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a b s t r a c t

Whereas the maximum number of vertices in a four-regular circulant of diameter a is
2a2 + 2a + 1, the bound turns out to be 2a2 if the condition of bipartiteness is imposed.
Tzvieli presented a family of ψ(a) such dense bipartite circulants on 2a2 vertices for each
a ≥ 3, whereψ(a) denotes the number of positive integers less than or equal to ⌊

1
2 (a−1)⌋

that are coprime with a. The present paper shows that each of those graphs is obtainable
from the 2a×a rectangular twisted torus by appropriately trading amaximum of 2a edges
for as many new edges. The underlying structural similarity between the two graphs leads
to a simple intuitive routing algorithm for the circulants. The result closely parallels the
routing in dense nonbipartite circulants on 2a2 +2a+1 vertices. Additional results include
a set of vertex-disjoint paths between every pair of distinct vertices in the circulants, and
a proof that the 2a × a rectangular twisted torus itself is probably not a circulant.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The circulant graphs, whichwe formally define below, constitute a subfamily of Cayley graphs [16]. They possess a number
of attractive properties that render them fit for applications in areas such as distributed systems, VLSI, parallel machines
and perfect codes [4,6,7,22,23]. Some of their welcome features include high connectivity, high symmetry and a rich cycle
structure, which together lead to a very high degree of fault tolerance. Accordingly, they have been a topic of extensive
research in engineering, computer science and mathematics for long [5,16,29].

Routing is the process of selecting path(s) in a graph/network along which to send the traffic [26]. It is a vital component
of all networks. Unfortunately, the associated problem of finding a shortest path between two vertices in a circulant is
NP-hard [9]. This is also because the graph admits a very compact representation leading to a small input size. A related
aberration is that dia


Cn(1, s)


is not monotone in n for a fixed s [12]. This is to be contrasted with the hypercube and the

torus in which a shortest path is traceable fairly quickly and intuitively. Not surprisingly, the problem of routing is crucial
in the study of circulants [11,32].

For a given positive integer a ≥ 3, a four-regular circulant of diameter amay have amaximumof 2a2+2a+1 vertices [3].
Indeed, such a dense circulant (which is necessarily nonbipartite) is known to exist for a long time, and it has been a topic of
deep research [3–5,16,19]. See Martinez et al. [25] for recent results on its routing algorithms and implementation issues.

If the condition of bipartiteness is imposed, then themaximumnumber of vertices in a four-regular circulant of diameter
a turns out to be 2a2 [14]. Again, such dense bipartite circulants are known to exist. In particular, Tzvieli [30] presented a
family of ψ(a) bipartite circulants on 2a2 vertices for each a ≥ 3, where ψ(a) denotes the number of positive integers less
than or equal to ⌊

1
2 (a− 1)⌋ that are coprime with a. A major finding of this paper is that each such graph is obtainable from

the 2a×a rectangular twisted torus (RTT), which we formally define below, by appropriately trading amaximum of 2a edges
for as many new edges. That, in turn, leads to a simple intuitive routing algorithm in respect of those graphs.
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Fig. 1. The circulant C32(1, 7).

Additional results include a set of vertex-disjoint paths between every pair of distinct vertices in the circulants, and a
proof that the 2a × a rectangular twisted torus itself is probably not a circulant.

In a closely related study, Beivide et al. [3] earlier presented a four-regular circulant Cn(b − 1, b) on n vertices for each
n ≥ 6, where b = ⌈

√
n/2⌉. The graph, known also as amidimew network, is such that its diameter and the average (shortest)

distance are the least among all four-regular graphs on as many vertices. It turns out that the circulants in the present paper
share those characteristics, hence they may be viewed as their bipartite counterparts.

1.1. Basic definitions

When we speak of a graph G, we mean a finite, simple, undirected and connected graph. Let dist(u, v) denote the
(shortest) distance between u and v, where the underlying graphwill be clear from the context. Next, let dia(G) represent the
diameter of G, i.e., themaximum of the distances between any two vertices in G. Vertices that are at a distance of dia(G) from
u are called diametrical relative to u. We employ the terms vertex and node as synonyms. For missing details, see Hammack
et al. [13].

Let Pm denote a path on m vertices, and Cn a cycle on n vertices, where m ≥ 1 and n ≥ 3. The Cartesian product G�H of
graphs G = (V , E) and H = (W , F) is defined as follows: V (G�H) = V × W and E(G�H) = {{(a, x), (b, y)}: {a, b} ∈ E and
x = y, or {x, y} ∈ F and a = b}. See Fig. 2(i) for P8�P4.

Let n, r and s be positive integers, where n ≥ 6, and 1 ≤ r < s < ⌊n/2⌋. A four-regular circulant graph Cn(r, s) consists of
the vertex set {0, . . . , n− 1} and the edge set {{i, i± r}, {i, i± s} : 0 ≤ i ≤ n− 1}, where i± r and i± s are each modulo n.
A circulant Cn(r, s) with r = 1 is also known as a chordal ring or a double-loop graph in the literature [14,28]. Meanwhile
C32(1, 7) appears in Fig. 1, and Proposition 1.1 states some well-known characteristics of a four-regular circulant.

Proposition 1.1 ([27,15]).

1. Cn(r, s) is connected if and only if gcd(n, r, s) = 1.
2. Cn(r, s) is bipartite if and only if n is even, and r and s are both odd.
3. Cn(r, s) is isomorphic to Cn(r, n − s).
4. If gcd(r, n) = 1, then Cn(r, s) is isomorphic to Cn(1, r−1s mod n), where r−1 is the multiplicative inverse of r relative to n.
5. If gcd(t, n) = 1, then Cn(r, s) is isomorphic to Cn(rt mod n, st mod n). �

1.2. Rectangular twisted torus

The 2a × a RTT is an alternative to the 2a × a torus, the latter being representable as C2a�Ca. The vertex set of the RTT is
given by {(i, j) : 0 ≤ i ≤ 2a − 1 and 0 ≤ j ≤ a − 1}, while the edge set consists of the following:

• {(i, j), (i + 1, j)}: 0 ≤ i ≤ 2a − 2 and 0 ≤ j ≤ a − 1, called the ‘‘horizontal’’ edges
• {(i, j), (i, j + 1)}: 0 ≤ i ≤ 2a − 1 and 0 ≤ j ≤ a − 2, called the ‘‘vertical’’ edges
• {(0, j), (2a − 1, j)}: 0 ≤ j ≤ a − 1, called the ‘‘wrap-around’’ edges, and
• {(i, 0), (i + a, a − 1)}: 0 ≤ i ≤ 2a − 1, called the ‘‘twisted’’ edges

where the arithmetic is modulo 2a in the first coordinate and modulo a in the second. This graph is bipartite, four-regular
and nonplanar. Further, its diameter is equal to a [10], and it is obtainable from P2a�Pa by introducing the ‘‘wrap-around’’
edges and the ‘‘twisted’’ edges. Graphs P8�P4 and 8 × 4 RTT appear in Fig. 2.



Author's personal copy

P.K. Jha / Discrete Applied Mathematics 166 (2014) 141–158 143

Fig. 2. (i) P8�P4 and (ii) 8 × 4 RTT.

The motivation for the RTT comes from a potential improvement to the existing topologies built around a 2D/3D torus
currently in use by HP, Cray, IBM, etc. [10]. (Whereas a 2D torus is representable as Cm�Cn, a 3D torus is representable as
Cm�Cn�Cp for some positive m, n and p.) Meanwhile the idea of twisting one of the two dimensions of a 2D torus earlier
appeared in ILLIAC IV during 1970s [7].

Lemma 1.2 (Alspach [1]). The 2a × a RTT is a Cayley graph on an abelian group.

Proof. Consider the following mappings α and β from the vertex set of this graph to itself:

1. α(i, j) = (i + 1, j), and
2. β(i, j) =


(i, j + 1), 0 ≤ j ≤ a − 2
(i + a, 0), j = a − 1.

It is easy to see that α and β are well-defined automorphisms, and they generate a vertex-transitive group. Also, they
commute under composition, so they generate an abelian transitive group. Accordingly, the 2a× a RTT is a Cayley graph on
the group generated by α and β . �

It follows that the RTT is vertex transitive, i.e., for any two vertices, there exists an automorphism, which maps one to
the other. Further, it is edge decomposable into Hamiltonian cycles [20].

A natural question arises: Is the 2a×aRTT itself a circulant graph? Results in Section 6 suggest that the answer is probably
negative.

1.3. State of the art

The circulant graphs enjoy a rich literature by virtue of their applications in parallel machines, distributed systems, VLSI,
etc. Alspach and Parsons [2] addressed their isomorphism while Boesch and Tindell [5] examined their connectivity, and
Heuberger [15] characterized their planarity and colorability. Further, Broere and Hattingh [8] studied the circulants that
survive the stress of various product operations. See Tang et al. [29] for recent results and a hierarchy of progressively
restricted classes of circulants.

Toward finding a shortest path in a circulant, Wong and Coppersmith [31] presented a geometrical approach in which a
minimum distance diagram is constructed leading to a tessellation of the plane. For related results, see the survey articles
by Bermond et al. [4] and Hwang [19].

Among various circulants, those of degree four are especially useful, sincemost of themhave a torus-like structure. Issues
relating to their interconnection schemes, optimal layouts, broadcasting, etc., have been examined at length [3,14,21]. See
Nicoloso and Pietropaoli [28] for an algorithm to test whether or not two such graphs are isomorphic. The following result
is relevant in the present study.

Lemma 1.3. If a ≥ 3 and 1 ≤ k ≤ ⌊
1
2 (a − 1)⌋, then C2a2(1, 2ka − 1) is isomorphic to C2a2(1, 2ka + 1).

Proof. Note that 2ka + 1 is relatively prime to 2a2. Indeed, (2ka + 1)−1
= 2a2 − 2ka + 1. By Proposition 1.1(5),

C2a2(1, 2ka− 1) ∼= C2a2

2ka+ 1 mod 2a2, ((2ka+ 1)(2ka− 1)) mod 2a2


. Now, 2ka+ 1 < 2a2, and (2ka+ 1)(2ka− 1) =

4k2a2−1 that reduces to 2a2−1modulo 2a2. Therefore,C2a2(1, 2ka−1) ∼= C2a2(2ka+1, 2a2−1). Next, (2a2−1)−1
= 2a2−1

relative to 2a2. By Proposition 1.1(4), C2a2(2ka + 1, 2a2 − 1) ∼= C2a2

1, ((2ka + 1)(2a2 − 1)−1) mod 2a2


that is

C2a2

1, ((2ka + 1)(2a2 − 1)) mod 2a2


that is C2a2


1, 2a2 − (2ka + 1)


, which itself is isomorphic to C2a2(1, 2ka + 1),

cf. Proposition 1.1(3). �

Diameter of a four-regular circulant: The diameter of a graph being an important measure associated with the point-to-point
transmission delay in the worst case, it is natural to look out for a circulant whose diameter is as small as possible. To that
end, Boesch andWang [6] showed that dia


Cn(r, s)


is greater than or equal to the least d such that (d+1)2 +d2 ≥ n. Hence

the following lower bound:
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Theorem 1.4 ([6]). If n ≥ 6, and 1 ≤ r < s < ⌊n/2⌋, then dia

Cn(r, s)


≥

 1
2


−1 +

√
2n − 1


. �

A circulant is said to be optimal if it has the least diameter among all such graphs of the same order.

Vertex-disjoint paths: Consider a set {Pi1 , . . . , Pik} of k simple paths between two distinct vertices x and y in a graph, where
the paths themselves are vertex-disjoint, i.e., no two of them have any vertex in common except for the end nodes.

The existence of vertex-disjoint paths between every pair of distinct vertices in a graph lends strength to it. For example,
communication may be speeded up using disjoint paths, and alternative routes may be found in the event of a node failure
or edge failure [17,18]. It is expected that k is as large as possible and max{|Pi1 |, . . . , |Pik |} is as small as possible.

What follows:Whereas Section 2 traces shortest paths between two vertices in the RTT, Section 3 presents the central results
leading to the main theorem in respect of the family of optimal bipartite circulants on 2a2 vertices. Section 4 deals with L-
shaped layouts of the graphs in the plane, and Section 5 traces vertex-disjoint paths in the RTT that are inherited by the
circulants. That the graphs thus constructed and the RTT are mutually nonisomorphic appears in Section 6. Finally Section 7
summarizes the findings with certain concluding remarks.

2. Shortest paths in the RTT

Unlike a grid or a torus, the RTT is not amenable to a simple expression as far as shortest paths are concerned.We present
an algorithm for that purpose that relies on the distance-wise partition of the graph.

The diameter of the 2a× a RTT being equal to a [10], let {V0, . . . , Va} be its vertex partition, where Vj consists of vertices
at a distance of j from (0, 0), 0 ≤ j ≤ a. We refer to the vertices in Vj to be at the jth level. The graph being bipartite, nodes at
the same level are necessarily nonadjacent. It is known that |V0| = 1, |Vj| = 4j for 1 ≤ j ≤ a− 1, and |Va| = 2a− 1 [10,24].
An explicit construction of the partition follows.

For 1 ≤ j ≤ a, let Aj consist of vertices at a distance of j from (0, 0) relative to the grid P2a�Pa; let Bj consist of vertices at
a distance of j−1 from (2a−1, 0) relative to the same grid; and let Cj consist of vertices at a distance of j−1 from (a, a−1)
relative to the same grid. Accordingly,

Aj =


{(i, j − i) : 0 ≤ i ≤ j} 0 ≤ j ≤ a − 1
{(i, j − i) : 1 ≤ i ≤ j} j = a.

Bj =


{(2a − j + i, i) : 0 ≤ i ≤ j − 1}, 1 ≤ j ≤ a − 1
{(2a − j + i, i) : 1 ≤ i ≤ j − 1}, j = a.

Cj = Lj ∪ Rj, where
Lj = {(a − j + i, a − i) : 1 ≤ i ≤ j − 1} 2 ≤ j ≤ a − 1
Rj = {(a + i, a + i − j) : 0 ≤ i ≤ j − 1} 1 ≤ j ≤ a − 1.

It turns out that Vj = Aj ∪ Bj ∪ Cj, 1 ≤ j ≤ a. The following statements are in order:

• For 1 ≤ j ≤ a − 1, the sets Aj, Bj and Cj are mutually disjoint; further, |Aj| = j + 1, |Bj| = j and |Cj| = 2j − 1, so
|Vj| = |Aj ∪ Bj ∪ Cj| = 4j.

• Va = {(i, a − i) : 1 ≤ i ≤ a} ∪ {(i, i − a) : a + 1 ≤ i ≤ 2a − 1}, so there are 2a − 1 diametrical vertices.

Fig. 3(i) depicts the foregoing construction in respect of the 14 × 7 RTT while Fig. 3(ii) illustrates the level diagram.
(The arrows highlight the progress of the shortest paths toward the diametrical vertices, which themselves appear within
‘‘rectangles’’.) Not all edges appear in Fig. 3(ii).

Algorithm 1 computes the distance and a shortest path between vertices (0, 0) and (i, j) in the RTT. Its correctness
follows from the foregoing discussion. Vertex transitivity ensures that it is easily adaptable for a source other than (0, 0), cf.
Lemma 1.2. Interestingly, it is equally applicable to the circulants that are forthcoming in the next section.

It is clear that Algorithm 1 runs in time that is linear in the length of a shortest path being sought, so it is optimal. More
precisely, its running time is O(a), since diameter of the RTT is equal to a.

3. Transforming the RTT into circulants

We show in this section that the circulant C2a2(1, 2ka − 1) is obtainable from the 2a × a RTT by trading a maximum of
2a edges for as many new edges. The method of attack is as follows:

• Set up a bijection from the vertex set of the RTT to that of the circulant, and examine the vertices and their adjacencies in
the light of the mapping.

• Isolate those edges that come in the way of the graph being isomorphic to the circulant – call them ‘‘incompatible’’ edges
– and replace them by as many new edges so that the resulting graph is the circulant.
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Fig. 3. 14 × 7 RTT and its level diagram.

Algorithm 1 A shortest (0, 0)− (i, j) path in the RTT
Require: 0 ≤ i ≤ 2a − 1 and 0 ≤ j ≤ a − 1.
if (i + j ≤ a) then

the distance is i + j // Sets A0, . . . , Aa
and a shortest path is (0, 0)− (1, 0)− · · · − (i, 0)− (i, 1)− · · · − (i, j);

else if (i − j ≥ a) then
the distance is 2a − (i − j) // Sets B1, . . . , Ba
and a shortest path is (0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (i, 0)− (i, 1)− · · · − (i, j);

else if (i < a) then
the distance is 2a − (i + j) // Sets L1, . . . , La−1
and a shortest path is (0, 0)− (a, a − 1)− (a − 1, a − 1)− · · · − (i, a − 1)− (i, a − 2)− · · · − (i, j);

else
the distance is i − j // Sets R1, . . . , Ra−1
and a shortest path is (0, 0)− (a, a − 1)− (a + 1, a − 1)− · · · − (i, a − 1)− (i, a − 2)− · · · − (i, j);

end if
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Table 1
Nomenclature.

a: Parameter of the 2a × a rectangular twisted torus (RTT) and the circulants C2a2 (1, 2ka − 1), a ≥ 3
n: Number of vertices in the RTT/circulants, n = 2a2

k: Parameter of the circulants, 1 ≤ k ≤ ⌊
1
2 (a − 1)⌋ with gcd(a, k) = 1

k−1: Multiplicative inverse of k relative to a
s: Parameter of the circulants, s = 2ka − 1
f : Bijection from {0, . . . , 2a − 1} × {0, . . . , a − 1} to {0, . . . , 2a2 − 1}
Si: Sets in the partition of {0, . . . , 2a2 − 1}, |Si| = 2a 0 ≤ i ≤ a − 1

Fig. 4. f (∗, j) vs. (∗, j) in the light of Eq. (1).

See Table 1 for a set of terms that will be frequently used in the rest of the paper. It is easy to see that s < 1
2n < n− s < n.

Further, s is coprime with each of a, k and n, and the following inequalities hold:

a odd :


2a − 1 ≤ s ≤ a2 − (a + 1)
a2 + (a + 1) ≤ (n − s) ≤ 2a2 − (2a − 1).

a even :


2a − 1 ≤ s ≤ a2 − (2a + 1)
a2 + (2a + 1) ≤ (n − s) ≤ 2a2 − (2a − 1).

Lemma 3.1. For 0 ≤ i ≤ a − 1,

(a − i)+ (n − s)i


mod n is equal to (2m + 1)a, for some m ∈ {0, . . . , a − 1}.

Proof. The claim is immediate for i = 0, so let i ≥ 1, and note that (a − i) + (n − s)i = n + a − (s + 1)i = n + a − 2ika.
Therefore,


(a − i)+ (n − s)i


mod n = (−2ika + a) mod n. Since n itself is a multiple of 2a, (−2ika + a) mod n must be

as claimed. �

Lemma 3.2. If 0 ≤ j,m ≤ a − 1 and j ≠ m, then

(a − j) + (n − s)j


mod n and


(a − m) + (n − s)m


mod n differ by a

nonzero multiple of 2a.

Proof. Without loss of generality, letm = j+d, where 1 ≤ d ≤ a−1. By the proof of Lemma 3.1,

(a−j)+(n−s)j


mod n =

(−2jka+a) mod n, and

(a−m)+(n−s)m


mod n = (−2mka+a) mod n, the latter being equal to (−2jka+a−2dka) mod n.

It is clear that 2dka is nonzero and a multiple of 2a. Also, since gcd(a, k) = 1 and d < a, dk itself cannot be a multiple of a,
hence 2dka cannot be a multiple of 2a2. The claim follows. �

Consider now the following mapping from the vertex set of the 2a × a RTT to {0, . . . , 2a2 − 1}:

f (u, v) =


u + (n − s)v


mod n, u + v ≤ a

u + (n − s)v − 2a

mod n, u + v > a

(1)

where 0 ≤ u ≤ 2a − 1 and 0 ≤ v ≤ a − 1. The mapping is clearly well-defined.
Based on the vertex partition in Section 2, let Region A denote the set of vertices in the RTT satisfying u + v ≤ a, and let

Region B/C denote the set of the remaining vertices. (|A| =
1
2a(a + 3) and |B/C | =

1
23a(a − 3).)

The following is a key result in the present study.

Lemma 3.3. The mapping f in Eq. (1) is a bijection.

Proof. First note that f (i, 0) = i, 0 ≤ i ≤ a, and f (a + i, 0) = n + i − a, 1 ≤ i ≤ a − 1. For j ≥ 1, Fig. 4(i) presents the
working of f on vertices in the jth row of the RTT. Observe that

• f (0, j) < f (1, j) < · · · < f (a − j, j)
• f (a − j + 1, j) = f (a − j, j)− (2a − 1)
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Fig. 5. The 14 × 7 RTT in the light of Eq. (1).

• f (a − j + 1, j) < f (a − j + 2, j) < · · · < f (2a − 1, j), and
• f (0, j) = 1 + f (2a − 1, j).

Fig. 4(ii) reorganizes the snapshot so that the integer labels themselves are in the ascending order:

f (a − j + 1, j) < f (a − j + 2, j) < · · · < f (2a − 1, j) < f (0, j) < · · · < f (a − j, j).

Lemma 3.1 ensures that the illustrations themselves are well-defined. (Expressions along the ordinate must be reduced
modulo n.) Note that the sequence of labels in Fig. 4(ii) constitutes a run of 2a consecutive integers. (For j = 0, the labels
are consecutive modulo n.) To complete the proof, therefore, it suffices to show that


f (a − j, j)− f (a − m,m)


mod n is a

nonzero multiple of 2a, where j ≠ m. To that end, Lemma 3.2 fits the bill. �

Fig. 5(i) and (ii), respectively, illustrate Lemma 3.3 in respect of (i) a = 7, k = 1, s = 13, and (ii) a = 7, k = 3, s = 41.
Each node consists of the ordered pair (i, j) and f (i, j). Arrows have been assigned to 2a − 1 horizontal edges in each row
to highlight the run of 2a consecutive node labels. The relevance of the ‘‘solid’’ lines will be clear following the proof of
Lemma 3.6.
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Lemma 3.4. For 0 ≤ i ≤ a − 1:

f (a − i, i) =

2ai(a − k)+ a


mod n.

f (a + 1 − i, i) =

2ai(a − k)− a + 1


mod n.

Proof. Node (a − i, i) being in Region A, f (a − i, i) =

a − i + (n − s)i


mod n =


a − i + (2a2 − 2ak + 1)i


mod n =

2a2i − 2aik + a

mod n =


2ai(a − k) + a


mod n. Further, Node (a + 1 − i, i) being in Region B/C, f (a + 1 − i, i) =

a + 1 − i + (n − s)i − 2a

mod n =


a + 1 − i + (2a2 − 2ak + 1)i − 2a


mod n =


2ai(a − k)− a + 1


mod n. �

3.1. Inverse of the bijection

It is instructive to construct the inverse of the bijection f . To that end, let

• S0 = {(2a − 1)a + 1, . . . , 2a2 − 1} ∪ {0, . . . , a}, and
• Si = {(2i − 1)a + 1, . . . , (2i + 1)a}, 1 ≤ i ≤ a − 1.

It is clear that S0, . . . , Sa−1 constitute a partition of {0, . . . , 2a2 − 1}.

Lemma 3.5. Vertices (0, j), . . . , (2a − 1, j) of the RTT receive labels from the set S(−jk) mod a.

Proof. It is easy to see that the claim is valid for j = 0, so let 1 ≤ j ≤ a − 1. Based on the proof of Lemma 3.3, it suffices to
show that f (a − j, j) belongs to S(−jk) mod a.

By Lemma 3.1, f (a − j, j) = (−2jka + a) mod n. Since j is less than a and gcd(k, a) = 1, it is clear that −jk itself cannot
be a multiple of a. Let −jk = ma + q, where 1 ≤ q ≤ a − 1, and note that (−2jka + a) = 2ma2 + (2q + 1)a. Accordingly,
(−2jka + a) mod n is equal to (2q + 1)a, since n = 2a2 and (2q + 1)a < n. Note that (2q + 1)a belongs to Sq that is
S(−jk) mod a. �

Observe that ‘‘j → (−jk) mod a’’ implicit in the proof of Lemma 3.5 is a bijection from {0, . . . , a − 1} to itself, and its
inverse is given by ‘‘j → (−jk−1) mod a’’. Algorithm 2 computes f −1(u), where u ∈ {0, . . . , 2a2 − 1}.

Algorithm 2 Calculate f −1(u)
Require: 0 ≤ u ≤ 2a2 − 1
if (u ≥ 0 and u ≤ a) then

return (u, 0);
else if (u ≥ 2a2 − (a − 1) and u ≤ 2a2 − 1) then

return (u + 2a − 2a2, 0);
else

write u = (2i − 1)a + w,
where 1 ≤ i ≤ a − 1 and 1 ≤ w ≤ 2a; // u ∈ Si

m = (−ik−1)mod a;
j = ((a − m)+ w)mod 2a;
return (j,m);

end if

3.2. Transformation continued

It turns out that there are a incompatible edges in the form of a matching if k = 1, and 2a such edges in the form of a
cycle if k ≥ 2. See Fig. 6.

Lemma 3.6. 1. Let k = 1. Except for the edges in the matching in Fig. 6(i), each edge {(i, j), (p, q)} in the 2a× a RTT is such that
|f (p, q)− f (i, j)| is equal to one of the following: 1, n − 1, s, n − s.

2. Let k ≥ 2. Except for the edges in the cycle in Fig. 6(ii), each edge {(i, j), (p, q)} in the 2a× a RTT is such that |f (p, q)− f (i, j)|
is equal to one of the following: 1, n − 1, s, n − s.

Proof. We first attack (2).
A horizontal edge or a vertical edge running across the two regions are excluded, and so is the twisted edge {(a +

1, 0), (1, a − 1)}. For the wrap-around edges and the remaining horizontal edges, the claim follows from the proof of
Lemma 3.3.

If {(i, j), (i, j+1)} is a vertical edge in Region A, then f (i, j) = i+ (n− s)j mod n and f (i, j+1) = i+ (n− s)(j+1) mod n.
Since |


i + (n − s)j


−


i + (n − s)(j + 1)


| = n − s that is positive and less than n, it follows that |f (i, j) − f (i, j + 1)| is

equal to n − s or s. The argument is similar if {(i, j), (i, j + 1)} is a vertical edge in Region B/C. We examine the remaining
2a − 1 (twisted) edges.
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Fig. 6. Incompatible edges in the RTT.

• {(i, 0), (i + a, a − 1)}, 0 ≤ i ≤ a − 1 (i.e., twisted edges across the two regions): f (i, 0) = i; and f (i + a, a − 1) =
(a + i)+ (n − s)(a − 1)− 2a


mod n =


(i + s)+ n(a − 1)− (s + 1)a


mod n =


(i + s)+ n(a − 1)− 2ka2


mod n =

(i + s)+ n(a − 1 − k)

mod n = i + s. Accordingly, |f (i + a, a − 1)− f (i, 0)| = s.

• {(a, 0), (0, a−1)} (i.e., the twisted edge in Region A): f (a, 0) = a; and f (0, a−1) = (n− s)(a−1) mod n =

n(a−1)−

sa+s

mod n =


n(a−1)−(2ka−1)a+s


mod n =


n(a−1)−2ka2+a+s


mod n =


n(a−1−k)+a+s


mod n = a+s.

Accordingly, |f (0, a − 1)− f (a, 0)| = s.
• {(i, 0), (i − a, a − 1)}, a + 2 ≤ i ≤ 2a − 1 (i.e., twisted edges in Region B/C): f (i, 0) = (i − 2a) mod n = n + i − 2a;

and f (i − a, a − 1) =

(i − a) + (n − s)(a − 1) − 2a


mod n =


(i − a) + n(a − 1) − sa + s − 2a


mod n =

i+n(a−1)−(s+1)a+s−2a

mod n =


i+n(a−1)−2ka2+s−2a


mod n =


n(a−1−k)+i+s−2a


mod n = i+s−2a.

Accordingly, |f (i − a, a − 1)− f (i, 0)| = n − s.

For (1), we need additionally show that {(i, a − i), (i + 1, a − i)}, 1 ≤ i ≤ a, (i.e., horizontal edges running across
the two regions) conform to the stated condition. (Note that s = 2a − 1 in this case.) To that end, f (i, a − i) =
i + (n − s)(a − i)


mod n =


i + n(a − i) − sa + si


mod n =


i + n(a − i) − (s + 1)a + a + si


mod n =

i + n(a − i) − 2a2 + a + si


mod n =

n(a − i − 1) + a + (s + 1)i


mod n =


(s + 1)i + a


mod n. Further,

f (i+1, a− i) =

i+1+ (n− s)(a− i)−2a


mod n =


i+1+n(a− i)− sa+ si−2a


mod n =


i+1+n(a− i)− (s+1)a+

si−a

mod n =


i+1+n(a− i)−2a2 + si−a


mod n =


n(a− i−1)+(s+1)i−a+1


mod n =


(s+1)i−a+1


mod n.

Since |

(s + 1)i − a + 1


−


(s + 1)i + a


| = 2a − 1 that is positive and less than n, |f (i + 1, a − i)− f (i, a − i)| is equal to

2a − 1 or n − (2a − 1). �

Note that each incompatible edge is such that one of its endpoints is of the form (a− j, j) (a diametrical vertex in Region
A), and the other is of the form (a + 1 − j, j). See Fig. 5, which illustrates such edges using ‘‘solid’’ lines in respect of the
14 × 7 RTT.

The next step is to trade the incompatible edges for as many new edges so that the resulting graph is isomorphic to a
circulant graph.

Lemma 3.7. If k = 1, then the graph obtainable from the 2a × a RTT by dropping the edges from Fig. 6(i) and adding the edges
from Fig. 7(i) is isomorphic to C2a2(1, 2a − 1).

Proof. First note that there are as many edges in Fig. 7(i) as in Fig. 6(i), and the set of underlying vertices is the same in each.
Further, the edges in Fig. 7(i) are new. Finally, check to see that the following hold:

• f (a, 0) = a and f (2, a − 1) = a + 1
• f (a − 1, 1) = (2a − 1)a and f (a + 1, 0) = (2a − 1)a + 1, and
• f (j, a − j) = (2j + 1)a and f (j + 2, a − 1 − j) = (2j + 1)a + 1, where 1 ≤ j ≤ a − 2.

It is clear that the foregoing edge exchanges lead to C2a2(1, 2a − 1). �

Lemma 3.8. If k ≥ 2, then the graph obtainable from the 2a × a RTT by dropping the edges from Fig. 6(ii) and adding the edges
from Fig. 7(ii) is isomorphic to C2a2(1, 2ka − 1).

Proof. First recall the identities from Lemma 3.4:

1. f (a − i, i) =

2ai(a − k)+ a


mod n, 0 ≤ i ≤ a − 1.

2. f (a + 1 − i, i) =

2ai(a − k)− a + 1


mod n, 0 ≤ i ≤ a − 1.
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Fig. 7. New edges.

The following are obtainable from the foregoing using the fact that kk−1
= ma + 1 for somem:

3. f (a − (k−1
− i), k−1

− i) =

2kai − a


mod n.

4. f (k−1
+ i, a + 1 − (k−1

+ i)) =

2ka(i − 1)+ (a + 1)


mod n.

The rest of the argument is similar to that in the proof of Lemma 3.7. Check to see that the labels assigned to the vertices
in Fig. 7(ii) are correct, and that the difference modulo n of the labels to the endpoints of each edge is equal to one of the
following: 1, n − 1, s, n − s. �

Fig. 8(i) and (ii) illustrate the working of Lemmas 3.7 and 3.8, respectively. The new edges appear as ‘‘dark’’ lines.
It is easy to see that the edge exchanges in the present line of construction are such that the distance-wise vertex

distribution of the RTT (cf. Section 2) holds true in respect of the resulting circulants as well. The following observation
is in order:

• Algorithm 1 (Section 2) for a shortest path between two vertices in the RTT does not make use of an incompatible edge or
a new edge. Therefore, it remains valid for each circulant.

It follows that the existing results on the diameter, average distance and link utilization of the RTT (Cámara et al.’s
Lemma 7 [10, p. 1768]) seamlessly carry over to each of the resulting circulants. (Link utilization is the average usage of
the network links under uniform random traffic at maximum network load. It is equal to the sum of the normalized average
distances per dimension, averaged among the network dimensions [10].)

In case the set of vertices of the circulant is given as {0, . . . , 2a2 −1}, Algorithm 2 (Section 3.1) may be used to transform
it into the vertex set of the RTT.

Lemma 3.9. The following hold for each circulant built in this section: diameter = a; average distance =
4a3−1
6a2

≈
2a
3 ; and link

utilization = 1. �

Observe that Lemma 3.9 achieves the lower bound on the diameter, cf. Theorem 1.4. Here is the central result of this
paper.

Theorem 3.10. For each a ≥ 3, there exists a family of optimal four-regular bipartite circulantsC2a2(1, 2ka−1), each obtainable
from the 2a × a rectangular twisted torus, where 1 ≤ k ≤ ⌊

1
2 (a − 1)⌋ and gcd(a, k) = 1. �

4. Layout of the circulants in the plane

Engineering considerations dictate that a network admit a layout that is amenable to an embedding of parallel algorithms.
It turns out that every four-regular circulant admits an L-shaped embedding with wrap-around links in the 2D plane [19].
The layout itself is amenable to a plane tessellation that is useful in the design of an efficient routing algorithm relative
to the given graph. Meanwhile the concept has its root in the construction of a minimum-distance diagram of a regular
graph [31].
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Fig. 8. The 14 × 7 RTT transformed into (i) C98(1, 13) and (ii) C98(1, 41).

The arrangement for C2a2(1, 2a − 1) is relatively easy. See Fig. 9 that illustrates this case in respect of C98(1, 13). It is
essentially a careful presentation of Fig. 8(i). A general framework of the vertex layout for this case appears in Fig. 10. (The
nodes within ‘‘rectangles’’ are exactly those that are diametrical relative to (0, 0).)

4.1. Layout of C2a2(1, 2ka − 1), k ≥ 2

As in Section 3, we let a ≥ 3, n = 2a2 and k ∈ {1, . . . , ⌊ 1
2 (a−1)⌋} with gcd(a, k) = 1. For k ≥ 2 (in which case a ≥ 5), it

is easy to see that k−1
≥ 3. Indeed, if a is odd, then 2−1

=
1
2 (a+ 1) that is greater than ⌊

1
2 (a− 1)⌋. On the other hand, if a is

even, then k cannot be equal to 2. A scheme for vertex layout of the graph in the plane appears in Algorithm 3 (see Figs. 11
and 12).
Aspect ratio: The aspect ratio of a layout is the ratio of the width and the height of the smallest enclosing rectangle. For the
foregoing layouts of C2a2(1, 2ka − 1), it is given by 2a−k−1

a+k−1 , which achieves its maximum of nearly two if k−1
= 1, i.e.,

k = 1. On the other hand, it reaches its minimum of a little over 1
2 if k−1 is close to a, and that happens when a is odd and

k−1
= a − 2 corresponding to k =

1
2 (a − 1).

See Table 2 for relative values of a and k where the objective is to achieve an aspect ratio close to unity.
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Fig. 9. L-shaped layout of C98(1, 13).

Fig. 10. A framework for layout of C2a2 (1, 2a − 1).

Algorithm 3 Vertex layout of C2a2(1, 2ka − 1), k ≥ 2
Require: a ≥ 5 and k ≥ 2, where gcd(k, a) = 1.
Step 1: Consider the embedding of the 2a × a RTT in the plane where incompatible edges have been distinguished. See
Fig. 5(ii) in respect of the 14 × 7 RTT.
Step 2: Delete the following:

1) The incompatible edges (which include one twisted edge).
2) The wrap-around edges.
3) The twisted edges {(i, 0), (i + a, a − 1)}: 0 ≤ i ≤ a − 1, and {(a + k−1

+ i, 0), (k−1
+ i, a − 1)}: 0 ≤ i ≤ a − k−1

+ 1.
(The twisted edges that remain are: {(a, 0), (0, a− 1)}, and {a+ 2+ i, 0), (2+ i, a− 1)}: 0 ≤ i ≤ k−1

− 3, i.e., k−1
− 1

of them.)
4) The horizontal edges {(k−1

− 1, j), (k−1, j)}: a − k−1
+ 2 ≤ j ≤ a − 1. (There are k−1

− 2 of them.)

Step 3: Reorganize the layout from Step 2, so Region A and Region B/C from the initial partition form two separate blocks.
Step 4: Carefully juxtapose the two blocks so that they are left-justified and ‘‘vertically" aligned, and the vertex (a, 0) is
immediately to the left of (k−1

+ 1, a − k−1). Finally piece them together using the new edges.
Step 5: Introduce the remaining valid edges. Fig. 11 presents the final layout of C98(1, 41) where the new edges appear
prominently while Fig. 12 depicts a general framework for that purpose.

5. Vertex-disjoint paths in the RTT

This section presents certain vertex-disjoint paths between every pair of distinct vertices in the RTT that directly map
into analogous paths in C2a2(1, 2ka − 1).
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Fig. 11. Layout of C98(1, 41) (Step 5 of Algorithm 3).

Fig. 12. A framework for layout of C2a2 (1, 2ka − 1), k ≥ 2.

It is not difficult to show that there exist four vertex-disjoint paths between every pair of distinct vertices in the RTT. For
obvious reasons, we exclude those paths that include an incompatible edge. In the process, the number of such paths is not
always equal to four.

Vertex transitivity of the RTT allows us to present all paths relative to the fixed vertex (0, 0). There are a total of eleven
cases. Fig. 13 distinguishes them in respect of the 14 × 7 RTT. At least one path in each case is necessarily a shortest path
while each of the remaining is at most twice as long. (The ‘‘dotted’’ lines in Fig. 13 are meant to delineate various segments
of the graph—they do not belong to the graph itself.)
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Table 2
Achieving aspect ratio close to unity (k ≥ 2).

a k k−1 Aspect ratio

odd 2 1
2 (a + 1) 3a−1

3a+1

4i 1
2 (a − 2) 1

2 (a − 2) 3a+2
3a−2

8i + 2 1
4 (a + 2) 1

2 (a + 4) 3a−4
3a+4

8i + 6 1
4 (a − 2) 1

2 (a − 4) 3a+4
3a−4

Fig. 13. Various cases in building disjoint paths in the RTT.

Remark. Based on the discussion in Section 3, a distinction is made between (i) C2a2(1, 2ka − 1), k = 1, and (ii)
C2a2(1, 2ka − 1), k ≥ 2. In particular, a path prefaced with the asterisk contains an edge of the form (a − i, i) that is
compatible in respect of the former, but incompatible in respect of the latter.
Case 1: (0, 0) to (0, j), 1 ≤ j ≤ a − 1

(0, 0)− (0, 1)− · · · − (0, j)  
(0, 0)− · · · − (a, 0)   − (0, a − 1)− · · · − (0, j)  
(0, 0)− (2a − 1, 0)− · · · − (2a − 1, j)   −(0, j)

∗(0, 0)− (a, a − 1)− · · · − (a, j)   − (a − 1, j)− · · · − (0, j)   .
Resp. path lengths: j, 2a − j, j + 2, 2a − j.
Case 2: (0, 0) to (i, 0), 1 ≤ i ≤ a − 1

(0, 0)− (1, 0)− · · · − (i, 0)  
(0, 0)− (0, 1)− · · · − (i, 1)   −(i, 0)

(0, 0)− (a, a − 1)− · · · − (a + i, a − 1)   −(i, 0)

∗(0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (i, 0)   .
Resp. path lengths: i, i + 2, i + 2, 2a − i.
Case 3: (0, 0) to (i, j), i + j ≤ a; i ≥ 1 and j ≥ 1

(0, 0)− · · · − (i, 0)   − (i, 1)− · · · − (i, j)  
(0, 0)− (0, 1)− · · · − (0, j)   − (1, j)− · · · − (i, j)  
∗(0, 0)− (a, a − 1)− · · · − (a, j)   − (a − 1, j)− · · · − (i, j)   .

Resp. path lengths: i + j, i + j, 2a − (i + j).
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Case 4: (0, 0) to (a, 0)

(0, 0)− (1, 0)− · · · − (a, 0)  
(0, 0)− (0, 1)− · · · − (0, a − 1)   −(a, 0)

∗(0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (a, 0)   .
Resp. path lengths: a, a, a.
Case 5: (0, 0) to (i, a − 1), 2 ≤ i ≤ a

(0, 0)− (a, a − 1)− (a − 1, a − 1) · · · − (i, a − 1)  
(0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (a + i, 0)   −(i, a − 1)

∗ (0, 0)− · · · − (0, a − 1)   − (1, a − 1)− · · · − (i, a − 1)   .
Resp. path lengths: a − i + 1, a − i + 1, a + i − 1.
Case 6: (0, 0) to (i, j), 3 ≤ i ≤ a; 1 ≤ j ≤ a − 2; i + j ≥ a + 1

(0, 0)− (a, a − 1)− · · · − (a, j)   − (a − 1, j)− · · · − (i, j)  
(0, 0)− (2a − 1, 0)− · · · − (a + i, 0)   − (i, a − 1)− · · · − (i, j)  
∗ (0, 0)− (0, 1)− · · · − (0, j)   − (1, j)− · · · − (i, j)   .

Resp. path lengths: 2a − (i + j), 2a − (i + j), i + j.
Case 7: (0, 0) to (a + 1, 0)

(0, 0)− (0, 1)− (2a − 1, 1)− · · · − (a + 1, 1)   −(a + 1, 0)

(0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (a + 1, 0)  
∗ (0, 0)− (1, 0)− · · · − (a + 1, 0)   .

Resp. path lengths: a + 1, a − 1, a + 1.
Case 8: (0, 0) to (i, j), a + 1 ≤ i ≤ 2a − 2 and 1 ≤ j ≤ a − 2

(0, 0)− · · · − (i − a, 0)   − (i, a − 1)− · · · − (i, j)  
(0, 0)− (a, a − 1)− · · · − (a, j)   − (a + 1, j)− · · · − (i, j)  
(0, 0)− · · · − (0, j)   − (2a − 1, j)− (i, j)  
(0, 0)− (2a − 1, 0)− · · · − (i, 0)   − (i, 1)− · · · − (i, j)   .

Resp. path lengths: i − j, i − j, 2a − (i − j), 2a − (i − j).
Case 9: (0, 0) to (i, 0), a + 2 ≤ i ≤ 2a − 1

(0, 0)− (0, 1)− (2a − 1, 1)− (2a − 2, 1)− · · · − (i, 1)− (i, 0)  
(0, 0)− (2a − 1, 0)− (2a − 2, 0)− · · · − (i, 0)  
(0, 0)− (a, a − 1)− (a − 1, a − 1) · · · − (i − a, a − 1)   −(i, 0)

∗ (0, 0)− (1, 0)− · · · − (i, 0)   .
Resp. path lengths: 2a + 2 − i, 2a − i, 2a + 2 − i, i.
Case 10: (0, 0) to (i, a − 1), a + 1 ≤ i ≤ 2a − 1

(0, 0)− (1, 0)− · · · − (i − a, 0)   −(i, a − 1)

(0, 0)− · · · − (0, a − 1)   − (2a − 1, a − 1)− · · · − (i, a − 1)  
(0, 0)− (a, a − 1)− · · · − (i, a − 1)  
(0, 0)− (2a − 1, 0)− · · · − (i, 0)   − (i, 1)− · · · − (i, a − 1)   .

Resp. path lengths: i − a + 1, 3a − i − 1, i − a + 1, 3a − i − 1.
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(i) (ii)

Fig. 14. Essential structures of (i) 2a × a RTT and (ii) C2a2 (1, 2a − 1).

Case 11: (0, 0) to (2a − 1, j), 1 ≤ j ≤ a − 2

(0, 0)− · · · − (0, j)   −(2a − 1, j)

(0, 0)− (2a − 1, 0)− · · · − (2a − 1, j)  
(0, 0)− · · · − (a − 1, 0)   − (2a − 1, a − 1)− · · · − (2a − 1, j)  
(0, 0)− (a, a − 1)− · · · − (a, j)   − (a + 1, j)− · · · − (2a − 1, j)   .

Resp. path lengths: j + 1, j + 1, 2a − 1 − j, 2a − 1 − j.

6. Non-isomorphism

We prove in this section that (1) the circulants constructed in Section 3 are mutually nonisomorphic, and (2) each is
nonisomorphic also to the 2a×aRTT.Whereas (1) turns out to be easy, (2) involves some amount of carefulwork.Meanwhile
we continue to use the vertex set of the 2a× a RTT, viz., {(i, j) : 0 ≤ i ≤ 2a− 1 and 0 ≤ j ≤ a− 1} as the vertex set of each
of the circulants as well.

Lemma 6.1. If s1 ≠ s2, s1 ≠ n − s2, and s1s2 ≢ ±1( mod n), then Cn(1, s1) ≁= Cn(1, s2) [12]. �

Theorem 6.2. For a ≥ 3, if k1, k2 ∈ {1, . . . , ⌊ 1
2 (a − 1)⌋} and k1 ≠ k2, then C2a2(1, 2k1a − 1) and C2a2(1, 2k2a − 1) are not

isomorphic.

Proof. Let a, k1 and k2 be as stated, and k1 < k2. Further, let s1 = 2k1a − 1, s2 = 2k2a − 1 and n = 2a2. It is clear that
2a − 1 ≤ s1 < s2 < 1

2n. Therefore, s1 ≠ n − s2 and s2 ≠ n − s1. Further, s1s2 = 4k1k2a2 − 2(k1 + k2)a + 1 that reduces to
2a2 − 2(k1 + k2)a + 1 modulo n. Notice that 1 < k1 + k2 < a. Accordingly, s1s2 ≢ ±1( mod n). The claim then follows by
Lemma 6.1. �

6.1. A distinguishing characteristic of the 2a × a RTT

Consider the vertex partition {V0, . . . , Va} of the RTT, where Vk consists of vertices at a distance of k from (0, 0), 0 ≤ k ≤

a, cf. Section 2. Call a vertex u a predecessor of v if u ∈ Vk−1, v ∈ Vk, and u and v are adjacent, where 1 ≤ k ≤ a. Use the
term successor in a natural way.

Fact 1. 1. There are four disjoint shortest paths of length a each that originate at (0, 0) and converge at a unique vertex at the
diametrical level.

2. Each of the foregoing paths, say, (0, 0)− (u1, v1)− · · · − (ua−1, va−1)− (ua, va) is such that the vertex (ud, vd) has a single
predecessor and three successors, where 1 ≤ d ≤ a − 1.

3. None of the remaining vertices at levels 1, . . . , a − 1 has the foregoing property of having a single predecessor and three
successors. �

Fig. 14(i) illustrates Fact 1. The vertices on the respective paths at the dth level are (d, 0), (0, d), (a, a − d) and
(2a − d, 0), 1 ≤ d ≤ a − 1. Further, the nodes (a − 1, 0), (0, a − 1), (a, 1) and (a + 1, 0) at the (a − 1)th level have
between them a total of five neighboring vertices at the ath level: (2a−1, a−1), (a−1, 1), (a, 0), (1, a−1) and (a+1, 1).
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Fig. 15. The essential structure of C2a2 (1, 2ka − 1), k ≥ 2.

Table 3
A comparison of C2a2 (1, 2ka − 1) and C2a2 (a − 1, a).

C2a2 (1, 2ka − 1) C2a2 (a − 1, a)

Bipartite? Yes No
Diameter a a
Average distance 2

3 a (approx.) 2
3 a (approx.)

Node distribution (level diagram) 1 + 4d +2a − 1 1+ 4d +2a−1

1 ≤ d ≤ a − 1 1 ≤ d ≤ a − 1

Layout L-shaped Rectangular
Aspect ratio Between 1

2 and 2 2

2a × a RTT vs. C2a2(1, 2ka − 1): The circulants derived from the RTT and the RTT itself are all vertex transitive, and their
vertex sets are assumed (without loss of generality) to be the same, so their characteristics may be examined relative to the
fixed node (0, 0).

Fig. 14(ii) presents the structure of C2a2(1, 2a− 1) that is analogous to that of the RTT appearing in Fig. 14(i). Everything
stays intact up to the (a−1)th level. Further, the nodes of the four disjoint paths at the (a−1)th level are together adjacent
to a total of six nodes at the ath level. However, the paths themselves do not collectively converge at any one of those six
nodes.

It follows that Facts 1(2) and 1(3) continue to hold in respect ofC2a2(1, 2a−1)while Fact 1(1) does not hold. An identical
conclusion is reached if k ≥ 2. See Fig. 15.

Theorem 6.3. The 2a × a RTT and the circulants C2a2(1, 2ka − 1), k ≥ 1, are mutually non-isomorphic. �

Remark. Theorem 6.3 suggests that the 2a × a RTT itself is probably not a circulant graph.

7. Concluding remarks

This paper deals with the routing in the bipartite circulants C2a2(1, 2ka − 1), k ≥ 1, devised by Tzvieli [30] in 1991. The
details are precise enough to warrant an easy implementation.

The study critically relies on the structural similarity between the 2a×a rectangular twisted torus (RTT) andC2a2(1, 2ka−
1). The advantage is that the routing, which is otherwise challenging in the case of a circulant, becomes feasible and intuitive.

Additional results include a set of vertex-disjoint paths between every pair of distinct vertices in the RTT that map into
analogous paths in C2a2(1, 2ka− 1), thus strengthening the fault tolerance and communication capability of the circulants.

Among other circulants in the literature, C2a2(a − 1, a) is one, which is known to be optimal [3] for a long time. Since
the circulants in the present paper are also on 2a2 vertices, it is instructive to compare the two. To that end, Table 3 presents
certain relevant characteristics of C2a2(1, 2ka − 1) and C2a2(a − 1, a).

It seems that the methodology used in the present paper will be applicable to other families of four-regular circulants
obtainable from variants of the rectangular twisted torus.
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