

Discrete Applied Mathematics 113 (2001) 303-306

DISCRETE APPLIED MATHEMATICS

Note

Smallest independent dominating sets in Kronecker products of cycles

Pranava K. Jha¹

Department of Computer Science, St. Cloud State University, 720 Fourth Ave. South, St. Cloud, MN 56301-4498, USA

Received 17 May 1999; revised 24 April 2000; accepted 8 May 2000

Abstract

Let $k \ge 2$, $n=2^k+1$, and let m_0, \ldots, m_{k-1} each be a multiple of *n*. The graph $C_{m_0} \times \cdots \times C_{m_{k-1}}$ consists of isomorphic connected components, each of which is (n-1)-regular and admits of a vertex partition into *n* smallest independent dominating sets. Accordingly, (independent) domination number of each connected component of this graph is equal to (1/n)th of the number of vertices in it. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Smallest independent dominating sets; Perfect dominating sets; Codes; Kronecker product; Cycle

1. Introduction

By a graph is meant a finite, simple and undirected graph. The *Kronecker product* $G \times H$ of graphs G = (V, E) and H = (W, F) is defined as follows: $V(G \times H) = V \times W$ and $E(G \times H) = \{\{(u, x), (v, y)\}: \{u, v\} \in E \text{ and } \{x, y\} \in F\}$. This product (that is variously known as direct product, cardinal product, categorical product, tensor product and cross product) is one of the most important graph products, with applications in a number of areas. It is commutative and associative in a natural way. Let C_n denote the *cycle* on vertices $0, \ldots, n - 1$, where adjacencies are defined in the natural way.

Let S be a vertex subset of a given graph G = (V, E). S is said to be a *dominating* set of G if every $x \in V$ is either an element of S or is adjacent to at least one element of S. A dominating set whose elements are mutually nonadjacent in G is called an *independent dominating set* of G, and an independent dominating set of least cardinality is called a *smallest independent dominating set* (s.i.d.s.). Further, if S is

¹ Formerly at Delhi Institute of Technology, Delhi, India.

E-mail address: pkjha@eeyore.stcloudstate.edu (P.K. Jha).

such that every $x \in V$ is either in S or is adjacent to exactly one element of S, then S is called a *perfect dominating set* of G. By (*independent*) *domination number* of G is meant the cardinality of a smallest (independent) dominating set of G.

The general problem of obtaining a smallest (independent) dominating set is NP-hard even for bipartite graphs [2]. In fact, an s.i.d.s. is not even approximable in polynomial time within a factor of $n^{1-\varepsilon}$ for any $\varepsilon > 0$ unless P = NP [5].

Domination in graphs has a number of applications in areas such as game theory, coding theory, channel assignment and resource placement. Accordingly, it has an extensive literature, cf. Haynes et al. [6]. Perfect dominating sets, in particular, are directly relevant to error-correcting codes. They have been studied in various contexts, Hamming codes being the most important [8,14]. Perfect codes with respect to Cartesian-product graphs have been treated by Kratochvil [11], and Livingston and Stout [12]. Additional references on domination in this product include Klavž ar and Seifter [9] and Gravier and Mollard [4]. Nowakowski and Rall [13] present a systematic approach to graph invariants (including domination number) on graph products.

Domination in Kronecker-product graphs has been studied by several authors [1,3,10]. The present paper presents a vertex partition of Kronecker products of certain cycles into smallest (independent) dominating sets. In fact, each set in the partition is a perfect dominating set.

2. Result

Proposition 1 (Jha [7]). Let $m_0, \ldots, m_{k-1} \ge 3$, where $k \ge 2$.

- 1. $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is a regular graph of degree 2^k .
- 2. $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is bipartite iff at least one m_i is even.
- 3. Let r be the number of even integers among m_0, \ldots, m_{k-1} . If r is at most one, then $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is connected, otherwise this graph consists of 2^{r-1} connected components that are mutually isomorphic.
- 4. Each component of $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is edge-decomposable into Hamiltonian cycles.

For $r \ge 2$, let m_0, \ldots, m_{r-1} be all even ≥ 4 . The graph $C_{m_0} \times \cdots \times C_{m_{r-1}}$ is such that vertices (v_0, \ldots, v_{r-1}) and (w_0, \ldots, w_{r-1}) belong to the same component iff $v_i + v_{i+1}$ and $w_i + w_{i+1}$ are of the same parity, $0 \le i \le r-2$. It is also relevant to note that if j is even, j/2 is odd and G is a bipartite graph, then each of the two components of $C_j \times G$ is isomorphic to $C_{j/2} \times G$.

The following is the central result of this paper.

Theorem 2. If $k \ge 2$, $n = 2^k + 1$, and m_0, \ldots, m_{k-1} are each a multiple of n, then each connected component of the graph $C_{m_0} \times \cdots \times C_{m_{k-1}}$ admits of a vertex partition into smallest independent dominating sets.

Proof. $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is a regular graph of degree $2^k = n-1$, hence an (independent) dominating set of each component of this graph must include at least (1/n)th of the

vertices. Therefore, it suffices to label the vertices with integers $0, \ldots, n-1$ such that any two distinct elements that are labeled alike are at a distance of at least three.

Let a vertex $v = (v_0, \ldots, v_{k-1})$ be assigned the integer

$$\left[\sum_{i=0}^{k-1} 2^{i+1} v_i\right] \bmod n.$$

The assignment is clearly well defined.

A vertex adjacent to (v_0, \ldots, v_{k-1}) is of the form $(v_0 + a_0, \ldots, v_{k-1} + a_{k-1})$, where $a_i \in \{+1, -1\}$ and $v_i + a_i$ is modulo m_i . It is clear that $(v_0 + a_0, \dots, v_{k-1} + a_{k-1})$ receives the label

$$\left[\left(\sum_{i=0}^{k-1} 2^{i+1} v_i\right) + \left(\sum_{i=0}^{k-1} 2^{i+1} a_i\right)\right] \mod n.$$

Note that

• $(\sum_{i=0}^{k-1} 2^{i+1}a_i)$ is an even integer, • $(\sum_{i=0}^{k-1} 2^{i+1}a_i)$ is of the same sign as a_{k-1} , so $(\sum_{i=0}^{k-1} 2^{i+1}a_i) \neq 0$, and • $|(\sum_{i=0}^{k-1} 2^{i+1}a_i)| \leq (\sum_{i=0}^{k-1} 2^{i+1}|a_i|) = 2^{k+1} - 2 < 2n$. Since *n* itself is odd, $(\sum_{i=0}^{k-1} 2^{i+1}a_i)$ is not a multiple of *n*. It follows that adjacent vertices receive different labels.

A vertex at a distance of two from (v_0, \ldots, v_{k-1}) is of the form $(v_0 + b_0, \ldots, v_{k-1} + b_{k-1})$ b_{k-1}), where b_0, \ldots, b_{k-1} are not all zero, $b_i \in \{+2, 0, -2\}$ and $v_i + b_i$ is modulo m_i . Vertex $(v_0 + b_0, \dots, v_{k-1} + b_{k-1})$ receives the label

$$\left[\left(\sum_{i=0}^{k-1} 2^{i+1} v_i\right) + \left(\sum_{i=0}^{k-1} 2^{i+1} b_i\right)\right] \mod n.$$

Note that

- $(\sum_{i=0}^{k-1} 2^{i+1} b_i)$ is of the form 4p for some p,
- $(\sum_{i=0}^{k-1} 2^{i+b}i)$ is of the form 4p for some p, letting r be the largest integer such that $b_r \neq 0$, $(\sum_{i=0}^{k-1} 2^{i+1}b_i)$ is of the same sign as b_r , so $(\sum_{i=0}^{k-1} 2^{i+1}b_i) \neq 0$, and $|(\sum_{i=0}^{k-1} 2^{i+1}b_i)| \leq (\sum_{i=0}^{k-1} 2^{i+1}|b_i|) \leq (\sum_{i=0}^{k-1} 2^{i+2}) = 2^{k+2} 4 = 4n 8 < 4n.$ Since n (and hence 3n) is odd and 2n is of the form 4t + 2, $(\sum_{i=0}^{k-1} 2^{i+1}b_i)$ is not

a multiple of n. It follows that vertices that are at a distance of two receive different labels. (Conclusions are valid even if v_i is of the form $m_i - 2$ or $m_i - 1$, since each m_i itself is a multiple of n, and the arithmetic is modulo n.)

For any (isomorphic) component of $C_{m_0} \times \cdots \times C_{m_{k-1}}$, let V_r denote the set of vertices that receive label r, where $0 \le r \le n-1$. The sets V_0, \ldots, V_{n-1} constitute a vertex partition of that component into smallest independent dominating sets. \Box

Each V_r in the proof of Theorem 2 is also a smallest dominating set of that component. Also, each such set corresponds to a vertex decomposition into $K_{1,n-1}$'s.

Corollary 3. Let $k \ge 2$, $n = 2^k + 1$, and let m_0, \ldots, m_{k-1} each be a multiple of n. If the number r of integers among m_0, \ldots, m_{k-1} is at most one, then the graph $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is connected, otherwise it consists of 2^{r-1} connected components. The (independent) domination number of each connected component of $C_{m_0} \times \cdots \times C_{m_{k-1}}$ is equal to (1/n)th of the number of vertices in it.

Acknowledgements

I am thankful to Sandi Klavž ar for help and encouragement, and to the anonymous referee for additional references and valuable suggestions.

References

- R. Cherifi, S. Gravier, X. Lagraula, C. Payan, I. Zighem, Domination number of the cross product of paths, Discrete Appl. Math. 94 (1999) 101–139.
- [2] D.G. Corneil, Y. Perl, Clustering and domination in perfect graphs, Discrete Appl. Math. 9 (1984) 27–39.
- [3] S. Gravier, A. Khelladi, On the domination number of cross products of graphs, Discrete Math. 145 (1995) 273–277.
- [4] S. Gravier, M. Mollard, On domination numbers of Cartesian products of paths, Discrete Appl. Math. 80 (1997) 247–250.
- [5] M.M. Halldórsson, Approximating the minimum maximal independence number, Inform. Process. Lett. 46 (1993) 169–172.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel-Dekker, New York, 1998.
- [7] P.K. Jha, Hamiltonian decompositions of products of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729.
- [8] P.K. Jha, G. Slutzki, A scheme to construct distance-three codes, with applications to the n-cube, Inform. Process. Lett. 55 (1995) 123–127.
- [9] S. Klavž ar, N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995) 129–136.
- [10] S. Klavž ar, B. Zmazek, On a Vizing-like conjecture for direct-product graphs, Discrete Math. 156 (1996) 243–246.
- [11] J. Kratochvil, Perfect codes over graphs, J. Combin. Theory, Ser. B 40 (1986) 224-228.
- [12] M. Livingston, Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187-203.
- [13] R.J. Nowakowski, D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math.-Graph Theory 16 (1996) 53–79.
- [14] V. Pless, Introduction to the Theory of Error-correcting Codes, 2nd Edition, Wiley, New York, 1989.