Note

Smallest independent dominating sets in Kronecker products of cycles

Pranava K. Jha ${ }^{1}$
Department of Computer Science, St. Cloud State University, 720 Fourth Ave. South, St. Cloud, MN 56301-4498, USA

Received 17 May 1999; revised 24 April 2000; accepted 8 May 2000

Abstract

Let $k \geqslant 2, n=2^{k}+1$, and let m_{0}, \ldots, m_{k-1} each be a multiple of n. The graph $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ consists of isomorphic connected components, each of which is ($n-1$)-regular and admits of a vertex partition into n smallest independent dominating sets. Accordingly, (independent) domination number of each connected component of this graph is equal to $(1 / n)$ th of the number of vertices in it. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Smallest independent dominating sets; Perfect dominating sets; Codes; Kronecker product; Cycle

1. Introduction

By a graph is meant a finite, simple and undirected graph. The Kronecker product $G \times H$ of graphs $G=(V, E)$ and $H=(W, F)$ is defined as follows: $V(G \times H)=V \times W$ and $E(G \times H)=\{\{(u, x),(v, y)\}:\{u, v\} \in E$ and $\{x, y\} \in F\}$. This product (that is variously known as direct product, cardinal product, categorical product, tensor product and cross product) is one of the most important graph products, with applications in a number of areas. It is commutative and associative in a natural way. Let C_{n} denote the cycle on vertices $0, \ldots, n-1$, where adjacencies are defined in the natural way.
Let S be a vertex subset of a given graph $G=(V, E)$. S is said to be a dominating set of G if every $x \in V$ is either an element of S or is adjacent to at least one element of S. A dominating set whose elements are mutually nonadjacent in G is called an independent dominating set of G, and an independent dominating set of least cardinality is called a smallest independent dominating set (s.i.d.s.). Further, if S is

[^0]such that every $x \in V$ is either in S or is adjacent to exactly one element of S, then S is called a perfect dominating set of G. By (independent) domination number of G is meant the cardinality of a smallest (independent) dominating set of G.

The general problem of obtaining a smallest (independent) dominating set is NP-hard even for bipartite graphs [2]. In fact, an s.i.d.s. is not even approximable in polynomial time within a factor of $n^{1-\varepsilon}$ for any $\varepsilon>0$ unless $\mathrm{P}=\mathrm{NP}$ [5].

Domination in graphs has a number of applications in areas such as game theory, coding theory, channel assignment and resource placement. Accordingly, it has an extensive literature, cf. Haynes et al. [6]. Perfect dominating sets, in particular, are directly relevant to error-correcting codes. They have been studied in various contexts, Hamming codes being the most important [8,14]. Perfect codes with respect to Cartesian-product graphs have been treated by Kratochvil [11], and Livingston and Stout [12]. Additional references on domination in this product include Klavž ar and Seifter [9] and Gravier and Mollard [4]. Nowakowski and Rall [13] present a systematic approach to graph invariants (including domination number) on graph products.

Domination in Kronecker-product graphs has been studied by several authors [1,3,10]. The present paper presents a vertex partition of Kronecker products of certain cycles into smallest (independent) dominating sets. In fact, each set in the partition is a perfect dominating set.

2. Result

Proposition 1 (Jha [7]). Let $m_{0}, \ldots, m_{k-1} \geqslant 3$, where $k \geqslant 2$.

1. $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is a regular graph of degree 2^{k}.
2. $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is bipartite iff at least one m_{i} is even.
3. Let r be the number of even integers among m_{0}, \ldots, m_{k-1}. If r is at most one, then $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is connected, otherwise this graph consists of 2^{r-1} connected components that are mutually isomorphic.
4. Each component of $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is edge-decomposable into Hamiltonian cycles.

For $r \geqslant 2$, let m_{0}, \ldots, m_{r-1} be all even $\geqslant 4$. The graph $C_{m_{0}} \times \cdots \times C_{m_{r-1}}$ is such that vertices $\left(v_{0}, \ldots, v_{r-1}\right)$ and $\left(w_{0}, \ldots, w_{r-1}\right)$ belong to the same component iff $v_{i}+v_{i+1}$ and $w_{i}+w_{i+1}$ are of the same parity, $0 \leqslant i \leqslant r-2$. It is also relevant to note that if j is even, $j / 2$ is odd and G is a bipartite graph, then each of the two components of $C_{j} \times G$ is isomorphic to $C_{j / 2} \times G$.

The following is the central result of this paper.
Theorem 2. If $k \geqslant 2, n=2^{k}+1$, and m_{0}, \ldots, m_{k-1} are each a multiple of n, then each connected component of the graph $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ admits of a vertex partition into smallest independent dominating sets.

Proof. $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is a regular graph of degree $2^{k}=n-1$, hence an (independent) dominating set of each component of this graph must include at least $(1 / n)$ th of the
vertices. Therefore, it suffices to label the vertices with integers $0, \ldots, n-1$ such that any two distinct elements that are labeled alike are at a distance of at least three.

Let a vertex $v=\left(v_{0}, \ldots, v_{k-1}\right)$ be assigned the integer

$$
\left[\sum_{i=0}^{k-1} 2^{i+1} v_{i}\right] \bmod n .
$$

The assignment is clearly well defined.
A vertex adjacent to $\left(v_{0}, \ldots, v_{k-1}\right)$ is of the form $\left(v_{0}+a_{0}, \ldots, v_{k-1}+a_{k-1}\right)$, where $a_{i} \in\{+1,-1\}$ and $v_{i}+a_{i}$ is modulo m_{i}. It is clear that $\left(v_{0}+a_{0}, \ldots, v_{k-1}+a_{k-1}\right)$ receives the label

$$
\left[\left(\sum_{i=0}^{k-1} 2^{i+1} v_{i}\right)+\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right)\right] \bmod n .
$$

Note that

- $\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right)$ is an even integer,
- $\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right)$ is of the same sign as a_{k-1}, so $\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right) \neq 0$, and
- $\left|\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right)\right| \leqslant\left(\sum_{i=0}^{k-1} 2^{i+1}\left|a_{i}\right|\right)=2^{k+1}-2<2 n$.

Since n itself is odd, $\left(\sum_{i=0}^{k-1} 2^{i+1} a_{i}\right)$ is not a multiple of n. It follows that adjacent vertices receive different labels.

A vertex at a distance of two from $\left(v_{0}, \ldots, v_{k-1}\right)$ is of the form $\left(v_{0}+b_{0}, \ldots, v_{k-1}+\right.$ b_{k-1}), where b_{0}, \ldots, b_{k-1} are not all zero, $b_{i} \in\{+2,0,-2\}$ and $v_{i}+b_{i}$ is modulo m_{i}. Vertex $\left(v_{0}+b_{0}, \ldots, v_{k-1}+b_{k-1}\right)$ receives the label

$$
\left[\left(\sum_{i=0}^{k-1} 2^{i+1} v_{i}\right)+\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right)\right] \bmod n .
$$

Note that

- $\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right)$ is of the form $4 p$ for some p,
- letting r be the largest integer such that $b_{r} \neq 0,\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right)$ is of the same sign as b_{r}, so $\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right) \neq 0$, and
- $\left|\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right)\right| \leqslant\left(\sum_{i=0}^{k-1} 2^{i+1}\left|b_{i}\right|\right) \leqslant\left(\sum_{i=0}^{k-1} 2^{i+2}\right)=2^{k+2}-4=4 n-8<4 n$.

Since n (and hence $3 n$) is odd and $2 n$ is of the form $4 t+2$, $\left(\sum_{i=0}^{k-1} 2^{i+1} b_{i}\right)$ is not a multiple of n. It follows that vertices that are at a distance of two receive different labels. (Conclusions are valid even if v_{i} is of the form $m_{i}-2$ or $m_{i}-1$, since each m_{i} itself is a multiple of n, and the arithmetic is modulo n.)

For any (isomorphic) component of $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$, let V_{r} denote the set of vertices that receive label r, where $0 \leqslant r \leqslant n-1$. The sets V_{0}, \ldots, V_{n-1} constitute a vertex partition of that component into smallest independent dominating sets.

Each V_{r} in the proof of Theorem 2 is also a smallest dominating set of that component. Also, each such set corresponds to a vertex decomposition into $K_{1, n-1}$'s.

Corollary 3. Let $k \geqslant 2, n=2^{k}+1$, and let m_{0}, \ldots, m_{k-1} each be a multiple of n. If the number r of integers among m_{0}, \ldots, m_{k-1} is at most one, then the graph $C_{m_{0}} \times$ $\cdots \times C_{m_{k-1}}$ is connected, otherwise it consists of 2^{r-1} connected components. The (independent) domination number of each connected component of $C_{m_{0}} \times \cdots \times C_{m_{k-1}}$ is equal to $(1 / n)$ th of the number of vertices in it.

Acknowledgements

I am thankful to Sandi Klavž ar for help and encouragement, and to the anonymous referee for additional references and valuable suggestions.

References

[1] R. Cherifi, S. Gravier, X. Lagraula, C. Payan, I. Zighem, Domination number of the cross product of paths, Discrete Appl. Math. 94 (1999) 101-139.
[2] D.G. Corneil, Y. Perl, Clustering and domination in perfect graphs, Discrete Appl. Math. 9 (1984) 27-39.
[3] S. Gravier, A. Khelladi, On the domination number of cross products of graphs, Discrete Math. 145 (1995) 273-277.
[4] S. Gravier, M. Mollard, On domination numbers of Cartesian products of paths, Discrete Appl. Math. 80 (1997) 247-250.
[5] M.M. Halldórsson, Approximating the minimum maximal independence number, Inform. Process. Lett. 46 (1993) 169-172.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel-Dekker, New York, 1998.
[7] P.K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729.
[8] P.K. Jha, G. Slutzki, A scheme to construct distance-three codes, with applications to the n-cube, Inform. Process. Lett. 55 (1995) 123-127.
[9] S. Klavž ar, N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129-136.
[10] S. Klavž ar, B. Zmazek, On a Vizing-like conjecture for direct-product graphs, Discrete Math. 156 (1996) 243-246.
[11] J. Kratochvil, Perfect codes over graphs, J. Combin. Theory, Ser. B 40 (1986) 224-228.
[12] M. Livingston, Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187-203.
[13] R.J. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math.-Graph Theory 16 (1996) 53-79.
[14] V. Pless, Introduction to the Theory of Error-correcting Codes, 2nd Edition, Wiley, New York, 1989.

[^0]: ${ }^{1}$ Formerly at Delhi Institute of Technology, Delhi, India.
 E-mail address: pkjha@eeyore.stcloudstate.edu (P.K. Jha).

