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A b s t r a c t - - T h e  direct product (also called Kronecker product, tensor product, and cardinal prod- 
uct) G x H of distance-regular graphs is investigated. It is demonstrated that the product is distance- 
regular only when G and H are very restricted distance-regular graphs. (~) 1999 Elsevier Science 
Ltd. All rights reserved. 

K e y w o r d s - - D i s t a n c e - r e g u l a r  graphs, Direct product. 

1. I N T R O D U C T I O N  

E v e r y  c o n n e c t e d  g r a p h  is r e p r e s e n t a b l e  by  m e a n s  o f  a level diagram (cf. [1]) as follows. C h o o s e  

a v e r t e x  u, a n d  le t  i t  be  t h e  sole r e s iden t  of  level  zero.  T h e  ve r t i c e s  on  level  i a re  p rec i se ly  t h o s e  

w h o s e  d i s t a n c e  f r o m  u is i. N o w  a d d  edges  of  t h e  g r a p h  a n d  n o t e  t h a t  t h e  edges  o c c u r  o n l y  

b e t w e e n  v e r t i c e s  of  a d j a c e n t  levels  and  a m o n g  ve r t i ce s  of  t h e  s a m e  level.  Distance regularity is 

d e f i n a b l e  in t e r m s  of  a level  d i a g r a m .  Le t  d be  t h e  d i a m e t e r  of  a g iven  g r a p h  G,  and  le t  v be  a 

v e r t e x  o f  G on  level  i. F u r t h e r ,  le t  

ai  = n u m b e r  of  ve r t i c e s  on  level  i a d j a c e n t  to  v, i = 1 . . . .  , d, 

bi. = n u m b e r  of  ve r t i ce s  on level  i + 1 a d j a c e n t  to  v, i = 0, . . ,  d - 1, 

ci = n u m b e r  of  ve r t i c e s  on  level  i - 1 a d j a c e n t  to  v, i = 1, . . ,  d. 

We got to know about the unique characteristic of the (3, 12)-cage from C. Godsil and received much-needed 
encouragement from P. Weichsel. We are also thankful to the referee, whose comments on the earlier draft led to 
an improvement in the paper. 
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G is said to be distance-regular if it is connected and the numbers a~, bi, and ci depend 
only on i and not on the choice of the level diagram or on the choice of v. A distance-regular 
graph is necessarily regular. On the other hand, every regular graph need not be distance- 
regular. Cycles, complete graphs, and hypercubes are some of the familiar graphs easily seen to 
be distance-regular. Brouwer et al. [2] list several characteristics and applications of this class of 

graphs. 
What  distance-regular graphs survive stress of the direct product? It turns out that  most such 

graphs are of low diameter. In particular, if G and H are distance-regular graphs with d(G) > 2 
and d(H) > 2, then G x H is not distance-regular. (Here d(G) denotes the diameter of G.) This 
is to be contrasted with Weichsel's result with respect to the Cartesian product [3]. 

Let G be a distance-regular graph, and let A be the degree of G. It is easy to see that  
b0 :- A and Cl ~- 1. Further, i f G i s  bipartite, then ai = 0 for a l l i  and Cd = A. The pair of 
sequences [(b0, . . . ,  bd-1); (Cl , . . . ,  Cd)] is called the intersection array. It contains all the essential 
information about the graph but falls short of uniquely determining the graph. 

By a graph is meant a finite, simple, and undirected graph. Unless indicated otherwise, graphs 
are also connected and have at least two vertices. Let G = (V, E)  and H = (W, F)  be graphs. 
The direct product G x H of G and H is defined as follows: V(G × H) = V × W and E(G x H) = 
{ { (u , x ) , ( v , y ) } :  {u,v} • E and {x,y} • F).  This product is variously known as Kronecker 
product,  tensor product, and cardinal product. Certain relevant characteristics are as follows: 

(i) G × H is bipartite iff G or H is bipartite; 
(ii) G x H is connected iff G or H is nonbipartite; 

(iii) if G and H are both bipartite, then G x H consists of two connected components; and 
(iv) if G -- (V0 U V1, E)  is a bipartite graph equipped with an automorphism that  swaps the 

two colors, then for every bipartite graph H,  the two components of G x H are isomorphic 

to each other [4]. 

Note that  the (3, 12)-cage is bipartite and distance-regular, yet it does not admit of an auto- 

morphism swapping the two colors [2]. 

2.  R E S U L T S  

Our important  result (that appears in Corollary 2.3 below) is that  if d(G) > 2 and d(H) > 2, 
then G x H is not distance-regular. Theorem 2.4 is a characterization for distance-regularity of 
G × H where d(G) -- d(H) -- 2. Finally, we deal with the case when one or each of G and H is 
a complete graph and state certain results relating to G x / ( 2 .  

THEOREM 2.1. Let G and H be distance-regular graphs such that G or H is nonbipartite, and 
d(G) > 2, d(H) > 2. For 2 < k < min(d(G),d(H)}, if ck(G) ~ A(G) or ck(g) ~ A(H) ,  then 
G × H is not distance-regular. 

PROOF. Let G, H,  and k be as stated, and note that  G × H is connected. For a vertex u of G, 
consider the level diagram of G with u at level zero. Similarly, for a vertex v of H,  consider the 
level diagram of H with v at level zero. We construct the level diagram of G x H with vertex 
(u, v) at level zero. 

We first claim that  for each k, there exist vertices (Xl, Yl), (x2, Y2), and (X3, Y3) at level k of 
G × H such that  

(a) dis tc(u,  xl)  = k = distil(v, Yl), 
(b) dis tc(u,  x2) -- k > distil(v, Y2), and 
(c) dis tc(u,  x3) < k -- distil(v, Y3), where distc(u,  x~) and distil(v, Yi) are of the same parity, 

1 < i < 3 .  

For (a), note tha t  G is xance-regular, and 2 < k < min{d(G), d(H)},  hence there exist ver- 
tices xl and Yl in G and H,  respectively, such that  distv(u, xl)  -- k = distu(v, yl). Clearly, 
distc×H((U, v), (xl,  Yl)) ---- k. 
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For (b), let u - ul - u2 . . . . .  Uk be a shortest  pa th  of length k in G, and let vl be a vertex 

adjacent  to v in H.  If  k is even, then (u,v) - (Ul,Vl) - (u~,v) . . . . .  (uk - l ,V l )  - (uk,v)  is 

a shor tes t  pa th  of length k in G x H.  On the  other  hand, if k is odd, then  (u, v) - (ul ,  vl) - 

(u2,v)  . . . . .  (uk_l ,v)  - (uk ,v l )  is a shortest  pa th  of length k in G x H.  Let t ing  x2 = uk and 

Y2 = v if k is even, and lett ing x2 = uk and Y2 = vl if k is odd, we observe: 

(i) d i s t a (u ,  x2) = k > dis t i l (v,  Y2), and 

(ii) d i s t c (u ,  x2) and dist i l (v,  Y2) are of  the same parity. 

Argumen t  for (c) is analogous to the foregoing. 

For each of the  vertices of the  type  (xl ,  Yl), (x2, Y2), and (xa, Y3) at level k of G z H ment ioned 
above, we compute  ck. 

• Vertex ( x l , y l )  is adjacent to a vertex ( r l , s l )  at level k - 1 iff d i s tc (u ,  r l )  = k - 1 = 

distH(v, sl), and x l , r l  (respectively, y l , s l )  are adjacent in G (respectively, H) .  The  

number  of such vertices at level k - 1 of G z H is exact ly ck(G),  ck(H). 
• Vertex (x2, Y2) is adjacent to a vertex (r2, s2) at level k - 1 iff d i s tc (u ,  r2) = k - 1, and 

x2, r2 are adjacent  in G. The  number  of  such vertices at level k - 1 of G × H is exact ly  

ek(G) . A ( H ) .  

* Vertex (xa, Y3) is adjacent  to  a vertex (r3, s3) at level k - 1 iff dist i l (v,  s3) = k - 1, and 

Y3, s3 are adjacent  in H.  The  number  of such vertices at level k - 1 of G x H is exact ly  
A ( G ) .  ck(H). 

If  the  g raph  G × H is to be distance-regular,  then ck(G).ck(H) = ek (G) .A(H)  = A ( G ) . c k ( H ) .  

This implies t ha t  ck(G) = A(G)  and ck(H) = A ( H ) .  | 

THEOREM 2.2. If  G and H are bipartite distance-regular graphs with d(G) > 2 and d(H) > 2, 
then each component of G × H is distance-regular i f fck(G) = A(G)  and ek(H) = A ( H ) ,  where 
2 < k < min{d(G),  d(H)} .  

PaOOF. Let G and H be as stated. G × H consists of two (bipartite) components ,  where vertices 

(u, v) and (x, y) belong to the same component  iff distG(u, x) and dist i l(v,  y) are of the same 

parity. Observe tha t  d(G × H)  = max{d(G) ,  d(H)} ,  cf. [5]. 

V~Te cons t ruc t  a level d iagram of one component  of G x H as in the proof  of Theorem 2.1. W i t h  

vertex (u, v) at  level zero, we distinguish among  three types of vertices, namely, (xl,  Yl), (x2, Y2) 

and (x3, Y3), at  level k, where 

(a) distG(u, x l )  = k = distH(v, yl),  
(b) d i s t c (u ,  x2) = k > distH(v, y2), and 

(c) d i s tc (u ,  x3) < k = dist i l (v,  Y3). 

Note  tha t  distG(u, x.~) and dist i l(v,  yi) are necessarily of the same parity, 1 < i < 3. 

By an a rgument  as in the proof  of Theorem 2.1, if each component  of G × H is distance-regular,  
then ck(G) = A(G)  and ck(H) = A ( H ) ,  where 2 < k < min{d(G),  d(H)}.  

For the converse, assume tha t  Ck(G) = A(G)  and ck(H) = A ( H )  for 2 < k < min{d(G) ,  d (H)} .  

This means  tha t  each of G and H is of the form Kn,n. In this case, each componen t  of G x H is 

again such. | 

COaOLLARY 2.3. I f  G and H are distance-regular graphs  with d(G) > 2 and d(H) > 2, then 
G × H or a component of G x H is not distance-regular. 

PROOF. Let G and H be as stated.  Since b2(G) > 0 for any distance-regular  graph  with d iameter  
at lesust three, it is clear t ha t  c2(G) < A(G).  By Theorems 2.1 and 2.2, G × H or a connected 
componen t  of G x H is not  distance-regular,  l 

THEOREM 2.4. Let G and H be distance-regular graphs with d(G) = d(H) = 2. Each component 
of G x H is distance-regular iff both G and H are bipartite. 

PROOF. Let G and H be as stated. First,  assume tha t  G is nonbipart i te ,  in which case ei ther  
a~(a )  > 0 or a2 (a )  > 0. If  a2(a) > o, then c2(G) < A(G) ,  and by Theorem 2.1, G x H is not  
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dis tance-regular .  Suppose  t h a t  al(G) > 0. Let  u ,x  c V(G), v ,y  c V(H) ,  where d i s t c ( u , x )  = 1 
and d is t i l (v ,  y) = 2. Now consider the  level d i ag ram of G x H with (u, v) at  level zero. I t  is easy  

to see t h a t  (u,y) is a t  level two. Fur ther ,  since al(G) > 0, the  ver tex  (x ,y)  is also at  level two. 
However,  the  number  of c o m m o n  neighbors  of  (u, v) and (u, y) is A ( G ) .  A ( H ) ,  while the  number  

of c o m m o n  neighbors  of  (u,v) and (x,y)  is al (G) .  A ( H ) .  Since al(G) < A(G) ,  it follows t h a t  
G x H is not  dis tance-regular .  T h e  converse follows f rom T h e o r e m  2.2. | 

T h e  reader  m a y  check to see t ha t  results 2.1, 2.2, 2.3, and 2.4 lead to the  following. If  G and H 
are d is tance-regular  g raphs  of d iamete r  at  least two, then  G x H or a componen t  of G x H is 
d is tance-regular  iff each of G and H is isomorphic  to Kn,n for some n. 

By  an a rgumen t  as in the  proof  of T h e o r e m  2.4, if G is a dis tance-regular  g raph  wi th  d(G) > 2 
and n > 3, then  G × Kn is not dis tance-regular .  The  following result  takes  care of  Km x Kn.  

THEOREM 2.5. For m , n  >_ 3, K m ×  Kn iS distance-regular iff m = n. 

PROOF. Let  m,  n > 3, and consider the  g raph  K m  x Kn which is a nonbipar t i te ,  regular  g raph  
of d i ame te r  two and degree (m - 1).  (n - 1). Let  us examine  the  level d i ag ram of K m ×  Kn  wi th  
ver tex  (0, 0) at  level zero. 

Vertices a t  level one are of the  form (i, j ) ,  where  1 < i < m - 1 and 1 _< j _< n - 1. Thus ,  this  

level has  a to ta l  of (m - 1) • (n - 1) vertices. The  remaining m + n - 2 vertices are a t  level two, 
and are of  the  form ( i ,0)  and (0 , j ) ,  where 1 < i < m -  1 and 1 _< j < n -  1. 

A ver tex  ( i , j )  at  level one is adjacent  to a ver tex  (p, q) a t  the  same level iff 

(i) l < p < m - l , p ~ i ,  and 
(ii) l < q < n - l , q ~ j .  

I t  follows t h a t  a l  = (m - 2) . (n - 2). Since cl = 1, we have bl = m + n - 4 .  (Recall  t h a t  
ai + bi + ci = A.)  

Next  examine  ad jacency  among  elements  at  level two. I f  a ver tex  is of the  form (i, 0) (respec- 
tively, (0, j ) ) ,  then  it has a to ta l  of n -  1 (respectively, m -  1) neighbors  on t h a t  level. Based on 
this,  we have a2 and c2 in Table  1. 

Table 1. 

a2 

c2 

For a ver tex of the  form 
(i, 0), l < i < m - 1  

For a ver tex of the  form 
(O,j),  l ~ j ~ n - 1  

n - 1  m - 1  

( m -  2) .  ( n - -  1) ( m -  1) .  ( n -  2) 

I t  follows t h a t  the  numbers  ak, bk, and Ck depend  only on k and not  on the  choice of a ver tex  
( i , j )  iff m = n. Note  also t h a t  the  level d i ag ram itself is independent  of  the  choice of the  ver tex  
a t  level 0. | 

Dealing with G × K2 

In  the  rest  of  the  paper ,  we present  cer ta in  remarks  with respect  to G x K2. This  g r aph  ( tha t  
is connected  iff G is nonbipar t i te )  has been called bipartite double of G by Brouwer  et al. who 
present  a charac te r iza t ion  for its d is tance-regular i ty  and o ther  related resul ts  [2, pp. 24-26]. In  
par t icular ,  t hey  prove the  following. 

(1) G x / ( 2  is d is tance-regular  of d iamete r  2d + 1 iff G is d is tance-regular  wi th  ai = 0 (i < d) 
and ad > 0. In this case, G × K2 is an an t ipodal  2-cover of G. 

(2) I f  G is d is tance-regular  and j = min{i  [ a~ # 0} < d, then  G x / ( 2  is d is tance-regular  iff 

d = 2j,  aj = c j+ l ,  bj-i = cj+i+l = cj+~ + aj+i ( i  = 1 , . . .  , j  --  1);  if this is the  case, then  
d(G x K2) = 2j + 1 = d +  1. 
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Odd cycles, complete graphs (on at least three vertices), Petersen graph, and Hoffman-Singleton 
graph are certain examples that satisfy conditions in (1), while Shrikhande graph with intersection 
array [(6, 3); (1, 2)] and Clebsch graph (that is isomorphic to the halved 5-cube) are examples that 
satisfy conditions in (2). 

An Example 

There  exis ts  a g r a p h  G such t h a t  G is not  d i s tance- regular ,  ye t  G x K2 is d i s t ance- regu la r .  To 

see this ,  cons ider  the  g raph  t h a t  appea r s  in F igure  1. The  reader  m a y  check to see t h a t  

(i) G is not  d i s tance- regu la r ,  and  

(ii) G x K2 is i somorphic  to  Q4 ( appea r ing  in F igure  2) t h a t  is known to be d i s t ance - regu la r .  

w 

Figure 1. Graph G. 

" % / L 7  

Figure 2. The graph Q4. 
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