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Abstract: A counterexample is presented to disprove Tang and Padubidri’s claim about

the bisection width of a diagonal mesh.

Index terms: Diagonal mesh, bisection width.

Tang and Padubidri [2] introduce a k×n diagonal mesh where k and n are odd integers

greater than or equal to three. The node set consists of all ordered pairs (x, y) where x ∈

{−k−1

2
, · · · , k−1

2
} and y ∈ {−n−1

2
, · · · , n−1

2
}. Further, each (x, y) has four neighbors:

• (< x+ 1 >k, < y + 1 >n)

• (< x+ 1 >k, < y − 1 >n)

• (< x− 1 >k, < y + 1 >n)

• (< x− 1 >k, < y − 1 >n)

where

< x >n =











x if |x| ≤ n−1

2

x− n if x > n−1

2

x+ n if x < −n−1

2
.

Figure 1 presents the 5 × 5 diagonal mesh that consists of 25 nodes and 50 edges.

It is essentially a reproduction of Figure 1(b) that appears in [2] (p. 816).

Remark: The graph has been presented in a way that minimizes edge crossings. In

particular, nodes in the leftmost column (resp. top row) are to be identified with the

corresponding nodes with the same label in the rightmost column (resp. bottom row).
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Figure 1: The 5× 5 diagonal mesh

It is relevant to note that the k × n diagonal mesh is actually isomorphic to the

direct product of two cycles of lengths k and n, respectively [1].

The bisection width of a connected graph is defined to be the least number of

edges that need to be removed so that the resulting graph consists of two connected

components having the same number (plus/minus one) of nodes. Tang and Padubidri

“claim” ([2], p. 817) that the bisection width of a k × n diagonal mesh is equal to 4n

where k ≥ n ≥ 3. The objective of this note is to disprove their claim. To that end,

Figure 2 presents two node-disjoint connected subgraphs of the 5×5 diagonal mesh. The

nodes of the first subgraph (resp. second subgraph) appear within “rectangles” (resp.

“ovals”). While the first subgraph accounts for 13 nodes and 20 edges, the second

subgraph accounts for 12 nodes and 18 edges. In other words, the two connected

subgraphs (whose numbers of nodes differ by just one) are obtainable by removing only
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12 edges of the original graph. Thus the bisection width of the 5× 5 diagonal mesh is

at most 12 (not 20 as suggested by the authors).

Note: The two subgraphs appearing in Figure 2 are to be viewed in the light of the

earlier remark, viz., nodes in the leftmost column (resp. top row) are to be identified

with the corresponding nodes with the same label in the rightmost column (resp. bottom

row).
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Figure 2: Two connected subgraphs of the 5× 5 diagonal mesh
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