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Abstract

An L(d,1)-labeling of a graphG is an assignment of nonnegative integers to the vertices such
that adjacent vertices receive labels that differ by at leastd and those at a distance of two receive
labels that differ by at least one, whered�1. Let �d1(G) denote the least� such thatG admits an
L(d,1)-labeling using labels from{0,1, . . . , �}. We prove that (i) ifd�1, k�2 andm0, . . . , mk−1
are each a multiple of 2k + 2d − 1, then�d1(Cm0 × · · · × Cmk−1)�2k + 2d − 2, with equality
if 1�d�2k , and (ii) if d�1, k�1 andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then
�d1(Cm0� · · ·�Cmk−1)�2k + 2d − 2, with equality if 1�d�2k.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and Preliminaries

Consider the problem of assigning frequencies to radio transmitters at various nodes in a
territory. Transmitters that are close must receive frequencies that are sufficiently apart, for
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otherwise they may be at the risk of interfering with each other. The spectrum of frequencies
is an important resource on which there are increasing demands, both civil and military.
This calls for an efficient management of the spectrum. It is assumed that transmitters are
of identical type and that signal propagation is isotropic.

The foregoing problem,with the objective ofminimizing the spanof frequencies,was first
placed on a graph-theoretical footing in 1980 by Hale[5]. (Vertices correspond
to transmitter locations and their labels to radio frequencies, while adjacencies are de-
termined by geographical “proximity” of the transmitters.) Roberts[13] subsequently pro-
posed a variation to the problem in which distinction is made between transmitters that are
“close” and those that are “very close.” This enabled Griggs and Yeh[4] to formulate the
L(2,1)-labeling of graphs. Georges and Mauro[1] later presented a generalization of the
concept. The topic has since been an object of extensive research[1–4,7–12,14,15].

Formally, anL(d,1)-labelingof a graphG is an assignmentf of non-negative integers
to vertices ofG such that

|f (u) − f (v)|�
{
d; d(u, v) = 1,
1; d(u, v) = 2,

whered�1. The difference between the largest label and the smallest label assigned byf is
called thespanof f , and the minimum span over allL(d,1)-labelings ofG is called the�d

1-
numberofG, denoted by�d

1(G). The general problem of determining�d
1(G) is NP-hard[3].

When we speak of a graph, we mean a finite, simple undirected graph having at least two
vertices. LetPm andCn denote a path onm vertices and a cycle onn vertices, respectively,
whereV (Pk) = V (Ck) = {0, . . . , k − 1} and where adjacencies are defined in a natural
way. For graphsG= (V ,E) andH = (W, F ), thedirect productG×H and theCartesian
productG�H of G andH are defined as follows:V (G × H) = V (G�H) = V × W ;
E(G×H)={{(a, x), (b, y)}: {a, b} ∈ E and{x, y} ∈ F } andE(G�H)={{(a, x), (b, y)}:
{a, b} ∈ E andx = y, or {x, y} ∈ F anda = b}, cf. [6]. The direct product is also known
as Kronecker product, tensor product, cardinal product and categorical product.

The result below consists of a useful lower bound on�d
1(G), see[1, Theorem 2.9 (ii)].

Lemma 1. If G is a graph with maximum degree� andG includes a vertex with� neigh-
bors, each of which is of degree�, then�d

1(G)�� + 2d − 2, where 1�d��. �

The central message of this paper is that the preceding lower bound corresponds to the
exact value with respect toCm0 × · · · × Cmk−1 andCm0� · · ·�Cmk−1 where there are
certain conditions ond and onm0, · · · , mk−1. Analogous result is known with respect to
�2

1-numbering of the strong products of cycles[8]. For results with respect to Cartesian
products, see[2,7,10,11,14,15]. The following fact will be useful in the sequel.

Claim 2. If a,b andnare integerswithn�1, then|(a modn)−(bmodn)|=(|a−b|modn)
or n − (|a − b|modn). �

Section 2 deals with the�d
1-numbering of direct products of cycles while Section 3

presents the analogous result with respect to Cartesian products of cycles. Methods of
attack are similar. Concluding remarks appear in Section 4.
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2. L(d,1)-labeling of Cm0 × · · · × Cmk−1

Theorem 3. If d�1, k�2, andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then
�d

1(Cm0 × · · · × Cmk−1)�2k + 2d − 2, with equality if 1�d�2k.

Proof. Let n = 2k + 2d − 1, and let a vertexv = (v0, · · · , vk−1) be assigned the integer

f (v) =
[

1

2
(n − 1)

k−1∑
i=0

2ivi

]
modn.

The assignment is clearly well-defined. Letw be a vertex adjacent tov, sow is of the form
(v0 +a0, . . . , vk−1 +ak−1), whereai ∈ {+1, −1} andvi +ai is modulomi , 0� i�k−1.
It is clear that

f (w) =
[(

1

2
(n − 1)

k−1∑
i=0

2ivi

)
+
(

1

2
(n − 1)

k−1∑
i=0

2iai

)]
modn.

To show that|f (v) − f (w)|�d, it is enough to show that

d�
(∣∣∣∣∣12(n − 1)

k−1∑
i=0

2iai

∣∣∣∣∣ modn

)
�n − d

since by Claim 2,

|f (v) − f (w)| =
∣∣∣∣∣12(n − 1)

k−1∑
i=0

2iai

∣∣∣∣∣ modn or n −
(∣∣∣∣∣12(n − 1)

k−1∑
i=0

2iai

∣∣∣∣∣ modn

)
.

Note that

∣∣∣∣k−1∑
i=0

2iai

∣∣∣∣ is odd and

∣∣∣∣∣
k−1∑
i=0

2iai

∣∣∣∣∣ �
k−1∑
i=0

2i |ai | =
k−1∑
i=0

2i = 2k − 1.

Hence

∣∣∣∣k−1∑
i=0

2iai

∣∣∣∣= 2p + 1 where 0�p�2k−1 − 1, and consequently,

∣∣∣∣∣12(n − 1)
k−1∑
i=0

2iai

∣∣∣∣∣= 1

2
(n − 1)

∣∣∣∣∣
k−1∑
i=0

2iai

∣∣∣∣∣= 1

2
(n − 1)(2p + 1)

=
(

1

2
(n − 1) − p

)
+ np.
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The desired result follows since12(n − 1) − p is not a multiple ofn. To verify this claim,
first observe that

1
2(n − 1) − p� 1

2(n − 1) − (2k−1 − 1)�d.

On the other hand,

1
2(n − 1) − p� 1

2(n − 1)�n − d.

Finally, letx be a vertex at a distance of two from(v0, . . . , vk−1). It is clear thatx is of the
form (v0 + b0, . . . , vk−1 + bk−1), wherebi ∈ {+2, 0, −2}, b0, . . . , bk−1 are not all zero,
andvi + bi is modulomi . Note that

f (x) =
[(

1

2
(n − 1)

k−1∑
i=0

2ivi

)
+
(

1

2
(n − 1)

k−1∑
i=0

2ibi

)]
modn.

We claim that12(n − 1)
k−1∑
i=0

2ibi is not a multiple ofn. Since1
2(n − 1) andn are coprime,

we need only show that
k−1∑
i=0

2ibi is not a multiple ofn:

• Letting r be the largest integer such thatbr �= 0, it is easy to see that
k−1∑
i=0

2ibi is of the

same sign asbr , so
k−1∑
i=0

2ibi �= 0.

• |
k−1∑
i=0

2ibi |�
k−1∑
i=0

2i |bi |�
k−1∑
i=0

2i+1 = 2k+1 − 2<2n.

Since
k−1∑
i=0

2ibi is necessarily even andn is odd, it follows that
k−1∑
i=0

2ibi is not a multiple of

n. Accordingly, two vertices that are at a distance of two from each other receive different
labels.

Claims are valid even ifvi is of the formmi − 2 ormi − 1, sincemi itself is a multiple
of n, and the arithmetic is modulon. Accordingly,�d

1(Cm0 × · · · × Cmk−1)�2k + 2d − 2.
Further,Cm0 × · · · ×Cmk−1 being a regular graph of degree 2k, an application of Lemma 1
to the preceding statement shows that�d

1(Cm0 × · · · ×Cmk−1)= 2k + 2d − 2, if 1�d�2k.
�

The foregoing scheme is illustrated inFig. 1 where anL(3,1)-labeling ofP9 × P18
appears toward that ofC9 × C18.

3. L(d,1)-labeling of Cm0� · · ·�Cmk−1

Theorem 4. If d�1, k�1 andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then
�d

1(Cm0� · · ·�Cmk−1)�2k + 2d − 2, with equality if 1�d�2k.
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Fig. 1.L(3,1)-labeling ofP9 × P18 toward that ofC9 × C18

Proof. Let n = 2k + 2d − 1. Fork = 1, there is a single cycleCnt , t�1, for which the
claim is easily seen to be true. In what follows, letk�2 and let a vertexv = (v0, . . . , vk−1)

be assigned the integer

f (v) =
[
k−1∑
i=0

(d + 2i)vi

]
modn.

The assignment is clearly well-defined. Letw = (w0, . . . , wk−1) be a vertex adjacent tov,
sov andw differ in exactly one coordinate, sayi, such thatvi andwi are adjacent inCmi

,
whence|vi − wi |modn = 1.

To show that|f (v) − f (w)|�d, it is enough to show that

d�(d + 2i)modn�n − d,

since by Claim 2,

|f (v) − f (w)| = (d + 2i)modn or n − ((d + 2i)modn).

The desired result follows sinced�d + 2i�d + 2(k − 1)�n − d.
Next, letx = (x0, . . . , xk−1) be a vertex at a distance of two fromv, so either (i)v andx

differ in exactly one coordinate, sayi, such that|vi − xi |mod n=2, or (ii) v andx differ in
exactly two coordinates, sayi andj , such that|vi − xi |modn=1 and|vj − xj |modn=1,
wherei �= j .

Let |vi − xi |modn = 2. To show that|f (v) − f (x)|�1, it is enough to show that

0<2(d + 2i)modn<n,
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Fig. 2.L(3,1)-labeling ofP9�P18 toward that ofC9�C18

since by Claim 2,

|f (v) − f (x)| = 2(d + 2i)modn or n − (2(d + 2i)modn).

The desired result follows since 0<2(d + 2i)�2(d + 2(k − 1))<n.
Now suppose thatv andx differ in theith andj th coordinates, whence|vi−xi |modn=1,

|vj − xj |modn = 1 and 0� i < j �k − 1. To show that|f (v) − f (x)|�1, it is enough to
show that|d(A + B) + 2(Ai + Bj)| is not a multiple ofn, with A, B in {1, −1} since by
Claim 2,

|f (v) − f (x)| = |d(A + B) + 2(Ai + Bj)|modn or

n − (|d(A + B) + 2(Ai + Bj)|modn).

ClearlyA + B is even, so|d(A + B) + 2(Ai + Bj)| is even and hence different fromn. If
A = B, then

0< |d(A + B) + 2(Ai + Bj)| = |2d + 2(i + j)|<2d + 4(k − 1)<2n.

On the other hand, ifA = −B, then

0< |d(A + B) + 2(Ai + Bj)| = |2(i − j)|�2(k − 1)<n.

In each case,|d(A + B) + 2(Ai + Bj)| cannot be a multiple ofn.
It follows that�d

1(Cm0� · · ·�Cmk−1)�2k + 2d − 2. Further,Cm0� · · ·�Cmk−1 being a
regular graph of degree 2k, an application of Lemma 1 to the preceding statement shows
that�d

1(Cm0� · · ·�Cmk−1) = 2k + 2d − 2, if 1�d�2k. �

The foregoing scheme is illustrated inFig. 2whereanL(3,1)-labelingofP9�P18appears
toward that ofC9�C18.



P.K. Jha et al. / Discrete Applied Mathematics 152 (2005) 257–265 263

4. Concluding remarks

It is known that ifk�2 andm0, . . . , mk−1 are each a multiple of 2k + 1, then the graph
Cm0 × · · · ×Cmk−1 admits a vertex partition into smallest independent dominating sets[9].
That result easily follows from the proof of Theorem 3 ford =1. Similarly, it is known that
(i) if k�1 andm0, . . . , mk−1 are each a multiple of 2k+1, then the graphCm0� · · ·�Cmk−1

admits a vertex partition into smallest independent dominating sets, and (ii) ifk�1 and
m0, . . . , mk−1 are each a multiple of 2k+3, then�2

1(Cm0� · · ·�Cmk−1)=2k+2 [7]. These
results follow from Theorem 4 ford = 1 andd = 2, respectively.

L(d,1)-labeling and the associated�d
1-numbering of a graph have been studied in a

more general setting ofL(j, k)-labeling and�j
k -numbering, wherej �k�1. In particular,

Georges and Mauro[1] proved that�cj
ck(G) = c�j

k (G). An application of this statement to
Theorems 3 and 4 leads to the following result.

Corollary 5. Let c, d�1.

(1) If k�2 andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then�cd
c (Cm0 × · · · ×

Cmk−1)� c(2k + 2d − 2), with equality if 1�d�2k.
(2) If k�1 andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then�cd

c (Cm0� · · ·
�Cmk−1)�c(2k + 2d − 2), with equality if 1�d�2k. �

Another measure of labeling a graphG with a condition at distance two is called the
circular-L(d,1)-labelingthat is an assignmentg of integers 0, . . . , r − 1 to the vertices of
G such that

|g(u) − g(v)|r �
{
d; d(u, v) = 1,
1; d(u, v) = 2,

where|x|r : = min{|x|, r−|x|} [12]. The leastr for whichG has a circular-L(d,1)-labeling
is denoted by�d

1(G). It is easy to see that�d
1(G)��d

1(G) + 1. The following result is a
simple consequence of the constructions in the proofs of Theorems 3 and 4.

Corollary 6.

(1) For k�2, if 1�d�2k andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then
�d

1(Cm0 × · · · × Cmk−1) = 2k + 2d − 1.
(2) For k�1, if 1�d�2k andm0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then

�d
1(Cm0� · · ·�Cmk−1) = 2k + 2d − 1. �

In this paper, we demonstrate that direct products of cycles and Cartesian products of
cycles admit optimalL(d,1)-labelings if certain conditions are imposed ond and on the
lengths of the cycles. Is optimality still achievable if these conditions are relaxed? To that
end, we employed a backtracking algorithm to compute�d

1(Cm ×Cn) and�d
1(Cm�Cn) for

1�d�4 and 4�m, n�10. The results appear inTable 1.
Note that by Lemma 1 each of�2

1(Cm×Cn) and�2
1(Cm�Cn) is greater than or equal to 6;

each of�3
1(Cm×Cn) and�3

1(Cm�Cn) is greater than or equal to 8; and each of�4
1(Cm×Cn)

and�4
1(Cm�Cn) is greater than or equal to 10.
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Table 1
L(d,1)-numbers ofG = Cm × Cn andH = Cm�Cn

m, n �2
1(G) �3

1(G) �4
1(G) �2

1(H) �3
1(H) �4

1(H)

4, 4 7 9 10 7 9 10
4, 5 8 9 11 7 9 11
4, 6 7 9 11 7 9 11
4, 7 7 9 11 7 9 11
4, 8 7 9 10 7 9 10
4, 9 7 9 11 7 9 11
4, 10 8 9 11 7 9 11
4, 11 7 9 11 7 9 11
5, 5 8 10 12 8 10 12
5, 6 7 10 12 8 9 11
5, 7 8 10 12 7 10 11
5, 8 8 9 11 7 9 11
5, 9 8 10 12 8 9 11
5, 10 8 10 11 8 9 11
5, 11 8 10 12 7 9 11
6, 6 8 10 12 7 9 11
6, 7 7 10 12 8 9 11
6, 8 7 9 11 7 9 11
6, 9 7 10 12 7 8 10
6, 10 7 10 12 7 9 11
6, 11 7 10 12 8 9 11
7, 7 6 9 11 6 9 11
7, 8 7 9 11 7 9 11
7, 9 8 9 11 8 9 11
7, 10 7 9 11 or 12 7 9 11
7, 11 7 9 11 7 9 11
8, 8 7 9 10 7 9 10
9, 9 7 8 10 7 8 10

10, 10 8 10 11 7 9 11

It is clear fromTable 1that for 2�d�4 and 4�m, n�10, if the conditions of Theorems
3 and 4 are not satisfied, then there are very few cases where�d

1(Cm ×Cn) and�d
1(Cm�Cn)

are equal to the lower bound.
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