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Abstract

Let k¿2; n=2k+1; and let m0; : : : ; mk−1 each be a multiple of n. The graph Cm0 ×· · ·×Cmk−1

consists of isomorphic connected components, each of which is (n − 1)-regular and admits
of a vertex partition into n smallest independent dominating sets. Accordingly, (independent)
domination number of each connected component of this graph is equal to (1=n)th of the number
of vertices in it. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

By a graph is meant a ;nite, simple and undirected graph. The Kronecker product
G×H of graphs G=(V; E) and H =(W;F) is de;ned as follows: V (G×H)=V ×W
and E(G × H) = {{(u; x); (v; y)}: {u; v} ∈ E and {x; y} ∈ F}. This product (that is
variously known as direct product, cardinal product, categorical product, tensor product
and cross product) is one of the most important graph products, with applications in
a number of areas. It is commutative and associative in a natural way. Let Cn denote
the cycle on vertices 0; : : : ; n− 1; where adjacencies are de;ned in the natural way.

Let S be a vertex subset of a given graph G = (V; E). S is said to be a dominating
set of G if every x ∈ V is either an element of S or is adjacent to at least one
element of S. A dominating set whose elements are mutually nonadjacent in G is
called an independent dominating set of G; and an independent dominating set of least
cardinality is called a smallest independent dominating set (s.i.d.s.). Further, if S is
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such that every x ∈ V is either in S or is adjacent to exactly one element of S; then
S is called a perfect dominating set of G. By (independent) domination number of G
is meant the cardinality of a smallest (independent) dominating set of G.

The general problem of obtaining a smallest (independent) dominating set is NP-hard
even for bipartite graphs [2]. In fact, an s.i.d.s. is not even approximable in polynomial
time within a factor of n1−� for any �¿ 0 unless P = NP [5].

Domination in graphs has a number of applications in areas such as game the-
ory, coding theory, channel assignment and resource placement. Accordingly, it has
an extensive literature, cf. Haynes et al. [6]. Perfect dominating sets, in particular,
are directly relevant to error-correcting codes. They have been studied in various con-
texts, Hamming codes being the most important [8,14]. Perfect codes with respect to
Cartesian-product graphs have been treated by Kratochvil [11], and Livingston and
Stout [12]. Additional references on domination in this product include KlavGz ar and
Seifter [9] and Gravier and Mollard [4]. Nowakowski and Rall [13] present a systematic
approach to graph invariants (including domination number) on graph products.

Domination in Kronecker-product graphs has been studied by several authors [1,3,10].
The present paper presents a vertex partition of Kronecker products of certain cycles
into smallest (independent) dominating sets. In fact, each set in the partition is a perfect
dominating set.

2. Result

Proposition 1 (Jha [7]). Let m0; : : : ; mk−1¿3; where k¿2.

1. Cm0 × · · · × Cmk−1 is a regular graph of degree 2k .
2. Cm0 × · · · × Cmk−1 is bipartite i6 at least one mi is even.
3. Let r be the number of even integers among m0; : : : ; mk−1. If r is at most one; then
Cm0 × · · · × Cmk−1 is connected; otherwise this graph consists of 2r−1 connected
components that are mutually isomorphic.

4. Each component of Cm0×· · ·×Cmk−1 is edge-decomposable into Hamiltonian cycles.

For r¿2; let m0; : : : ; mr−1 be all even ¿4. The graph Cm0 ×· · ·×Cmr−1 is such that
vertices (v0; : : : ; vr−1) and (w0; : : : ; wr−1) belong to the same component iJ vi + vi+1

and wi + wi+1 are of the same parity, 06i6r − 2. It is also relevant to note that if
j is even, j=2 is odd and G is a bipartite graph, then each of the two components of
Cj × G is isomorphic to Cj=2 × G.

The following is the central result of this paper.

Theorem 2. If k¿2; n=2k +1; and m0; : : : ; mk−1 are each a multiple of n; then each
connected component of the graph Cm0 ×· · ·×Cmk−1 admits of a vertex partition into
smallest independent dominating sets.

Proof. Cm0 ×· · ·×Cmk−1 is a regular graph of degree 2k=n−1; hence an (independent)
dominating set of each component of this graph must include at least (1=n)th of the
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vertices. Therefore, it suKces to label the vertices with integers 0; : : : ; n− 1 such that
any two distinct elements that are labeled alike are at a distance of at least three.

Let a vertex v= (v0; : : : ; vk−1) be assigned the integer[
k−1∑
i=0

2i+1vi

]
mod n:

The assignment is clearly well de;ned.
A vertex adjacent to (v0; : : : ; vk−1) is of the form (v0 + a0; : : : ; vk−1 + ak−1); where

ai ∈ {+1;−1} and vi + ai is modulo mi. It is clear that (v0 + a0; : : : ; vk−1 + ak−1)
receives the label[(

k−1∑
i=0

2i+1vi

)
+

(
k−1∑
i=0

2i+1ai

)]
mod n:

Note that

• (
∑k−1

i=0 2i+1ai) is an even integer,
• (
∑k−1

i=0 2i+1ai) is of the same sign as ak−1; so (
∑k−1

i=0 2i+1ai) �= 0; and
• |(∑k−1

i=0 2i+1ai)|6 (
∑k−1

i=0 2i+1|ai|) = 2k+1 − 2¡ 2n:
Since n itself is odd, (

∑k−1
i=0 2i+1ai) is not a multiple of n. It follows that adjacent

vertices receive diJerent labels.
A vertex at a distance of two from (v0; : : : ; vk−1) is of the form (v0 + b0; : : : ; vk−1 +

bk−1); where b0; : : : ; bk−1 are not all zero, bi ∈ {+2; 0; −2} and vi + bi is modulo mi.
Vertex (v0 + b0; : : : ; vk−1 + bk−1) receives the label[(

k−1∑
i=0

2i+1vi

)
+

(
k−1∑
i=0

2i+1bi

)]
mod n:

Note that

• (
∑k−1

i=0 2i+1bi) is of the form 4p for some p;
• letting r be the largest integer such that br �= 0; (

∑k−1
i=0 2i+1bi) is of the same sign

as br; so (
∑k−1

i=0 2i+1bi) �= 0; and
• |(∑k−1

i=0 2i+1bi)|6(
∑k−1

i=0 2i+1|bi|)6(
∑k−1

i=0 2i+2) =2k+2 − 4 = 4n− 8¡ 4n:
Since n (and hence 3n) is odd and 2n is of the form 4t + 2; (

∑k−1
i=0 2i+1bi) is not

a multiple of n. It follows that vertices that are at a distance of two receive diJerent
labels. (Conclusions are valid even if vi is of the form mi − 2 or mi − 1; since each
mi itself is a multiple of n; and the arithmetic is modulo n.)

For any (isomorphic) component of Cm0 × · · · × Cmk−1 ; let Vr denote the set of
vertices that receive label r; where 06r6n − 1. The sets V0; : : : ; Vn−1 constitute a
vertex partition of that component into smallest independent dominating sets.

Each Vr in the proof of Theorem 2 is also a smallest dominating set of that com-
ponent. Also, each such set corresponds to a vertex decomposition into K1; n−1’s.
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Corollary 3. Let k¿2; n = 2k + 1; and let m0; : : : ; mk−1 each be a multiple of n. If
the number r of integers among m0; : : : ; mk−1 is at most one; then the graph Cm0 ×
· · · × Cmk−1 is connected; otherwise it consists of 2r−1 connected components. The
(independent) domination number of each connected component of Cm0 × · · · ×Cmk−1

is equal to (1=n)th of the number of vertices in it.
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