)(i− 1) + 1

2
p mod p)

∣∣ = 1 or p− 1.

Check to see that the “latitudinal wrap-around” edges introduced at Step 5, and the

“longitudinal wrap-around” edges introduced at Step 7 are well-defined. Further, the sets

of edges at Steps 3, 5 and 7 are mutually disjoint. Accordingly, the cumulative number of

edges is equal to (3p2 + 4p− 4) + (2p+ 4) + 3p = 3p(p+ 3) that is equal to |E(Mp×Cp+3)|.

Notice that the torus in the present case involves a half twist, i.e., a twist by 180◦.

This may be seen at Step 7 of Algorithm 4. The graph itself is such that the node (i, 0) is

not adjacent to (i, p + 2), rather (i, 0) is adjacent to (i + 1
2
p, p + 2). In the process, a half
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Algorithm 4 Embedding of Mp × Cp+3, p ≡ 0 (mod 4)

1: Lay out the vertices of Mp×Cp+3 on a (p+3)×p rectangular array in which the (i, j)-th
position is occupied by the vertex φ(i, j), where

φ(i, j) =


(

(1
2
p− 1)i mod p, j

)
if j is even(

(1
2
p− 1)i+ 1

2
p mod p, j

)
if j is odd

0 ≤ i ≤ p− 1, 0 ≤ j ≤ p+ 2.
2: . The vertices at the four “corners” are: φ(0, 0) = (0, 0), φ(p − 1, 0) = (1

2
p + 1, 0),

φ(0, p+ 2) = (0, p+ 2) and φ(p− 1, p+ 2) = (1
2
p+ 1, p+ 2).

3: Introduce the following:

• “Vertical” edges: {φ(i, j), φ(i, j + 1)}, 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p+ 1

• “Diagonal” edges: {φ(i, j), φ(i+ 1, j + 1)}, 0 ≤ i ≤ p− 2, 0 ≤ j ≤ p+ 1

• “Reverse diagonal” edges: {φ(i, j), φ(i− 1, j + 1)}, 0 ≤ i ≤ p− 2, 1 ≤ j ≤ p+ 2.

4: . The number of edges introduced at Step 3 is 3p2 + 4p − 4. Fig. 8 illustrates the
construction so far in respect of M8 × C11, where the three types of edges appear in
blue, red and green, respectively.

5: Introduce the following “latitudinal wrap-around” edges:

• (0, 0)− (1, 1)− (0, 2)− (1, 3)− · · · − (1, p+ 1)− (0, p+ 2), and

• (1
2
p+ 1, 0)− (1

2
p, 1)− (1

2
p+ 1, 2)− (1

2
p, 3)− · · · − (1

2
p, p+ 1)− (1

2
p+ 1, p+ 2).

6: . The number of edges introduced at Step 5 is 2p+4. The resulting “cylinder” appears
in Fig. 9 in respect of M8 × C11, where the “latitudinal wrap-around” edges appear
in “dotted pink.” For the sake of clarity, the “hidden” vertices have not been shown.
(Ignore the“thin dotted lines.”)

7: Introduce the “longitudinal wrap-around” edges {i, 0), (i−1, p+2)}, {i, 0), (i+1, p+2)}
and {i, 0), (i + 1

2
p, p + 2)} for i = 0, . . . , p − 1, where i − 1, i + 1 and i + 1

2
p are each

modulo p.
8: . The edges introduced at Step 7 total 3p. Fig. 10 illustrates them in respect ofM8×C11.

(Ignore the “thin dotted lines.”).
9: . The final form of Mp × Cp+3 appears in Fig. 11.
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Figure 8: Construction at the end of Step 3 in respect of M8 × C11

Figure 9: Construction at the end of Step 5 in respect of M8 × C11
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Figure 10: The “longitudinal” wrap-around edges in M8 × C11

Figure 11: Final form of Mp × Cp+3

20



twist becomes necessary. Note also that there are certain edge crossings in the embedding.

Indeed, an edge is crossed by at most one other edge. This kind of configuration has been

called an immersion in the literature [23].

7 Concluding remarks

This paper introduces a family of three-colorable, six-regular circulants representable as

the Kronecker product of a Möbius ladder and an odd cycle. The order of each graph is

4d2−2d−2, where d is its diameter, and d ≡ 3, 5 (mod 6), cf. Theorem 2.5(2). Interestingly

enough, the circulants inherit the twist existing in the Möbius ladder in that they admit

an embedding on a torus with a half twist.

A family of six-regular circulants, called triple-loop networks, has been studied at great

lengths in the literature [35, 9, 30, 31]. Its order is 3d2 + 3d + 1, where d is its diameter.

See Table 1 in Sec. 1 for a comparison.

Efficient gossiping, efficient broadcasting and superior routing are some of the problems

associated with the circulants in this paper that merit attention.

Acknowledgment: Thanks to the referee for his helpful comments, and thanks to Dr.

Jonathan D.H. Smith for his help and encouragement.
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[24] P. Kovács, “The minimal trivalent graphs with given smallest odd cycle,” Discrete
Math., vol. 54, pp. 295–299 (1985).

[25] F.C.M. Lau and G. Chen, “Optimal layout of midimew networks,” IEEE Trans. Par-
allel Dist. Syst., vol. 7, no. 9, pp. 954–961 (1996).

[26] C. Mart́ınez, R. Beivide and E.M. Gabidulin, “Perfect codes for metrics induced by
circulant graphs,” IEEE Trans. Inform. Th., vol. 53, no. 9, pp. 3042-3052, 2007.

22



[27] E.A. Monakhova, “A survey of undirected circulant graphs,” Discrete Math. Algo-
rithms Appl., vol. 4, no. 1, (30 pages) 2012.

[28] C.H. Sequin, “Doubly-twisted torus networks for VLSI processor arrays,” Proc. 8th
Annual Symposium on Computer Arch., pp. 471–480 (1981).

[29] S.-M. Tang, Y.-L. Wang and C.-Y. Li, “Generalized recursive circulant graphs,” IEEE
Trans. Parallel Dist. Syst., vol. 23, no. 1, pp. 87–93 (2012).

[30] A. Thomson and S. Zhou, “Gossiping and routing in undirected triple-loop networks,”
Networks, vol. 55, pp. 341–349 (2010).

[31] A. Thomson and S. Zhou, “Frobenius circulant graphs of valency six, Eisenstein-Jacobi
networks, and hexagonal meshes,” Europ. J. Combin., vol. 38, pp. 61–78 (2014).

[32] D. Tzvieli, “Minimal diameter double-loop networks-I: Large infinite optimal families,”
Networks, vol. 21, pp. 387–415 (1991).
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