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(resp. acycle on m (resp.n) vertices, wherd’(P;,) = V(Cy) =
{0,...,k — 1}, and where adjacencies are defined in a natural way.
Foragraphd = (V, E), a vertexv is said tor-dominate a vertex
if 0 < dg(v,w) < r.Avertex subseb is called anr-dominating set
Perfect r-Domination in the Kronecker Product (resp. gperfectr-dominating sétif every vertex of= isr-dominated by
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of Three Cycles r-dominating set o+ is called the--domination numbeof &, denoted
Pranava K. Jha by v.-(G). It is easy to see that.(Cr) = v(Pn) = [n/(2r + 1)].
The general problem of determining (&) is known to be NP-hard
even for bipartite graphs [13].
Abstract—f » > 1, and mq,m, and m, are each a multiple of For graphsi = (V, E) andH = (W, F), the Kronecker product

g + 15 + ’:,3' 'tthe? eacrl isomot_rtphiq ctorr(lpg:f;g 3: the gr?pffwao X G x H of G andH is defined as followsV (G x H) =V x W and
le m2a mIts ot a vertex parttion into (» r” pertectr-aom- E(GXH)—{{((I l) (b )} fa b}eEandf;r 'I}EF} ThiS

inating sets. The resultinduces a dense packing €., X Cyn; X Cn., by ~ )= )04 s Y )

means of vertex-disjoint subgraphs, each isomorph?c to a connected com- Productis variously known as direct product, cardinal product, categor-

ponent of Py, 41 X Pary1 X Paryq. Additional results include a general  ical product, tensor product, and cross product. It is commutative and

lower bound on r-domination number of a Kronecker product of finitely  associative in a natural way, and is distributive with respect to edge-dis-

many cycles. Areas of applications include efficient resource placement in joint union of graphs. For any undefined terms or missing references

communication networks and error-correcting codes. . '
see the recent monograph by Imrich and Klav[14].

Index Terms—Cycle, error-correcting codes, graph theory, Kronecker If G and H are not both bipartite, the x H is connected, oth-
product, perfect domination, resource placement, vertex partition. erwiseG x I consists of two connected components where vertices
(a,2) and(b, y) belong to the same component if and onlgdf(a, b)
andd (x,y) are of the same parity, whede; denotes the (shortest)

) o distance metric irt7. FurtherG' x H is bipartite if and only ifG or

Consider a computer/communication network that usually has a regpipartite. It is easy to see that the ordexdi H is |V| - |W| and
ular structure. The nodes are distinguishable into resource nodes gdsize i - |E|- |F|. The following result will be useful in the sequel.
nonresource nodes. Each of the former houses replicable items such ggoposition 1.1:
power sources, I/O ports, fu.nctlpnlllbrarlles and algorithmic informa- 1) If G and H are both bipartite, anda, «), (b, y) belong to the
tion, while each of the latter is within a distancerdfrom at least one

. same component of x H, thendaxm((a,x),(b,y)) =
resource node, where> 1. The resources are usually limited and ex- L
. N . max{da(a,b),du(z,y)}.

pensive, hence the need for minimizing the number of respective nodes, N ) _

) A - 2) If G and H are both nonbipartite, theng(G x H) =
An optimal solution is reached when each nonresource node is within , . ‘ S

. max{og(G),og(H)}, whereog(G) denotes the odd girth, i.e.,
a distance of from exactly one resource node.
. - length of a shortest odd cycle 6f.

The foregoing problem of efficient resource placement has a natural
graph-theoretical formulation, where the objective is to constrpeta ) ) u
fectr-dominating setformally defined below) of the underlying graph.  FOT 0. -, i1 > 3, with k> 2, the following remarks are
It has been studied with respect to a number of network topologies, fRlevant [11]: ()Cg X -+ x Crny_, is aregular graph of _degr@é,
cluding hypercubes [1], 2-D torus [2] and 3-D torus [3]. The main resu@id (il) If the number of even |r_\tegerslir1nomg. e k-1 18P 2 2,
of this paper consists of a vertex partition of t@necker producfor €Ny X -~ x Ty, cONsists 02"~ components that are mu-

x -product defined later) of three cycles into perfeetiominating sets, tually isomorphic. _ _
where length of each cycle is a multiple@f+ 1) + °. Perfect r-dominating sets with respect to the Cartesian product

The concept of perfeetdomination has applications in several othep’moD +++1Chm, _, and (each component O_f) the Kronecker product
areas, notably, error-correcting codes, game theory and frequency&ss X =+ X Cu,_, @re known for certain cases. See Table I.
signment [4]-[7]. The well-known Hamming code corresponds to Romination in the Kronecker product, in general, has been studied by
perfect 1-domination in the-cube, where, = 2¢ — 1,k > 2 [g], Several authors [18]-{20]. , ’

[9]. Even when a perfect-dominating set is not known for a given Section Il presents a lower bound 9n(C'u X -+ X Chuy ;) and

graph, an analogous information with respect to a related graph n#f}PWs that the subgraph induced by vertices within a distanctoin

be useful to help construct a near-optimal set. a particular vertex o, X «++ X Cpn, | is isomorphic to a con-
nected component of the-product ofk copies of ..+ . Section llI
presents the main result, and a corollary dealing with: 1) exact value of
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TABLE |
EXISTENCE OF PERFECT7-DOMINATING SETS IN PRODUCTS OFCYCLES
CmoO---OCm,_, l Cimg X --- X COmy_,
r=1,k>1and my,---,mg_jeach | r=1,%>2and my,---,mi_1 each
a multiple of 2k + 1 [4, 15] a multiple of 2F + 1 [16]
r > 1, k =2 and my, m; each r > 1, k =2 and mg, m; each
a multiple of 2r2 + 2r + 1 [4, 15] a multiple of 2r2 + 2r + 1 [17]

Il. PRELIMINARIES 00\ /02\ /04\ /06

Definition 1: Let G be a graph with radius. For0 < » <

<r < s, 11 13 15
anr-ball centered at a vertex of G is the set{fw € V(@) : 0 < 20/ \22/ \24/ \26
dg(v,m)gf}.. . . | \ / \ / \ /

An r-dominating set of7 is a spanning of7 by r-balls [15]. In the

case of a perfect-dominating set, the-balls are mutually exclusive / \ / \ / \
and exhaustive. In what follows, an-ball” will be used also to denote

the corresponding induced sut;graph. \ / \ / \ /
Lemma 2.1: For r _2 landk > 2, Ietmo_,...,mk_l > 27;—1— 2; / \ / \ / \

The order of am-ballinCy,, X --- x Chy,,_, isequaltor+1)"+r
while the size is equal te2r)*.

Proof: Since mo,....ms—1 > 2r + 1, an r-ball in Fig. 1. The graphP?(0).
Crmg X o X Crpy IS necessarily bipartite, cf. Proposition

1-1(2)- As stated in Table I, and subsequently in Corollary 3.2(1), the lower

Let (vo.....0x—1) € V(Ciup X -+ X Cmy_y). FOrL < p <7y poung of Lemma 2.2 is achievable in certain cases.
a vertex at a dlstanc;e offrom (vo,...,v,_1) is of the form(ve + Letk > 2, and consider the gradalz’ifﬂ = Pyyy X - X P
a0, vg—1 +ax—1), where (k factors) that consists & ~' connected components (all bipartite)
* agy... ap—1 € {=p+2j:0< 5 < ph where verticesvo, . .., vi.—1 ) and(wo, . . ., w1 ) belong to the same
¢ IndX{|¢LO| ----- Nak-1l} = p; componentif and only ifi; +v;4., andw;4w;1 are of the same parity,
« v + a; is modulom,,0 < i < k — 1. 0 < i < k—2.Let Pf,(0) denote the connected component that
Thus, vertices at a distanceyofrom (vo, . .., vi—1) total (p+1)* = includes the vertex0, . . ., 0), i.e., k- tuple of all 0’s. Itis shown in the
(» — 1)*. Accordingly, the order of an-ball is equal to rest of the section that anball in Cy,, X - -+ x Ch, _, is isomorphic
r . . - to P4, (0). The following remarks are relevant.
1+ Z((p +D)"=(-D")=0C+1)"+r". 1) The two partite sets aPs, . ;(0) are given by:
p=1 * Vo = {(vo,...,vk—1): v; isan eveninteger between 0 and
Observe next that antball may be viewed as a (sub)graph consisting 2r}.
of levels0,. .., r, where(wvo, ..., vx—1) is the sole resident of level 0, * Vi = {(wo,...,wr—1): w; is an odd integer between 1
and vertices at level are of the form(vg + ao, ..., vk—1 + ar—1), and2r — 1}.
whereag, ..., ar—1 are as mentioned earlier. Sinceaball itself is 2) P;‘,.H(O) is unique among all connected components?@f+1
bipartite, vertices at the same level are necessarily nonadjacent. in that all pendant vertices @5, are included in it. (Pendant
Note that every vertex af',,, x - - x Ch,_, iS of degree”. Ac- vertices are thosgvo, . . ., vk—1) in which eachy; is either 0 or
cordingly, every vertex in an-ball up to levelr — 1 is of degree2®. 2r.)
Itis claimed that the number of edges between Ipvahd levelp + 1 Note that|Vs| = (r + 1)* and|Vi| = »*, hence the order of

is equal to2* - ((p + 1)¥ — p*), where0 < p < r —1.Forp =0, Ps._(0)is (r + 1)* + +*. Also, size of P, (0) is (2r)*, which
the claim is easily seen to be true. Let> 1. There are a total of follows from the fact that if¥ andH are bipartite graphs, then the size
(p + 1)* — (p — 1)* mutually nonadjacent vertices at leyeland of each connected component®@fx H is equal td E(G)| - |E(H)).
hence there are a total 2f - ((p + 1)* — (p — 1)*) edges incident on GraphP?(0) appears in Fig. 1; for simplicity, verticés, ;) have been
them. Out of thes&” - (p* — (p — 1)*) are between level — 1 and  shown as;j.

level p (by induction hypothesis). Thus the number of edges betweenObserve that the order (respective size)’cj;tr1 0) coincides with

level p and levelp + 1 is equal to the order (resp. size) of arball in C,,, x --- X ka .» Where
; ; , , N .. > 2r 4 2. The two graphs are actually isomorphic.
k¢, E_ o 1VEy_9k . 0k (0 _17%) — 9k . (¢, kE__k mq, s ME—1
2 (D) = =D =20 ==Y =22+ D" =2") 15 see this, lef = (r,....r), i.e. k-tuple of all7’s. It is easy to see
By the foregoing claim, the size of anball is given by that7 belongs toPg,,+l (0) and is such that (i) every vertex is within a
et distance of- from 7, and (ii) no other vertex has this property. In other
3 (zk (p+1)F - pk)> = 2% .ok = (2r)". words, 7 is the unique center P11 (0). (Vertices(wo, . .. S Wk—1)
=0 at a distance of exactly from 7 are such that at least one is 0 or
- 2r.)
. .
The following lower bound is immediate. Analogous to _tht_a structure of anball, P, (0) may be v_lewed
. as a graph consisting of levels. .., r, wherei = (r,..., r) is the
Lemma 2.2: ;
ot sole resident of level 0, and vertlces at leyehre of the form(» +
e (Cong X o+ X Cony ) > Hicgmi @o,...,7 + ap—1) whereao, ..., a,—; are as in the proof of Lemma
I b Yl 2.1. The reader may check to see that there is a natural bijgction
B ao,...,0k—1+ar-1) < (r+ao,...,r +ar_1) between the vertex

Authorized licensed use limited to: SAINT CLOUD STATE UNIVERSITY. Downloaded on May 03,2010 at 19:32:10 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 1, JANUARY 2002

TABLE 1l
VARIOUS CASES
l.| a=p 0<b<p | 0<c<yp
2. a=p 0<b<p | p<Lc<O
3. a=p -p<b<0| 0<c<p
4. a=p -p<b<0]|-p<Lc<0
5. 10<a<p b=p 0<c<p
6. 0<a<p b=p -p<c<0
7.10<a<p b=—p 0<c<p
8. (0<a<p b=-p -p<Lc<0
9.[0<a<p| 0<b<p c=p
10. [0<a<p | -p<b<O| c=p
11. [0<a<p| 0<b<p c=—p
12.10<a<p|-p<b<0 c=-p

set of ther-ball centered atvo + ao, . . ., vp—1 + aix—1 ) and the vertex

set of Py, (0) (centered af) that corresponds to an isomorphism.
Lemma 2.3:Forr > 1 andk > 2,if mo,...,mi—1 > 27 + 2,

then an--ball in Crny X -+ X Chy_, IS isomorphic tolf’r_f‘f,.+l (0). m

. M AIN RESULT

The following is the central result of this paper.

Theorem 3.1:Forr > 1, if mg, m; andm, are each a multiple of
(r41)*+r?, then each isomorphic component®f,, x Cy., X Con,
admits of a vertex partition intor + 1)* + »* perfectr-dominating
sets.

Proof: Letn = (r + 1)> ++° = 2r® + 372 4+ 3r + 1, and let

a typical vertex(vg, v1,v2) Of Cpny X Chy X Chy, be assigned the

integer label

2((r+1)> +7%)vo 4+ 2(r + 1)v1 + 2rve) mod n.

91

In other words, the following claims need to be established for each of

the twelve cases.

1) (2r* +2r + Da+ (r + 1)b+rc # 0, and

2) (2r2 +2r + Da+ (r+ Db+ rc # 47> + 617 + 6r + 2.

Casel:a=p,0<b<pandd<c<p.

First note that2r® + 2r + 1)a + (r + 1)b + rc, i.e., (20 + 2r +
L)p+ (r+1)b+rcis clearly positive, and hence nonzero. Assume that

(27“2 +2r+p+(r+1)b+re= 4 + 672 +6r 4+ 2, 0.,
2012 + (2p+b4+c)r + (p+b)=4r® + 612 +6r +2, i€,
(pr+p+1/2(b+¢))-(2r)+(p+b) = (2r7+3r +3)-(2r) +2.

Note thath andc being of the same parity, + ¢ is even. For the
foregoing equality to holdp+5) = 2 modulo(2r). Sinced < p+b <
4r,eitherp+b =20rp+b=2r+2.1f p+b = 2,thenp < 2
and hence < 2, in which cas@pr® + (2p + b+ c)r + (p + b) is
at mostdr® + 6r + 2 < 4¢® 4+ 672 4 6r 4+ 2. On the other hand, if
p+0b=2r+2 then2pr® + (2p + b + ¢)r + (p + b) is at most
(4r)-r2 +(2r+2r4+242r)-r+(2r+2)= 4 4602+ 4r+2 <
473 4 6r% + 67 + 2. Contradiction.

Case2:a=p,0<b<pand—p < c <0.

Letc = —e whence) < e < p, and note that2r? + 2r + 1)a +
(r+ Db+ re = (202 +2r + D)p + (r + 1)b — re that is clearly
positive, sincg > 1 and2r? 4+ 2r + 1 > 2r% > re. Further,(2r? +
2+ Dp+(r+Db—re < 2r2+2r+ Dp+(r+1)0 < (292 4+2r 4+
D(20) 4 (r4+1)-(2r) = 47 4 6r% + dr < 4% 4 607 + 61 + 2.

Case3:a=p,—p<b<0andd <c¢ < p.

Leth = —d whenced < d < p, and note that2r® + 2r + 1)a +
(r+1b+rc=(2r"4+2r + 1)p — (r + 1)d + rc that is clearly
positive, hence nonzero. Furthé;? + 2r + 1)p — (r + 1)d + rc <
(2r2—|—2r—|—1)p—|—7"c < (2'r2—|—2r—|—1)-(2r)+r-(2r) = 44612 42r <
40® 4+ 617 + 67 + 2.

Cased:a=p,—p<b<O0and—p <c < 0.

Leth = —d ande = —e whencel < d,e < p, and note that
(2r24+2r + Da+ (r+Db+re,ie, (20 +2r+ Dp—(r+1)d—re

The assignment is clearly well-defined. It suffices to show that a vertgXpositive, since > 1;p > d, e and2r?+2r+1 > r+1++. Further,

distinct from(vo, v1, v2) and within a distance dfr from (vg, vy, v2)
receives a label that is different from that(@f, v, , v2).

Letp € {1,...,2r}, and consider a vertex at a distanceodfom
(vo,v1,v2). Such a node is of the forfg + a, vi + b, v2 + ¢), where
() a.b.c € {—p+2j:0 < j < p}, (i) max{|al. |t]. |e[} = p, and
(iii) vo 4 @ is modulorng; v1 4 b is modulorr ; andwv, 4 ¢ is modulo

itis easy to see thér?4+-2r+1)p—(r4+1)d—re < 4r° 4672 +6r42.
Case5: 0<a<pb=pandd <c<p.
Argument is similar to that in Case 1.
Caseb6:0<a<pb=pand—p <ec<0.
Argument is similar to that in Case 2.
Case7:0<a<pb=—pandd <c<p.

mz. (Note thatz, b andc are of the same parity.) The label assigned to (2,2 42, 4 1)a+ (r+1)b+rc = (2r> 4+ 2r+1)a— (r+1)p+re.

(vo+ a,v1 4+ b,v2 +¢) is

2((r+ 1)'2 + r2)1;0 +2(r + vy + 2rve
+2((r + 1)2 + 7"2)(1, 4+ 2(r 4+ 1)b + 2rc) mod n.

That this label is different from the one assigned g, v, v2) is
equivalent to

2((r+ 1)2 + rz)a 4+ 2(r + )b+ 2rc)modn > 0.

For integerss andt¢, wheret is odd> 3, it is easy to see thd®s)
modt¢ = = > 0 if and only if (—2s) modt = ¢t — = > 0. Based on
this fact, it suffices to prove the stated claim fo> 0. Accordingly,
there are a total of twelve cases, as detailed in Table II.

The reader may check to see that

e 2((r4+ 1) 4+7r%)a + 2(r 4+ 1)b + 2rc is of the formdt for some
t, wherea, b andc are of the same parity;

o 2((r 4+ 1% +7%)a + 2(r + )b + 2rc is strictly between-2n
andbn for0 < a < 2r;—2r < b < 2r;and—2r < ¢ < 2r.
Based on these observations, it need only be showa thet1)* +
r)a+2(r+1)b+2rc,i.e.,2:[(2r24+2r+1)a+(r+1)b+rd is nonzero
and notequal tdn = 4(2r* +3r> +3r+1) = 2-[4r® 467 +6742].

If a = 0, then this expression is strictly negative, and i 1, then its
least value is at leagr* +2r+1) — (r+1)- (2r) = 1 corresponding
toa = 1,p = 2r ande = 0. It follows that(2r? + 27 + 1)a — (r +
1)p + re # 0. That it is not equal tdr® + 672 + 6r + 2 follows by
an argument as in Case 3.

Case8:0<a<pb=—-pand—-p <c<O0.

Letc = —e whence) < e < p,and(2r?+2r+1)a+(r+1)b+rc=
(27? + 27 + L)a — (r + 1)p — re. Assume that

(202 4+ 2r + Da — (r + 1)p —re = 0, i.e.,
2ar® + (2a —p —e)r + (a — p) = 0, i.e.,
(ar+a—1/2(p+e))-(2r)+ (a—p) =0.

Note thatp ande being of the same parity, + ¢ is even. For the
foregoing equality to hold, eithér — p) = 0 or (a — p) = —2r, since
0 < a < p < 2r. First suppose that — p = 0, i.e.,a = p whence
2ar2 +(2a—p—e)r+(a—p) = 2pr® +(p—e)r thatis clearly positive,
hence nonzero. Next suppose thatp = —2r which is possible if and
only if « = 0 andp = 2r, whenc&ar® + (2a —p — e)r + (a — p)
(—27 —e)r —2r thatis clearly negative, hence nonzero. Contradiction.
That2ar?+(2a—p—e)r+(a—p) is strictly less thadr® 4672 +6r +2
is easy to see.

Case9:0<a<p0<b<pande = p.
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Argument is similar to that in Case 1. [9] V. Pless,Introduction to the Theory of Error-Correcting Code2nd
Case10:0<a <p,—p<b<0andc = p. ed. New York: Wiley, 1989.

Left to the reader.

[10] S.-R. Kim, “Centers of a tensor-composite grap@dngr. Numer.vol.
81, pp. 193-204, 1991.
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Left to the reader. J. Pure Appl. Math.vol. 23, no. 10, pp. 723-729, 1992.
Case12:0<a<p—p<b<0andc = —p. [12] K.W.Tangand S.A. Padubirdi, “Diagonal and toroidal mesh networks,”
Left to the reader. IEEE Trans. Computvol. 43, pp. 815-826, July 1994.

In all of the foregoing arguments, the modulo arithmetic works cor-

[13] M. R. Garey and D. S. Johnsd@pmputers and Intractability: A Guide
to the Theory of NP-CompletenesdNew York: Freeman, 1979.

rectly, sincemo, 1 andm are each a multiple of = (r +1)° +7°. [14] W. Imrich and S. Klaiar, Product Graphs: Structure and Recogni-
For (an isomorphic component @),., x Cr., X Cpny, letV; denote tion. New York: Wiley , 2000.

the set of vertices that receive the lahelhere) < ¢t < n—1.Thesets [15] S.Gravier and M. Mollard, “On domination numbers of Cartesian prod-

ucts of paths,Discrete Appl. Math.vol. 80, no. 2/3, pp. 247-250, 1997.

Vo,..., Va1 constitute a vertex partition into perfesidominating [16] P.K.Jha, “Smallestindependent dominating sets in Kronecker products
sets. . . o o n of cycles,”Discrete Appl. Math.submitted for publication.

Results 2.1, 2.2, 3.1 together with the discussion in Section Il leagh7] ——, Perfect--domination in Kronecker product of cycles, with an ap-
to the following. plication to diagonal/toroidal mesh, , June 2000. Manuscript.

Corollary 3.2: Letr > 1, and letng, m1 andm; each be amultiple [18] S. Gravier and A. Khelladi, “On the domination number of cross prod-

of (r + 1% 4 3 ucts of graphs,Discrete Math, vol. 145, no. 1/3, pp. 273-277, 1995.
(r+ 1)+ [19] S. Klavzar and B. Zmazek, “On a vizing-like conjecture for di-
1) rect-product graphs,Discrete Math, vol. 156, no. 1/3, pp. 243-246,
1996.
o (Con X Con % C _ momima [20] A. Klobucar and N. Seifter,X-dominating sets of cardinal products of
Vr (Limg 'y my) = (r+1)3 1% paths,”Ars Combin, vol. 55, pp. 33—-41, 2000.
2) Cy x Cmy x Chny, admits of a vertex partition into
(momims)/((r +1)* + r*) induced subgraphs, each isomor-
phic to P31 (0).
. . . .
Corollary 3.2(2) may be viewed as a packing Gf., x A Note on Chaotic Secure Communication Systems
Crmy X Crm, by means ofimomims)/((r +1)* + %) vertex-dis- . .
joint (and hence edge-disjoint) copies dP;..(0), that has Zhong-Ping Jiang
(2r)® edges. All such copies thus collectively account for
3 ; 3 3
8"« (momimz/((r+1)" 4+ 1)) edges oL, X .le x qnz that_ Abstract—This paper presents a hew way to transmit and retrieve an
has a total oftmomima2 edges. Thus, the “density” of this packinginformation-bearing signal via chaotic systems. In contrast to existing
is equal to schemes with one transmission line, &vo-channeltransmission method
is adopted for the purpose of faster synchronization and higher security.

1 . 9,3 Basically, an output of the chaotic transmitter is sent for synchroniza-
- . < 3. o2 ) = tion-only, with no connection to the information signal. The other channel
dmormam (r+1)%+4r? (r+1)2%+r? transmits a signal generated from a highly nonlinear function of the

chaotic states and the information-bearing signal. While the first channel
that approaches 100% for large serves the purpose of efficient synchronization, the second channel is used
for complicated encryption and, therefore, improved security/privacy.
Simulation results validate the new chaos-based secure communication
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