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that S is not a nonsingulad/ matrix, so the condition given in [15] vol. 261, pp. 303—308, 1999.
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1. CONCLUSIONS [21] K.GopalsamyStability and Oscillation in Delay Differential Equations
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stability of delayed cellular neural networks (DCNNs) with more gen- layed cellular neural networks|EEE Trans. Circuits Syst, hol. 47,
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eters, constructing suitable Lyapunov functionals and applying some

analysis techniques, and these criteria are independent of delays and

possess infinitely adjustable real parameters > 0, o7}, 87, 1.5,

Gy iz, Bij, mij, Gij are any real numbers with}; + 37 = 1, aij +

Bij =1l +¢G =L +¢ =1(i,j = 1,2,...,n). These are

of prime importance and great interest in many application fields andOptimal L(2, 1)-Labeling of Strong Products of Cycles
the design of networks. In addition, the methods of this paper may ex-

tended to discuss more complicated systems such as Hopfield neural Pranava K. Jha

networks(HNNSs) and bi-directional associative memory (BAM) net-

works. Abstract—The L(2, 1)-labeling of a graph is an abstraction of as-

signing integer frequencies to radio transmitters such that i) transmitters
ACKNOWLEDGMENT that are one unit of distance apart receive frequencies that differ by at
. ) least two, and ii) transmitters that are two units of distance apart receive
The author would like to thank the referees and the associate edit@guencies that differ by at least one. The least span of frequencies in
for suggesting improvements in presentation. such a labeling is referred to as thex-number of the graph. It is shown
thatif & > 1 and mg, ..., m,_, are each a multiple of3* + 2, then
AMCr o™ ... X C,,, ) isequal to the theoretical minimum of3k 4+ 1,

REFERENCES where C; denotes the cycle of length and & denotes the strong product
[1] L. O. Chua and L. Yang, “Cellular neural networks: TheorfgEE ~ Of graphs.
Trans. Circuits Systvol. 35, pp. 1257-1272, 1988. o Index Terms—Cycle, frequency assignment, graph theoryL(2, 1)-la-
[2] — “Cellular neural networks: ApplicationsfEEE Trans. Circuits peling, A-number, strong product.

Syst, vol. 35, pp. 1273-1290, 1988.
[3] T.Roskaand L. O. Chua, “Cellular neural networks with nonlinear and
;i_eléazy-type template fht. J. Circuit Theory Appl.vol. 20, pp. 469-481, I. INTRODUCTION

[4] X.Liao, “Mathematical theory (Il) of cellular neural networks” (in Chi-  CONSIDER the problem of assigning frequencies to radio transmit-

nese)Sci. China (Series Ayol. 24, pp. 1037-1046, 1994. : ; : ;
5] P. P. Civalleri, M. Gilli, and L. Pandolfi, “On stability of cellular neural ters at various nodes in a territory. The transmitters that are close must

networks with delay,TEEE Trans. Circuits Syst, Vol. 40, pp. 157—165, receive frequencies that are sufficiently apart, for otherwise they may
1993. be at the risk of interfering with each other. The spectrum of frequencies
[6] J. Cao, “Global asymptotic stability analysis of delayed cellular neurd an important resource on which there are increasing demands due to

- ”etWOE'(‘SSI;SQIigtggiilﬂisgfé&?;tirnorge‘fg;gdzvc 2ﬁhi15rsn_ezji'| i%?v?/brks modern communication needs, both civil and military. This calls for an
Phys:. Rev. Evol. 59, pp. 5940-5944, 1999. 'efficient _manggement of th_e spectrum. It is agsgmed t_hat the transmit-
[8] J.Cao and S. Wan, “The global asymptotic stability of Hopfield neurdfrs are identical and the signal propagation is isotropic.

network with delays” (in in Chinese). Biomath vol. 12, pp. 60-63,  The foregoing problem, with the objective of minimizing the span
1997. of frequencies, was first placed on a graph-theoretical footing in 1980

[9] J. Cao and D. Zhou, “Stability analysis of delayed cellular neural nej; ; ; ; ;
Works.” Neural Netw.vol. 11, pp. 16011605, 1998. by Hale [1] who established its equivalence to the generalized vertex

[10] J. Cao, “Stability in cellular neural networks with delays, Firoc. 14th ~ coloring problem, that is known to be computationally hard. (Vertices
IFAC’'99 World Congr, vol. E, 1999, pp. 71-74. correspond to transmitter locations and their labels to radio frequencies,

[11] ——, “Global stability in delayed cellular neural networks,” Rroc.  while adjacencies are determined by geographical “closeness” of the
1999 IEEE Workshop Neural Networks for Signal Processing, W4~ transmitters.)

USA, 1999, pp. 95-102. L .
[12] T. Roska, C.p\‘/)v. Wu, and L. O. Chua, “Stability of cellular neural net- Roberts [2] subsequently proposed a variation to the problem in

works with dominant nonlinear and delay-type templatEEE Trans. Which distinction is made between transmitters that are “close,” and

Circuits Syst. Jvol. 40, pp. 270-272, 1993. those that are “very close.” This enabled Griggs and Yeh [3] to for-
[13] T.Roska, C. W. Wu, M. Balsi, and L. O. Chua, “Stability and dynamics

of delay-type general and cellular neural networkEEE Trans. Cir-

cuits Syst. Ivol. 39, pp. 487—-490, 1992. Manuscript receivedJanuary 25, 2000; revised October 30, 2000. This paper
[14] M. Gilli, “Stability of cellular neural networks and delayed cellularwas recommended by Associate Editor K. Thulasiraman.

neural networks with nonposive templates and nonomonotonic outputThe author is with the Department of Computer Science, St. Cloud State

functions,”|IEEE Trans. Circuits Syst, vol. 41, pp. 518-528, 1994. University, St. Cloud, MN 56301-4498 USA (e-mail: pkjha@eeyore.stcloud-
[15] S. Arik and V. Tavsanoglu, “Equilibrium analysis of delayed CNNs, state.edu).

IEEE Trans. Circuits Syst, vol. 45, pp. 168-171, 1998. Publisher Item Identifier S 1057-7122(01)02875-6.

02875-6/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 4, APRIL 2001 499

mulate theL(2, 1)-labelingof graphs that has since been an object of 03—13—23—33—43

extensive research [4]-[9]. I >< ] >< ‘ >< ‘ >< l
Formally, anL(2, 1)-labeling of a grapi= is an assignmenf of 02—12—22 —32— 49

nonnegative integers to the verticestofuch that i >< i >< ‘ >< ‘ >< |
o |f(w) = flo)] > 2if d(u, v) =1 01 —11 —21 —31—41
* [f(u) = f(o)] > 1if d(u, v) = 2. ’><‘><‘><‘><,

The difference between the largest label and the smallest label assigned

by 1 is called the span of, and the minimum span over dl{ 2, 1)-la- 00 —10—20—30—40

belings ofG is called the\-numberof G, denoted by\(G). The gen-
eral problem of determining(G) is NP-hard [4]. The following result
consists of a useful lower bound.

Lemma 1.1 (Griggs and Yeh [3])Let G be a graph with maximum
degreeA > 2. If G contains three vertices of degraesuch that one
of them is adjacent to the other two, the(G) > A + 2.

The lower bound of Lemma 1.1 is achievable in many cases [5], [6]
[9].

By a graph is meant afinite, simple, undirected and connected grap!
The strong products K H of graphsG = (V, E) andH = (W, F) <
is defined as follows:

Fig. 1. The graphPs X Py.
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Note, that|V(GKIH)| = |V| - |W| and |[E(GR H)| = 1
V| |F|+ |W]|-|E|+2-|E|-|F|. This product (that is commu-
tative and associative in a natural way) is one of the most importan 6 %

. it i ' ‘v 4
graph products. A particular application may be seen in the are M&MN&&gB&

of Shannon capacity of a memoryless channel [10]. It is easy t
Fig. 2. L(2, 1)-labeling of P;;X Py, toward that ofC;1X C} ;.
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see thatG Kl H is connected iffG and H are connected. Also, ¢

degu((u, 2), (v,y)) = max{dag(u,v), dug(x,y)} [11]. It is

further relevant to note thdk-product of finitely many cycles is

edge-decomposable into Hamiltonian cycles [12]. Accordingly, it has

high fault tolerance with respect to node failure and edge failure. Let a vertexv = (vo, ..., vi—1) be assigned the integer
Form > 3 andn > 2, let C,, denote thecycleon m vertices,

and letP, denote thegpathonn vertices, wherd” (Cy) = V(P%) = =

[0, . k—1}, E(Py) = {{i, i+1}:0 < i < k—2) andE(Cy) = flo)= [Z 2-3 "“l} mod n.

E(P,)U{{k — 1, 0}}. The graphP; Kl P, appears in Fig. 1, where =0

vertices(p, ¢) have been shown as. The assignment is clearly well-defined.

Consider the graphC,,,&...KC,,, ,. Vertices adjacent to  Vertices adjacent to(vo. ..., vz—1) are of the form(vo +
(vo, ..., ve—1) are of the form(ve + dos ..., vkt + ap_y) @00 ---s V=t a,k_1),. where ao, ..., ar—1 are not all zero,
where ag, ..., as_, are not all zeroa; € {+1,0, -1}, and % € {+1,0, -1},0 < i < k-1, andv; + a; is mod.uIOml-. It is
vi 4+ a; is modulom;, where0 < i < k — 1. It follows that clearthatvertexo = (vo +ao, ..., vk—1 + a—1) receives the label

Cmo&...KC,.,_, is aregular graph of degréé — 1. By Lemma - -
11X Crmgi ... K Chay ;) > 3%+ 1. The central result of this paper flw) = [(Z 2.3%. 1,:;) + <Z 2.3, mﬂ mod n.
is that the preceding lower bound is achievedii., ..., m;_; are ’ et ) =
each a multiple o8* + 2. An analogous result was recently obtaineqklote that
by the author with respect to the Cartesian product [9].

Among other things, the following fact will be used in the sequel: If
a, b andn are integers such thatis positive and) < |a — b| < n,
then|(a mod n) — (b mod n)| = |[a —b| orn — |a — b|.

« (3F5 237 ¢;) is an even integer;

« Lettingr be the largest integer such that# 0, [(3"/_) 2-3'-
a;)] < 23" |a.], so(Zf’;O‘ 2.3".q;) is of the same sign as
ar, hence(34 20 2237 - a;) # 0;

(TS 203 a)| < (05 2037 Jai]) < (D05 2930 =

Il. RESULT

3 —1=mn-—3.
Theorem 2.1:If > 1 andmy, ..., my—; are each a multiple of  Lettings = (Zi‘;} 2.3".a;), itis clear thatf(v) is of the form
3% 4+ 2, then\(CryK.. . KChp ) =35+ 1. N mod n and f(w) is of the form(V + s) mod n. Since2 < |s| <
Proof: Fork = 1, there is a single cycl€’s; for which the claim » — 3, itis easy to see thdf(v) — f(w)| = |s| orn — |s|, each of

is known to be true [7]. In what follows, lét > 2, and letG' denote which is betweer2 andn — 2. It follows that adjacent vertices receive
Cm&...KCp,_,. By Lemma 1.10(G) > 3F + 1, so it suffices to labels that differ by at least two.

present arL(2, 1)-labeling of G using the label®, ..., 3* + 1. Let Vertices at a distance of two frofwg, ..., vi—1) are of the form
n=3"4+2. (vo+ba, ..., vk—1+bx—1),wherebg, ..., by_; are not all different
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from +2 or —2; b; € {+2, +1, 0, —1, —2} andwv; + b; is modulo [4] J.P. Georges, D. W. Mauro, and M. A. Whittlesey, “Relating path cov-
m;. Vertex(vo + bo, ..., vr—1 + bx—1) receives the label erings to vertex labelings with a condition at distance twiscrete
’ ’ Math,, vol. 135, pp. 103-111, 1994.

[5] M. A. Whittlesey, J. P. Georges, and D. W. Mauro, “On th@umber of
k-1 . k-1 . Q.. and related graphs3IAM J. Discrete Math.vol. 8, pp. 499-506,
Z 2.3 v | + Z 23" by mod n. 1995.
i=0 i=0 [6] G.J. Chang and D. Kuo, “Th&(2, 1)-labeling on graphs,SIAM J.
Note that Discrete Math, vol. 9, pp. 309-316, 1996.
b1 . . . [7] J. Georges and D. W. Mauro, “Generalized vertex labelings with a con-
* (>°:=p 2-3"-D;)is an even integer; dition at distance two,Congr. Numer.vol. 109, pp. 141-159, 1995.
« Lettingr be the largest integer such thiat# 0, [(327-,) 2- 3" - 8] —. “C})1n trf:e size Iof graphs labeled with a condition at distance two,”
. r=1 o qi |p.| r=l 4.9t _ 9 (3r _ J. Graph Theoryvol. 22, pp. 47-57, 1996.
gt‘)L; |l(72|:§8(§:k§1 2“”2 Sb)zls:z? tﬁe iame _si f&s f}gnie [9] P. K. Jha, “OptimalL(2, 1)-labeling of Cartesian products of cycles,
"kﬂ b 1=0 * ’ g ! with an application to independent dominatiofEEE Trans. Circuits
(Xizo 2:3"-0i) #0; v , Syst. | vol. 47, pp. 15311534, Oct. 2000.
(S 203 b)) < (SR 2437 b)) < (3085 4-37) = [10] L. Lovész, “On the Shannon capacity of a graplEEE Trans. Inform.
2-(3F - 1) < 2n. Theory vol. IT-25, pp. 1-7, 1979.

Sincen itself is Odd,(Zf;ol 2.3'.b,) is not a multiple ofn. It [11] z\c/).nlmrﬁgwaxrks..\/\l/(illg;/zg(r)}ggoduct Graphs: Structure and Recogni-

follows that vertices that are at a distance of two from each other receiig2] M. zhou, “Decomposition of some product graphs into 1-factors and
different labels. Hamiltonian cycles,’Ars Combin, vol. 28, no. <AU: ISSUENO:?>, pp.
Conclusions are valid evenif is of the formm; — 2 orm; — 1, 258-268, 1989.
since eachn; is itself a multiple of., and the arithmetic is modulom
Example: Fork = 2, the L(2, 1)-labeling of C;1X ;1 based on
the proof of Theorem 2.1 isillustrated in Fig. 2 by means of the labeling
of P K Py,
The following remarks are relevant with respect to the construction
in the proof of Theorem 2.1. ftd: Frequency to Time Domain Conversion for

2) Labels used are consecutive. Not all graphs admit consecutive Reduced-Order Interconnect Simulation

(no-hole)L(2, 1)-labeling [6].

3) If avertexv receives the labél then those adjacent toreceive
labels from{0, ..., 3* + 1}\ {¢ — 1, i + 1}, wherei — 1 and
i+ 1are modulo3® + 2. Abstract—Model order reduction is an invaluable tool for solving part of

4) If G is a subgraph o, K...KIC'r, _, such that the largest the interconnect simulation problem, but an equally important problem is
degree of a vertex ofs is equal to the degree of a vertex ofto interface these frequency-domain representations with the discrete time
C. ®..BC andG satisfies Lemma 1.1, thew @) = domain models that are used for nonlinear transient simulation. Various
3 o 1' . M-t - recursive convolution methods have been proposed which provide an exact

+? : . solution to this interface problem under the assumption of piecewise linear

5) LetV; denote the set of vertices 6f,,,&... & C,,,_, thatre- voltage waveforms. This paper proposes a frequency to time-domain con-
ceive label, where0 < ¢ < 3% 4+ 1. version algorithm, ftd (frequency to time domain), that represents a seem-

b) V- V. f t titi f ingly optimal form of recursive convolution. We will demonstrate that ftd

) Vo, ..., /341 O_rm a \{er ?X partuon 0 provides exact accuracy for piecewise linear inputs. Moreovefid is algo-
CinoK. .. K Cr,y_, into equal-size independent sets.  rithmically straight-forward and simple to implement for a specific appli-

c) EachV; dominates a total af3* /(3" + 2)) - |V| vertices cation.

(including those inV; itself), whereV" denotes the vertex
set of the graph.

d) Elements of each; correspond to as many vertex-disjoint
K sx_ys. . INTRODUCTION

e) Ford < j < ((3%—1)/2), elements of eacti»; UV 1)
correspond to as many edge-disjai ;x_;S.

Ying Liu, Lawrence T Pileggi, and Andrzej J Strojwas

Index Terms—Circuit simulation, interconnect, recursive convolution.

A DIGITAL VLSI circuit model can be partitioned into two subcir-
cuits: nonlinear and linear. The nonlinear subcircuit consists of transis-
tors, while the linear subcircuit consists of the interconnect. For today’s
CMOS technologies, the linear interconnect can dominate the circuit
path delay. For efficiency, and due to the enormous size of the intercon-

The author wishes to thank Dr. R. Balakrishnan, Dr. P. Paulraja, anéct equivalent-circuits, model-reduction techniques are often applied
other colleagues at the Annamalai University (India), where he was pre-process the linear interconnect blocks into lower-order N-port
introduced to the topic ok (2, 1)-labeling during a visit in July 1995, approximations[8]. In order to calculate delay or waveform, these com-
and Dr. G. Chappell for useful discussion relating to the strong produpgict models have to be incorporated into a circuit/timing simulator
during a conference in October 1999.
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