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The matrixS in Theorem 3 is obtained as

S =
3

4
�1

�1 3

4

Since the system equations discussed in [15] requireci = 1(i = 1; 2),
the condition given in [15] is not applied. In addition, we can also see
thatS is not a nonsingularM matrix, so the condition given in [15]
does not also hold for the matrices given above.

III. CONCLUSIONS

A set of criteria have been derived ensuring the global asymptotic
stability of delayed cellular neural networks (DCNNs) with more gen-
eral output functions by introducing ingeniously infinitely real param-
eters, constructing suitable Lyapunov functionals and applying some
analysis techniques, and these criteria are independent of delays and
possess infinitely adjustable real parameterswi > 0, ��ij , ��ij , ��ij ,
��ij , �ij , �ij , �ij , �ij are any real numbers with��ij + ��ij = 1,�ij +
�ij = 1, ��ij + ��ij = 1, �ij + �j = 1 (i; j = 1; 2; . . . ; n). These are
of prime importance and great interest in many application fields and
the design of networks. In addition, the methods of this paper may ex-
tended to discuss more complicated systems such as Hopfield neural
networks(HNNs) and bi-directional associative memory (BAM) net-
works.
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Optimal -Labeling of Strong Products of Cycles

Pranava K. Jha

Abstract—The (2 1)-labeling of a graph is an abstraction of as-
signing integer frequencies to radio transmitters such that i) transmitters
that are one unit of distance apart receive frequencies that differ by at
least two, and ii) transmitters that are two units of distance apart receive
frequencies that differ by at least one. The least span of frequencies in
such a labeling is referred to as the -number of the graph. It is shown
that if 1 and . . . are each a multiple of3 + 2, then
( . . . ) is equal to the theoretical minimum of3 + 1,

where denotes the cycle of length and denotes the strong product
of graphs.

Index Terms—Cycle, frequency assignment, graph theory, (2 1)-la-
beling, -number, strong product.

I. INTRODUCTION

CONSIDER the problem of assigning frequencies to radio transmit-
ters at various nodes in a territory. The transmitters that are close must
receive frequencies that are sufficiently apart, for otherwise they may
be at the risk of interfering with each other. The spectrum of frequencies
is an important resource on which there are increasing demands due to
modern communication needs, both civil and military. This calls for an
efficient management of the spectrum. It is assumed that the transmit-
ters are identical and the signal propagation is isotropic.

The foregoing problem, with the objective of minimizing the span
of frequencies, was first placed on a graph-theoretical footing in 1980
by Hale [1] who established its equivalence to the generalized vertex
coloring problem, that is known to be computationally hard. (Vertices
correspond to transmitter locations and their labels to radio frequencies,
while adjacencies are determined by geographical “closeness” of the
transmitters.)

Roberts [2] subsequently proposed a variation to the problem in
which distinction is made between transmitters that are “close,” and
those that are “very close.” This enabled Griggs and Yeh [3] to for-
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mulate theL(2; 1)-labelingof graphs that has since been an object of
extensive research [4]–[9].

Formally, anL(2; 1)-labeling of a graphG is an assignmentf of
nonnegative integers to the vertices ofG such that

• jf(u) � f(v)j � 2 if d(u; v) = 1
• jf(u)� f(v)j � 1 if d(u; v) = 2.

The difference between the largest label and the smallest label assigned
byf is called the span off , and the minimum span over allL(2; 1)-la-
belings ofG is called the�-numberof G, denoted by�(G). The gen-
eral problem of determining�(G) is NP-hard [4]. The following result
consists of a useful lower bound.

Lemma 1.1 (Griggs and Yeh [3]):LetG be a graph with maximum
degree� � 2. If G contains three vertices of degree� such that one
of them is adjacent to the other two, then�(G) � �+ 2.

The lower bound of Lemma 1.1 is achievable in many cases [5], [6],
[9].

By a graph is meant a finite, simple, undirected and connected graph.
Thestrong productG�H of graphsG = (V; E) andH = (W; F )
is defined as follows:

V (G�H) =V �W

E(G�H = ff(u; x); (v; y)g:u = v andfx; yg 2 F

or fu; vg 2 E andx = y

or fu; vg 2 E andfx; yg 2 Fg:

Note, that jV (G�H)j = jV j � jW j and jE(G � H)j =
jV j � jF j + jW j � jEj + 2 � jEj � jF j. This product (that is commu-
tative and associative in a natural way) is one of the most important
graph products. A particular application may be seen in the area
of Shannon capacity of a memoryless channel [10]. It is easy to
see thatG� H is connected iffG and H are connected. Also,
dG�H((u; x); (v; y)) = maxfdG(u; v); dH(x; y)g [11]. It is
further relevant to note that�-product of finitely many cycles is
edge-decomposable into Hamiltonian cycles [12]. Accordingly, it has
high fault tolerance with respect to node failure and edge failure.

For m � 3 andn � 2, let Cm denote thecycleon m vertices,
and letPn denote thepathonn vertices, whereV (Ck) = V (Pk) =
f0; . . . ; k�1g,E(Pk) = ffi; i+1g: 0 � i � k�2g andE(Ck) =
E(Pk) [ ffk � 1; 0gg. The graphP5� P4 appears in Fig. 1, where
vertices(p; q) have been shown aspq.

Consider the graphCm � . . .� Cm . Vertices adjacent to
(v0; . . . ; vk�1) are of the form (v0 + a0; . . . ; vk�1 + ak�1)
where a0; . . . ; ak�1 are not all zero,ai 2 f+1; 0; �1g, and
vi + ai is modulomi, where0 � i � k � 1. It follows that
Cm � . . .� Cm is a regular graph of degree3k � 1. By Lemma
1.1,�(Cm � . . .� Cm ) � 3k+1. The central result of this paper
is that the preceding lower bound is achieved ifm0; . . . ; mk�1 are
each a multiple of3k + 2. An analogous result was recently obtained
by the author with respect to the Cartesian product [9].

Among other things, the following fact will be used in the sequel: If
a, b andn are integers such thatn is positive and0 < ja � bj < n,
thenj(a mod n)� (b mod n)j = ja � bj or n � ja � bj.

II. RESULT

Theorem 2.1: If k � 1 andm0; . . . ; mk�1 are each a multiple of
3k + 2, then�(Cm � . . .� Cm ) = 3k + 1.

Proof: Fork = 1, there is a single cycleC5j for which the claim
is known to be true [7]. In what follows, letk � 2, and letG denote
Cm � . . .� Cm . By Lemma 1.1,�(G) � 3k+1, so it suffices to
present anL(2; 1)-labeling ofG using the labels0; . . . ; 3k + 1. Let
n = 3k + 2.

Fig. 1. The graphP � P .

Fig. 2. L(2; 1)-labeling ofP � P toward that ofC � C .

Let a vertexv = (v0; . . . ; vk�1) be assigned the integer

f(v) =

k�1

i=0

2 � 3i � vi mod n:

The assignment is clearly well-defined.
Vertices adjacent to(v0; . . . ; vk�1) are of the form (v0 +

a0; . . . ; vk�1 + ak�1), where a0; . . . ; ak�1 are not all zero,
ai 2 f+1; 0; �1g, 0 � i � k � 1, andvi + ai is modulomi. It is
clear that vertexw = (v0 + a0; . . . ; vk�1 + ak�1) receives the label

f(w) =

k�1

i=0

2 � 3i � vi +

k�1

i=0

2 � 3i � ai mod n:

Note that

• ( k�1

i=0
2 � 3i � ai) is an even integer;

• Lettingr be the largest integer such thatar 6= 0, j( r�1

i=0
2 � 3i �

ai)j < 2 � 3r � jarj, so( k�1

i=0
2 � 3i � ai) is of the same sign as

ar , hence( k�1

i=0
2 � 3i � ai) 6= 0;

• j( k�1

i=0
2 � 3i � ai)j � ( k�1

i=0
2 � 3i � jaij) � ( k�1

i=0
2 � 3i) =

3k � 1 = n � 3.
Letting s = ( k�1

i=0
2 � 3i � ai), it is clear thatf(v) is of the form

N mod n andf(w) is of the form(N + s)mod n. Since2 � jsj �
n � 3, it is easy to see thatjf(v) � f(w)j = jsj or n � jsj, each of
which is between2 andn� 2. It follows that adjacent vertices receive
labels that differ by at least two.

Vertices at a distance of two from(v0; . . . ; vk�1) are of the form
(v0+ b0; . . . ; vk�1+ bk�1), whereb0; . . . ; bk�1 are not all different
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from +2 or �2; bi 2 f+2; +1; 0; �1; �2g andvi + bi is modulo
mi. Vertex(v0 + b0; . . . ; vk�1 + bk�1) receives the label

k�1

i=0

2 � 3i � vi +

k�1

i=0

2 � 3i � bi mod n:

Note that

• ( k�1

i=0
2 � 3i � bi) is an even integer;

• Lettingr be the largest integer such thatbr 6= 0, j( r�1

i=0
2 � 3i �

bi)j � ( r�1

i=0
2 � 3i � jbij) �

r�1

i=0
4 � 3i = 2 � (3r � 1) <

2 � 3r � jbrj, so( k�1

i=0
2 � 3i � bi) is of the same sign asbr, hence

( k�1

i=0
2 � 3i � bi) 6= 0;

• j( k�1

i=0
2 � 3i � bi)j � ( k�1

i=0
2 � 3i � jbij) � ( k�1

i=0
4 � 3i) =

2 � (3k � 1) < 2n.
Sincen itself is odd,( k�1

i=0
2 � 3i � bi) is not a multiple ofn. It

follows that vertices that are at a distance of two from each other receive
different labels.

Conclusions are valid even ifvi is of the formmi � 2 or mi � 1,
since eachmi is itself a multiple ofn, and the arithmetic is modulon.

Example: Fork = 2, theL(2; 1)-labeling ofC11� C11 based on
the proof of Theorem 2.1 is illustrated in Fig. 2 by means of the labeling
of P11� P11.

The following remarks are relevant with respect to the construction
in the proof of Theorem 2.1.

2) Labels used are consecutive. Not all graphs admit consecutive
(no-hole)L(2; 1)-labeling [6].

3) If a vertexv receives the labeli, then those adjacent tov receive
labels fromf0; . . . ; 3k + 1g n fi� 1; i+ 1g, wherei� 1 and
i + 1 are modulo3k + 2.

4) If G is a subgraph ofCm � . . .� Cm such that the largest
degree of a vertex ofG is equal to the degree of a vertex of
Cm � . . .� Cm andG satisfies Lemma 1.1, then�(G) =
3k + 1.

5) LetVi denote the set of vertices ofCm � . . .� Cm that re-
ceive labeli, where0 � i � 3k + 1.

b) V0; . . . ; V3 +1 form a vertex partition of
Cm � . . .� Cm into equal-size independent sets.

c) EachVi dominates a total of(3k=(3k + 2)) � jV j vertices
(including those inVi itself), whereV denotes the vertex
set of the graph.

d) Elements of eachVi correspond to as many vertex-disjoint
K1; 3 �1s.

e) For0 � j � ((3k�1)=2), elements of each(V2j[V2j+1)
correspond to as many edge-disjointK1; 3 �1s.
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ftd: Frequency to Time Domain Conversion for
Reduced-Order Interconnect Simulation

Ying Liu, Lawrence T Pileggi, and Andrzej J Strojwas

Abstract—Model order reduction is an invaluable tool for solving part of
the interconnect simulation problem, but an equally important problem is
to interface these frequency-domain representations with the discrete time
domain models that are used for nonlinear transient simulation. Various
recursive convolution methods have been proposed which provide an exact
solution to this interface problem under the assumption of piecewise linear
voltage waveforms. This paper proposes a frequency to time-domain con-
version algorithm, ftd (frequency to time domain), that represents a seem-
ingly optimal form of recursive convolution. We will demonstrate that ftd
provides exact accuracy for piecewise linear inputs. Moreover,ftd is algo-
rithmically straight-forward and simple to implement for a specific appli-
cation.

Index Terms—Circuit simulation, interconnect, recursive convolution.

I. INTRODUCTION

A DIGITAL VLSI circuit model can be partitioned into two subcir-
cuits: nonlinear and linear. The nonlinear subcircuit consists of transis-
tors, while the linear subcircuit consists of the interconnect. For today’s
CMOS technologies, the linear interconnect can dominate the circuit
path delay. For efficiency, and due to the enormous size of the intercon-
nect equivalent-circuits, model-reduction techniques are often applied
to pre-process the linear interconnect blocks into lower-order N-port
approximations[8]. In order to calculate delay or waveform, these com-
pact models have to be incorporated into a circuit/timing simulator
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