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Distance Regularity in Direct-Product Graphs
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Abstract—The direct product (also called Kronecker product, tensor product, and cardinal prod-
uct) G x H of distance-regular graphs is investigated. It is demonstrated that the product is distance-
regular only when G and H are very restricted distance-regular graphs. (© 1999 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

Every connected graph is representable by means of a level diagram (cf. [1]) as follows. Choose
a vertex u, and let it be the sole resident of level zero. The vertices on level i are precisely those
whose distance from v is 7. Now add edges of the graph and note that the edges occur only
between vertices of adjacent levels and among vertices of the same level. Distance regularity is
definable in terms of a level diagram. Let d be the diameter of a given graph G, and let v be a
vertex of G on level i. Further, let

a; = number of vertices on level ¢ adjacent to v, 1 =1,...,d,
b; = number of vertices on level 7 + 1 adjacent to v, i =0,...,d — 1,
¢; = number of vertices on level i — 1 adjacent towv, i = 1,...,d.

We got to know about the unique characteristic of the (3,12)-cage from C. Godsil, and received much-needed
encouragement from P. Weichsel. We are also thankful to the referee, whose comments on the earlier draft led to
an improvement in the paper.
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G is said to be distance-regular if it is connected and the numbers a;, b;, and ¢; depend
only on ¢ and not on the choice of the level diagram or on the choice of v. A distance-regular
graph is necessarily regular. On the other hand, every regular graph need not be distance-
regular. Cycles, complete graphs, and hypercubes are some of the familiar graphs easily seen to
be distance-regular. Brouwer et al. [2] list several characteristics and applications of this class of
graphs.

What distance-regular graphs survive stress of the direct product? It turns out that most such
graphs are of low diameter. In particular, if G and H are distance-regular graphs with d(G) > 2
and d(H) > 2, then G x H is not distance-regular. (Here d(G) denotes the diameter of G.) This
is to be contrasted with Weichsel’s result with respect to the Cartesian product [3].

Let G be a distance-regular graph, and let A be the degree of G. It is easy to see that
bo = A and ¢; = 1. Further, if G is bipartite, then a; = 0 for all i and ¢4 = A. The pair of
sequences [(bo, - . .,b4-1); (c1,...,cq)] is called the intersection array. It contains all the essential
information about the graph but falls short of uniquely determining the graph.

By a graph is meant a finite, simple, and undirected graph. Unless indicated otherwise, graphs
are also connected and have at least two vertices. Let G = (V, E) and H = (W, F) be graphs.
The direct product G x H of G and H is defined as follows: V(Gx H) =V xW and E(Gx H) =
{{(w,z), (v,y)} : {u,v} € F and {z,y} € F}. This product is variously known as Kronecker
product, tensor product, and cardinal product. Certain relevant characteristics are as follows:

(i) G x H is bipartite iff G or H is bipartite;

(ii) G x H is connected iff G or H is nonbipartite;

(iii) if G and H are both bipartite, then G x H consists of two connected components; and

(iv) if G = (Vo U V4, E) is a bipartite graph equipped with an automorphism that swaps the

two colors, then for every bipartite graph H, the two components of G x H are isomorphic
to each other [4].

Note that the (3,12)-cage is bipartite and distance-regular, yet it does not admit of an auto-
morphism swapping the two colors [2].

2. RESULTS

Our important result (that appears in Corollary 2.3 below) is that if d(G) > 2 and d(H) > 2,
then G x H is not distance-regular. Theorem 2.4 is a characterization for distance-regularity of
G x H where d(G) = d(H) = 2. Finally, we deal with the case when one or each of G and H is
a complete graph and state certain results relating to G x Kj.

THEOREM 2.1. Let G and H be distance-regular graphs such that G or H is nonbipartite, and
d(G) > 2, d(H) > 2. For 2 < k < min{d(G),d(H)}, if cx(G) # A(G) or ex(H) # A(H), then
G x H is not distance-regular.
Proor. Let G, H, and k be as stated, and note that G X H is connected. For a vertex u of G,
consider the level diagram of G with u at level zero. Similarly, for a vertex v of H, consider the
level diagram of H with v at level zero. We construct the level diagram of G x H with vertex
(u,v) at level zero.

We first claim that for each k, there exist vertices (x1,y1), {(Z2,¥2), and (z3,y3) at level k of
G x H such that

(a) distg(u,z1) = k = distg (v, y1),

(b) distg(u,x2) = k > disty (v, y2), and

(c) distg(u,xs) < k = disty (v, ys), where distg(u, z;) and disty (v, y;) are of the same parity,

1<4<3.

For (a), note that G is xance-regular, and 2 < k < min{d(G),d(H)}, hence there exist ver-
tices x; and y; in G and H, respectively, such that distg(u,z1) = k = distg(v,y1). Clearly,
disthH((u, ’U), (1‘1, yl)) = k.
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For (b), let u — uy — uz — - -+ — ux be a shortest path of length & in G, and let v; be a vertex
adjacent to v in H. If k is even, then (u,v) — (u1,v1) — (ug,v) — -+ — (ug-1,v1) — (ug,v) is
a shortest path of length k in G x H. On the other hand, if & is odd, then (u,v) — (uy,v) —
{ug,v) — -+ — (ug—1,v) — (ug,v1) is a shortest path of length & in G x H. Letting o = u; and
y2 = v if k is even, and letting zo = uy and yp = vy if k is odd, we observe:

(i) distg(u,z2) = k > distg (v, y2), and

(ii) diste(u,z2) and disty (v, y2) are of the same parity.

Argument for {c) is analogous to the foregoing.

For each of the vertices of the type (z1,¥1), (z2,y2), and (x3,y3) at level k of G x H mentioned
above, we compute c.

e Vertex (x1,y)) is adjacent to a vertex (ry,s1) at level k - 1 iff distg{u,r) = k-1 =
distg (v, s1), and z,7r; (respectively, y;,s;) are adjacent in G (respectively, H). The
number of such vertices at level k — 1 of G x H is exactly ¢x(G) - cx(H).

o Vertex (z2,y2) is adjacent to a vertex (rg, sq) at level k — 1 iff distg(u,m2) = k — 1, and
Z2,79 are adjacent in G. The number of such vertices at level k — 1 of G x H is exactly
ck(G) - A(H).

e Vertex (z3,y3) is adjacent to a vertex (r3,ss) at level k — 1 iff distz(v, s3) = k — 1, and
ys, s3 are adjacent in H. The number of such vertices at level £ — 1 of G x H is exactly

A(G) - e (H).
If the graph G x H is to be distance-regular, then cx(G) cx(H) = ¢, (G)-A(H) = A(G) -ck(H).
This implies that ¢, (G) = A(G) and ¢ (H) = A(H). 1

THEOREM 2.2. If G and H are bipartite distance-regular graphs with d{(G) > 2 and d(H) > 2,
then each component of G x H is distance-regular iff ¢, (G) = A(G) and cx(H) = A(H), where
2 <k < min{d(G),d(H)}.

PROOF. Let G and H be as stated. G x H consists of two (bipartite) components, where vertices
{(u,v) and (z,y) belong to the same component iff distg(u,z) and disty(v,y) are of the same
parity. Observe that d(G x H) = max{d(G),d(H)}, cf. [5].

We construct a level diagram of one component of G x H as in the proof of Theorem 2.1. With
vertex (u,v) at level zero, we distinguish among three types of vertices, namely, (z1,y1), (T2, y2)
and (z3,ys3), at level k, where

(a) distg(u,z1) =k = distg(v,y1),
(b) distg(u,z2) = k > distg (v, y2), and
(c) distg(u,x3) < k = disty(v,ys).
Note that distg(u, z;) and distg (v, y;) are necessarily of the same parity, 1 <17 < 3.

By an argument as in the proof of Theorem 2.1, if each component of G x H is distance-regular,
then cx(G) = A(G) and ¢x(H) = A(H), where 2 < k < min{d(G),d(H)}.

For the converse, assume that ¢x(G) = A(G) and ¢, (H) = A(H) for 2 < k < min{d(G),d(H)}.
This means that each of G and H is of the form K, ,,. In this case, each component of G x H is
again such. 1
COROLLARY 2.3. If G and H are distance-regular graphs with d(G) > 2 and d(H) > 2, then
G x H or a component of G x H is not distance-regular.

ProOOF. Let G and H be as stated. Since b2(G) > 0 for any distance-regular graph with diameter
at least three, it is clear that c2(G) < A(G). By Theorems 2.1 and 2.2, G x H or a connected
component of G x H is not distance-regular. 1

THEOREM 2.4. Let G and H be distance-regular graphs with d(G) = d(H) = 2. Each component
of G x H is distance-regular iff both G and H are bipartite.

PRrROOF. Let G and H be as stated. First, assume that G is nonbipartite, in which case either
a1(G) > 0 or ax(G) > 0. If az(G) > 0, then c2(G) < A(G), and by Theorem 2.1, G x H i3 not
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distance-regular. Suppose that a1(G) > 0. Let u,z € V(G), v,y € V(H), where distg(u, z)=1
and distg (v,y) = 2. Now consider the level diagram of G x H with (u,v) at level zero. It is easy
to see that (u,y) is at level two. Further, since a;(G) > 0, the vertex (z,y) is also at level two.
However, the number of common neighbors of (v, v) and (u,y) is A(G) - A(H), while the number
of common neighbors of (u,v) and (z,y) is a;(G) - A(H). Since a;(G) < A(G), it follows that
G x H is not distance-regular. The converse follows from Theorem 2.2. 1

The reader may check to see that results 2.1, 2.2, 2.3, and 2.4 lead to the following. If G and H
are distance-regular graphs of diameter at least two, then G x H or a component of G x H is
distance-regular iff each of G and H is isomorphic to K, , for some n.

By an argument as in the proof of Theorem 2.4, if G is a distance-regular graph with d(G) > 2
and n > 3, then G' x K, is not distance-regular. The following result takes care of K, x K,.

THEOREM 2.5. For m,n > 3, K, x K, is distance-regular iff m = n.

ProoF. Let m,n > 3, and consider the graph K, x K, which is a nonbipartite, regular graph
of diameter two and degree (m — 1) (n —1). Let us examine the level diagram of K,,, x K, with
vertex (0,0) at level zero.

Vertices at level one are of the form (i, j), where 1 <i <m —1and 1 < j < n — 1. Thus, this
level has a total of (m — 1) - (n — 1) vertices. The remaining m + n — 2 vertices are at level two,
and are of the form (7,0) and (0,7), where 1<i<m—-1land1<j<n-1.

A vertex (4, 7) at level one is adjacent to a vertex (p,q) at the same level iff

(i) 1<p<m-—1,p#1, and

(i) 1<g<n—1,q+#j.
It follows that a; = (m —2)-(n —2). Since ¢; = 1, we have b; = m +n — 4. (Recall that
a; + b +c¢=A)

Next examine adjacency among elements at level two. If a vertex is of the form (4,0) (respec-
tively, (0, 7)), then it has a total of n — 1 (respectively, m — 1) neighbors on that level. Based on
this, we have as and ¢y in Table 1.

Table 1.
For a vertex of the form For a vertex of the form
(1,0),151Sm—1 (0,]),1§]§n—1
az n—1 m—1
c2 (m=-2)-(n-1) (m-1)-(n-2)

It follows that the numbers ay, by, and c; depend only on k and not on the choice of a vertex
(4,7) iff m = n. Note also that the level diagram itself is independent of the choice of the vertex
at level 0. 1

Dealing with G x Ky

In the rest of the paper, we present certain remarks with respect to G x K». This graph (that
is connected iff G is nonbipartite) has been called bipartite double of G by Brouwer et al. who
present a characterization for its distance-regularity and other related results (2, pp. 24-26]. In
particular, they prove the following.

(1) G x K is distance-regular of diameter 2d + 1 iff G is distance-regular with a; = 0 (i< d)
and ag > 0. In this case, G x K, is an antipodal 2-cover of G.

(2) If G is distance-regular and j = min{i | a; # 0} < d, then G x K is distance-regular iff
d= 2j, A5 = Cj+1, bj_i = Cjtitl = Cj4g + Aj4i (Z = 1, e ,j — 1); if this is the case, then
dGx Ko)=2j+1=d+1.
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0Odd cycles, complete graphs (on at least three vertices), Petersen graph, and Hoffman-Singleton
graph are certain examples that satisfy conditions in (1), while Shrikhande graph with intersection
array [(6,3); (1,2)] and Clebsch graph (that is isomorphic to the halved 5-cube) are examples that
satisfy conditions in (2).

An Example

There exists a graph G such that G is not distance-regular, yet G x K is distance-regular. To
see this, consider the graph that appears in Figure 1. The reader may check to see that

(i) G is not distance-regular, and
(ii) G x K3 is isomorphic to Q4 (appearing in Figure 2) that is known to be distance-regular.

Figure 1. Graph G.

Figure 2. The graph Q4.
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