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Perfect -Domination in the Kronecker Product
of Three Cycles

Pranava K. Jha

Abstract—If 1, and and are each a multiple of
( + 1) + , then each isomorphic component of the graph

admits of a vertex partition into ( +1) + perfect -dom-
inating sets. The result induces a dense packing of by
means of vertex-disjoint subgraphs, each isomorphic to a connected com-
ponent of . Additional results include a general
lower bound on -domination number of a Kronecker product of finitely
many cycles. Areas of applications include efficient resource placement in
communication networks and error-correcting codes.

Index Terms—Cycle, error-correcting codes, graph theory, Kronecker
product, perfect domination, resource placement, vertex partition.

I. INTRODUCTION

Consider a computer/communication network that usually has a reg-
ular structure. The nodes are distinguishable into resource nodes and
nonresource nodes. Each of the former houses replicable items such as
power sources, I/O ports, function libraries and algorithmic informa-
tion, while each of the latter is within a distance ofr from at least one
resource node, wherer � 1. The resources are usually limited and ex-
pensive, hence the need for minimizing the number of respective nodes.
An optimal solution is reached when each nonresource node is within
a distance ofr from exactly one resource node.

The foregoing problem of efficient resource placement has a natural
graph-theoretical formulation, where the objective is to construct aper-
fectr-dominating set(formally defined below) of the underlying graph.
It has been studied with respect to a number of network topologies, in-
cluding hypercubes [1], 2-D torus [2] and 3-D torus [3]. The main result
of this paper consists of a vertex partition of theKronecker product(or
�-product, defined later) of three cycles into perfectr-dominating sets,
where length of each cycle is a multiple of(r + 1)3 + r

3.
The concept of perfectr-domination has applications in several other

areas, notably, error-correcting codes, game theory and frequency as-
signment [4]–[7]. The well-known Hamming code corresponds to a
perfect 1-domination in then-cube, wheren = 2k � 1; k � 2 [8],
[9]. Even when a perfectr-dominating set is not known for a given
graph, an analogous information with respect to a related graph may
be useful to help construct a near-optimal set.
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Each connected component ofCm �Cm �Cm is a regular graph
of degree eight, has a low diameter [10], and is edge-decomposable into
Hamiltonian cycles [11]. Accordingly, it is amenable to an application
as a fault-tolerant communication network. The graphC2i+1�C2j+1

has been called a diagonal mesh [12] that has proved to be useful in
parallel computer architecture.

By a graph is meant a finite, simple and undirected graph. Unless
indicated otherwise, graphs are also connected and contain at least two
vertices. Form � 2 andn � 3, let Pm (resp.Cn) denote apath
(resp. acycle) on m (resp.n) vertices, whereV (Pk) = V (Ck) =
f0; . . . ; k � 1g, and where adjacencies are defined in a natural way.

For a graphG = (V;E), a vertexv is said tor-dominate a vertexw
if 0 � dG(v; w) � r. A vertex subsetS is called anr-dominating set
(resp. aperfectr-dominating set) if every vertex ofG isr-dominated by
some vertex (resp. a unique vertex) inS. The cardinality of a smallest
r-dominating set ofG is called ther-domination numberofG, denoted
by r(G). It is easy to see thatr(Cn) = r(Pn) = dn=(2r + 1)e.
The general problem of determiningr(G) is known to be NP-hard
even for bipartite graphs [13].

For graphsG = (V;E) andH = (W;F ), theKronecker product
G�H of G andH is defined as follows:V (G�H) = V �W and
E(G�H) = ff(a; x); (b; y)g: fa; bg 2 E andfx; yg 2 Fg. This
product is variously known as direct product, cardinal product, categor-
ical product, tensor product, and cross product. It is commutative and
associative in a natural way, and is distributive with respect to edge-dis-
joint union of graphs. For any undefined terms or missing references,
see the recent monograph by Imrich and Klavz̆ar [14].

If G andH are not both bipartite, thenG�H is connected, oth-
erwiseG�H consists of two connected components where vertices
(a; x) and(b; y) belong to the same component if and only ifdG(a; b)
anddH(x; y) are of the same parity, wheredG denotes the (shortest)
distance metric inG. FurtherG�H is bipartite if and only ifG orH
is bipartite. It is easy to see that the order ofG�H is jV j � jW j and
the size is2 � jEj � jF j. The following result will be useful in the sequel.

Proposition 1.1:

1) If G andH are both bipartite, and(a; x); (b; y) belong to the
same component ofG � H , then dG�H((a; x); (b; y)) =
maxfdG(a; b); dH(x; y)g.

2) If G and H are both nonbipartite, thenog(G � H) =
maxfog(G);og(H)g, whereog(G) denotes the odd girth, i.e.,
length of a shortest odd cycle ofG.

For m0; . . . ; mk�1 � 3, with k � 2, the following remarks are
relevant [11]: (i)Cm � � � � � Cm is a regular graph of degree2k,
and (ii) If the number of even integers amongm0; . . . ;mk�1 is p � 2,
thenCm � � � � � Cm consists of2p�1 components that are mu-
tually isomorphic.

Perfect r-dominating sets with respect to the Cartesian product
Cm � � � Cm and (each component of) the Kronecker product
Cm � � � � � Cm are known for certain cases. See Table I.
Domination in the Kronecker product, in general, has been studied by
several authors [18]–[20].

Section II presents a lower bound onr(Cm � � � � � Cm ) and
shows that the subgraph induced by vertices within a distance ofr from
a particular vertex ofCm � � � � � Cm is isomorphic to a con-
nected component of the�-product ofk copies ofP2r+1. Section III
presents the main result, and a corollary dealing with: 1) exact value of
r(Cm �Cm �Cm ) and 2) a dense packing ofCm �Cm �Cm
by means of vertex-disjoint subgraphs isomorphic to a connected com-
ponent ofP2r+1 � P2r+1 � P2r+1, wherem0;m1 andm2 are each a
multiple of (r + 1)3 + r3.
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TABLE I
EXISTENCE OFPERFECTr-DOMINATING SETS IN PRODUCTS OFCYCLES

II. PRELIMINARIES

Definition 1: Let G be a graph with radiuss. For 0 � r � s,
an r-ball centered at a vertexv of G is the setfw 2 V (G) : 0 �
dG(v; w) � rg.

An r-dominating set ofG is a spanning ofG by r-balls [15]. In the
case of a perfectr-dominating set, ther-balls are mutually exclusive
and exhaustive. In what follows, an “r-ball” will be used also to denote
the corresponding induced subgraph.

Lemma 2.1: For r � 1 andk � 2, letm0; . . . ;mk�1 � 2r + 2.
The order of anr-ball inCm � � � � � Cm is equal to(r+1)k+rk

while the size is equal to(2r)k.
Proof: Since m0; . . . ; mk�1 > 2r + 1, an r-ball in

Cm � � � � � Cm is necessarily bipartite, cf. Proposition
1.1(2).

Let (v0; . . . ; vk�1) 2 V (Cm � � � � � Cm ). For 1 � p � r,
a vertex at a distance ofp from (v0; . . . ; vk�1) is of the form(v0 +
a0; . . . ; vk�1 + ak�1), where

• a0; . . . ; ak�1 2 f�p+ 2j : 0 � j � pg;
• maxfja0j; . . . ; jak�1jg = p;
• vi + ai is modulomi; 0 � i � k � 1.

Thus, vertices at a distance ofp from (v0; . . . ; vk�1) total(p+1)k�
(p� 1)k. Accordingly, the order of anr-ball is equal to

1 +

r

p=1

((p+ 1)k � (p� 1)k) = (r + 1)k + r
k
:

Observe next that anr-ball may be viewed as a (sub)graph consisting
of levels0; . . . ; r, where(v0; . . . ; vk�1) is the sole resident of level 0,
and vertices at levelp are of the form(v0 + a0; . . . ; vk�1 + ak�1),
wherea0; . . . ; ak�1 are as mentioned earlier. Since anr-ball itself is
bipartite, vertices at the same level are necessarily nonadjacent.

Note that every vertex ofCm � � � � � Cm is of degree2k. Ac-
cordingly, every vertex in anr-ball up to levelr � 1 is of degree2k.
It is claimed that the number of edges between levelp and levelp+ 1
is equal to2k � ((p + 1)k � pk), where0 � p � r � 1. Forp = 0,
the claim is easily seen to be true. Letp � 1. There are a total of
(p + 1)k � (p � 1)k mutually nonadjacent vertices at levelp, and
hence there are a total of2k � ((p+ 1)k � (p� 1)k) edges incident on
them. Out of these,2k � (pk � (p� 1)k) are between levelp� 1 and
level p (by induction hypothesis). Thus the number of edges between
level p and levelp + 1 is equal to

2k �((p+1)k�(p�1)k)�2k �(pk�(p�1)k) = 2k �((p+1)k�p
k):

By the foregoing claim, the size of anr-ball is given by

r�1

p=0

2k � ((p+ 1)k � p
k) = 2k � rk = (2r)k:

The following lower bound is immediate.
Lemma 2.2:

r(Cm � � � � � Cm ) �
�k�1
i=0mi

(r + 1)k + rk
:

.

Fig. 1. The graphP (0).

As stated in Table I, and subsequently in Corollary 3.2(1), the lower
bound of Lemma 2.2 is achievable in certain cases.

Let k � 2, and consider the graphP k
2r+1 = P2r+1 � � � � � P2r+1

(k factors) that consists of2k�1 connected components (all bipartite)
where vertices(v0; . . . ; vk�1) and(w0; . . . ; wk�1) belong to the same
component if and only ifvi+vi+1 andwi+wi+1 are of the same parity,
0 � i � k � 2. Let P k

2r+1(0) denote the connected component that
includes the vertex(0; . . . ; 0), i.e.,k-tuple of all 0’s. It is shown in the
rest of the section that anr-ball inCm � � � � � Cm is isomorphic
to P k

2r+1(0). The following remarks are relevant.

1) The two partite sets ofP k
2r+1(0) are given by:

• V0 = f(v0; . . . ; vk�1): vi is an even integer between 0 and
2rg.

• V1 = f(w0; . . . ; wk�1): wi is an odd integer between 1
and2r � 1g.

2) P k
2r+1(0) is unique among all connected components ofP k

2r+1

in that all pendant vertices ofP k
2r+1 are included in it. (Pendant

vertices are those(v0; . . . ; vk�1) in which eachvi is either 0 or
2r.)

Note thatjV0j = (r + 1)k and jV1j = rk, hence the order of
P k
2r+1(0) is (r + 1)k + rk. Also, size ofP k

2r+1(0) is (2r)k, which
follows from the fact that ifG andH are bipartite graphs, then the size
of each connected component ofG�H is equal tojE(G)j � jE(H)j.
GraphP 2

7 (0) appears in Fig. 1; for simplicity, vertices(i; j) have been
shown asij.

Observe that the order (respective size) ofP k
2r+1(0) coincides with

the order (resp. size) of anr-ball in Cm � � � � � Cm , where
m0; . . . ; mk�1 � 2r + 2. The two graphs are actually isomorphic.
To see this, let�r = (r; . . . ; r), i.e.,k-tuple of allr’s. It is easy to see
that�r belongs toP k

2r+1(0) and is such that (i) every vertex is within a
distance ofr from �r, and (ii) no other vertex has this property. In other
words,�r is the unique center ofP k

2r+1(0). (Vertices(w0; . . . ; wk�1)
at a distance of exactlyr from �r are such that at least onewi is 0 or
2r.)

Analogous to the structure of anr-ball, P k
2r+1(0) may be viewed

as a graph consisting of levels0; . . . ; r, where�r = (r; . . . ; r) is the
sole resident of level 0, and vertices at levelp are of the form(r +
a0; . . . ; r + ak�1) wherea0; . . . ; ak�1 are as in the proof of Lemma
2.1. The reader may check to see that there is a natural bijection(v0 +
a0; . . . ; vk�1 + ak�1)$ (r+ a0; . . . ; r+ ak�1) between the vertex
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TABLE II
VARIOUS CASES

set of ther-ball centered at(v0+a0; . . . ; vk�1+ak�1) and the vertex
set ofP k

2r+1(0) (centered at�r) that corresponds to an isomorphism.
Lemma 2.3: For r � 1 andk � 2, if m0; . . . ;mk�1 � 2r + 2,

then anr-ball inCm � � � � � Cm is isomorphic toP k

2r+1(0).

III. M AIN RESULT

The following is the central result of this paper.
Theorem 3.1: For r � 1, if m0;m1 andm2 are each a multiple of

(r+1)3+r3, then each isomorphic component ofCm �Cm �Cm
admits of a vertex partition into(r + 1)3 + r3 perfectr-dominating
sets.

Proof: Let n = (r + 1)3 + r3 = 2r3 + 3r2 + 3r + 1, and let
a typical vertex(v0; v1; v2) of Cm � Cm � Cm be assigned the
integer label

(2((r+ 1)2 + r2)v0 + 2(r + 1)v1 + 2rv2)modn:

The assignment is clearly well-defined. It suffices to show that a vertex
distinct from(v0; v1; v2) and within a distance of2r from (v0; v1; v2)
receives a label that is different from that of(v0; v1; v2).

Let p 2 f1; . . . ; 2rg, and consider a vertex at a distance ofp from
(v0; v1; v2). Such a node is of the form(v0+a; v1+ b; v2+ c), where
(i) a; b; c 2 f�p + 2j : 0 � j � pg, (ii) maxfjaj; jbj; jcjg = p, and
(iii) v0+ a is modulom0; v1+ b is modulom1; andv2+ c is modulo
m2. (Note thata; b andc are of the same parity.) The label assigned to
(v0 + a; v1 + b; v2 + c) is

(2((r+ 1)2 + r2)v0 + 2(r+ 1)v1 + 2rv2

+2((r+ 1)2 + r2)a+ 2(r+ 1)b+ 2rc)modn:

That this label is different from the one assigned to(v0; v1; v2) is
equivalent to

(2((r+ 1)2 + r2)a+ 2(r+ 1)b+ 2rc)modn > 0:

For integerss andt, wheret is odd� 3, it is easy to see that(2s)
mod t = x > 0 if and only if (�2s) mod t = t � x > 0. Based on
this fact, it suffices to prove the stated claim fora � 0. Accordingly,
there are a total of twelve cases, as detailed in Table II.

The reader may check to see that

• 2((r+ 1)2+ r2)a+ 2(r+ 1)b+ 2rc is of the form4t for some
t, wherea; b andc are of the same parity;

• 2((r + 1)2 + r2)a + 2(r + 1)b+ 2rc is strictly between�2n
and5n for 0 � a � 2r;�2r � b � 2r; and�2r � c � 2r.

Based on these observations, it need only be shown that2((r+1)2+
r2)a+2(r+1)b+2rc, i.e.,2�[(2r2+2r+1)a+(r+1)b+rc] is nonzero
and not equal to4n = 4(2r3+3r2+3r+1) = 2�[4r3+6r2+6r+2].

In other words, the following claims need to be established for each of
the twelve cases.

1) (2r2 + 2r + 1)a+ (r + 1)b+ rc 6= 0, and
2) (2r2 + 2r + 1)a+ (r + 1)b+ rc 6= 4r3 + 6r2 + 6r + 2.

Case 1: a = p; 0 � b � p and0 � c � p.
First note that(2r2 + 2r + 1)a+ (r + 1)b+ rc, i.e.,(2r2 + 2r +

1)p+(r+1)b+rc is clearly positive, and hence nonzero. Assume that

(2r2 + 2r + 1)p+ (r + 1)b+ rc = 4r3 + 6r2 + 6r + 2, i.e.,
2pr2 + (2p+ b+ c)r + (p+ b) = 4r3 + 6r2 + 6r + 2, i.e.,
(pr+p+1=2(b+c)) �(2r)+(p+b) = (2r2+3r+3) �(2r)+2.

Note thatb andc being of the same parity,b + c is even. For the
foregoing equality to hold,(p+b) � 2modulo(2r). Since0 < p+b �
4r, eitherp + b = 2 or p + b = 2r + 2. If p + b = 2, thenp � 2
and hencec � 2, in which case2pr2 + (2p + b + c)r + (p + b) is
at most4r2 + 6r + 2 < 4r3 + 6r2 + 6r + 2. On the other hand, if
p + b = 2r + 2, then2pr2 + (2p + b + c)r + (p + b) is at most
(4r) � r2+(2r+2r+2+2r) � r+(2r+2) = 4r3+6r2+4r+2 <
4r3 + 6r2 + 6r + 2. Contradiction.

Case 2: a = p; 0 � b � p and�p � c < 0.
Let c = �e whence0 < e � p, and note that(2r2 + 2r + 1)a +

(r + 1)b + rc = (2r2 + 2r + 1)p + (r + 1)b � re that is clearly
positive, sincep � 1 and2r2 + 2r + 1 > 2r2 � re. Further,(2r2 +
2r+1)p+(r+1)b�re < (2r2+2r+1)p+(r+1)b � (2r2+2r+
1) � (2r) + (r + 1) � (2r) = 4r3 + 6r2 + 4r < 4r3 + 6r2 + 6r + 2.

Case 3: a = p;�p � b < 0 and0 � c � p.
Let b = �d whence0 < d � p, and note that(2r2 + 2r + 1)a +

(r + 1)b + rc = (2r2 + 2r + 1)p � (r + 1)d + rc that is clearly
positive, hence nonzero. Further,(2r2 + 2r+ 1)p� (r+ 1)d+ rc <
(2r2+2r+1)p+rc � (2r2+2r+1)�(2r)+r�(2r) = 4r3+6r2+2r <
4r3 + 6r2 + 6r + 2.

Case 4: a = p;�p � b < 0 and�p � c < 0.
Let b = �d andc = �e whence0 < d; e � p, and note that

(2r2+2r+1)a+(r+1)b+rc, i.e.,(2r2+2r+1)p� (r+1)d�re
is positive, sincep � 1; p � d; e and2r2+2r+1 > r+1+r. Further,
it is easy to see that(2r2+2r+1)p�(r+1)d�re < 4r3+6r2+6r+2.

Case 5: 0 � a � p; b = p and0 � c � p.
Argument is similar to that in Case 1.
Case 6: 0 � a � p; b = p and�p � c < 0.
Argument is similar to that in Case 2.
Case 7: 0 � a � p; b = �p and0 � c � p.
(2r2+2r+1)a+(r+1)b+rc = (2r2+2r+1)a�(r+1)p+rc.

If a = 0, then this expression is strictly negative, and ifa � 1, then its
least value is at least(2r2+2r+1)�(r+1) �(2r) = 1 corresponding
to a = 1; p = 2r andc = 0. It follows that(2r2 + 2r + 1)a� (r +
1)p+ rc 6= 0. That it is not equal to4r3 + 6r2 + 6r + 2 follows by
an argument as in Case 3.

Case 8: 0 � a � p; b = �p and�p � c < 0.
Letc = �ewhence0 < e � p, and(2r2+2r+1)a+(r+1)b+rc=

(2r2 + 2r + 1)a� (r + 1)p� re. Assume that

(2r2 + 2r + 1)a� (r + 1)p� re = 0, i.e.,
2ar2 + (2a� p � e)r + (a � p) = 0, i.e.,
(ar + a � 1=2(p+ e)) � (2r) + (a � p) = 0.

Note thatp ande being of the same parity,p + e is even. For the
foregoing equality to hold, either(a�p) = 0 or (a�p) = �2r, since
0 � a � p � 2r. First suppose thata � p = 0, i.e.,a = p whence
2ar2+(2a�p�e)r+(a�p) = 2pr2+(p�e)r that is clearly positive,
hence nonzero. Next suppose thata�p = �2r which is possible if and
only if a = 0 andp = 2r, whence2ar2+ (2a� p� e)r+(a� p) =
(�2r�e)r�2r that is clearly negative, hence nonzero. Contradiction.
That2ar2+(2a�p�e)r+(a�p) is strictly less than4r3+6r2+6r+2
is easy to see.

Case 9: 0 � a � p; 0 � b � p andc = p.
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Argument is similar to that in Case 1.
Case 10: 0 � a � p;�p � b < 0 andc = p.
Left to the reader.
Case 11: 0 � a � p; 0 � b � p andc = �p.
Left to the reader.
Case 12: 0 � a � p� p � b < 0 andc = �p.
Left to the reader.
In all of the foregoing arguments, the modulo arithmetic works cor-

rectly, sincem0; m1 andm2 are each a multiple ofn = (r+1)3+r3.
For (an isomorphic component of)Cm �Cm �Cm , letVt denote

the set of vertices that receive the labelt, where0 � t � n�1. The sets
V0; . . . ; Vn�1 constitute a vertex partition into perfectr-dominating
sets.

Results 2.1, 2.2, 3.1 together with the discussion in Section II lead
to the following.

Corollary 3.2: Letr � 1, and letm0;m1 andm2 each be a multiple
of (r + 1)3 + r3.

1)

r (Cm � Cm � Cm ) =
m0m1m2

(r + 1)3 + r3
:

2) Cm � Cm � Cm admits of a vertex partition into
(m0m1m2)=((r+ 1)3 + r3) induced subgraphs, each isomor-
phic toP 3

2r+1(0).

Corollary 3.2(2) may be viewed as a packing ofCm �

Cm � Cm by means of(m0m1m2)=((r+ 1)3 + r3) vertex-dis-
joint (and hence edge-disjoint) copies ofP 3

2r+1(0), that has
(2r)3 edges. All such copies thus collectively account for
8r3 � (m0m1m2=((r+ 1)3 + r3)) edges ofCm �Cm �Cm that
has a total of4m0m1m2 edges. Thus, the “density” of this packing
is equal to

1

4m0m1m2

� 8r3 �
m0m1m2

(r + 1)3 + r3
=

2r3

(r + 1)3 + r3

that approaches 100% for larger.
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A Note on Chaotic Secure Communication Systems

Zhong-Ping Jiang

Abstract—This paper presents a new way to transmit and retrieve an
information-bearing signal via chaotic systems. In contrast to existing
schemes with one transmission line, atwo-channel transmission method
is adopted for the purpose of faster synchronization and higher security.
Basically, an output of the chaotic transmitter is sent for synchroniza-
tion-only, with no connection to the information signal. The other channel
transmits a signal generated from a highly nonlinear function of the
chaotic states and the information-bearing signal. While the first channel
serves the purpose of efficient synchronization, the second channel is used
for complicated encryption and, therefore, improved security/privacy.
Simulation results validate the new chaos-based secure communication
method.

Index Terms—Chaos synchronization, encryption, observer, secure com-
munication.

I. INTRODUCTION

Undoubtedly, data security has been a topic of increasing impor-
tance in communications as the Internet and personal communications
systems are being made accessible worldwide. In recent years, using
chaotic signals to address the secure communication problem has
received a great deal of attention. Various methods for chaos-based
secure transmission of private information signals have been proposed
by several authors; see [12], [3], [6], [2], [1], [8], [15]–[17] and refer-
ences therein. Some popular methods are additive masking, chaotic
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