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a b s t r a c t

Broere and Hattingh proved that the Kronecker product of two cycles is a circulant if and
only if the cycle lengths are coprime. In this paper, we specify which of these Kronecker
products are actually optimal circulants. Further, we present their salient characteristics
based on their edge decompositions into Hamiltonian cycles. It turns out that certain prod-
ucts thus distinguished have the added property of being tight-optimal, so their average
distances are the least among all circulants of the same order and size. A benefit of the
present study is that the existing results on the Kronecker product of two cycles may be
used to good effect while putting these circulants into practice. The areas of applications
include parallel computers, distributed systems and VLSI.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Circulant graphs, which we formally define below, constitute a subfamily of Cayley graphs [10]. They possess attractive
features such as simplicity, high symmetry, high connectivity and scalability, which lend them to an application as a network
topology in areas like parallel computers, distributed systems and VLSI [2,3,11].

The question arises as to which Kronecker products of circulants are again circulants. Broere and Hattingh [6] attacked
this problem in a general setting. Among other things, they proved that the product of two cycles is a circulant if and only if
the cycle lengths are coprime.

We take the next major step and characterize the Kronecker products of two cycles representable as optimal circulants.
The products thus distinguished appear in Table 1, which additionally presents certain relevant properties of the graphs.
(The implicit claims will be proved later.)

1.1. Definitions and preliminaries

When we speak of a graph, we mean a finite, simple, undirected and connected graph. Let dist(u, v) denote the shortest
distance or path length between vertices u and v, where the underlying graph will be clear from the context. For a given
graph G, let dia(G) represent its diameter, i.e., max{dist(u, v) : u, v ∈ V (G)}. We employ vertex and node as synonyms, and
write ‘‘G is isomorphic to H ’’ as G ∼= H . Let α(G) denote the independence number of G, i.e., the largest number of mutually
nonadjacent nodes in G.
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Table 1
Products of cycles distinguished as optimal circulants.

Product (a odd) Odd girth Distance-wise vertex distribution Tight-optimal?

Ca × C2a−1 2a − 1 1 + 4i
1≤i≤a−1

+(a − 1) Yes

Ca × C2a+1 2a + 1 1 + 4i
1≤i≤a−1

+(3a − 1) Yes

Ca × C2a+3 2a + 3 1 + 4i
1≤i≤a−1

+(3a − 1) + (2a) No

a ≢ 0(mod 3)

Say that a vertex v is at level i relative to a fixed vertex u if dist(u, v) = i. Vertices at a distance of dia(G) from u are called
diametrical relative to u. A level diagram of G relative to u consists of a layout of the graph in which vertices at a distance of
i from u appear on a line at height i above u, for 0 ≤ i ≤ dia(G). If G is known to be vertex transitive (a property held by a
circulant), then the form of its level diagram is independent of the choice of the source vertex.

A circulant in the present study connotes a four-regular circulant. To that end, let n, r, s be positive integers, where
n ≥ 6, and 1 ≤ r < s < n/2. Then the circulant Cn(r, s) consists of the vertex set {0, . . . , n− 1} and the edge set {{i, i± r},
{i, i ± s} | 0 ≤ i ≤ n − 1}, where i ± r and i ± s are each taken modulo n. The parameters r and s are called the step sizes. If
one of the step sizes is fixed at one, then the circulant is also known as a chordal ring or a double-loop network.

Proposition 1.1 ([5]). The diameter of a circulant on n vertices is greater than or equal to the least integer c such that n ≤

(c + 1)2 + c2. Hence the diameter is greater than or equal to
 1

2


−1 +

√
2n − 1


. �

A circulant, say G, is said to be optimal (or of minimal diameter) if its diameter meets the lower bound from Proposi-
tion 1.1 [20]. Meanwhile G may contain a maximum of 4i vertices at the ith level relative to a fixed vertex, 1 ≤ i ≤ dia(G)
[5,24], and if that bound is reached at each level from 1 to dia(G) − 1, then G is said to be tight-optimal [20]. A tight-optimal
circulant is necessarily optimal. Clearly, the average distance of a tight-optimal circulant is the least among all circulants of
the same order/size. (Lower the average distance, lower the average delay.)

The graphs C65(5, 6) and C65(1, 14) appear in Fig. 1 to illustrate the foregoing. Whereas the two are optimal and of the
same order/size, the former is tight-optimal while the latter is not. (As the order goes up, several new pairs appear in which
the contrast is more pronounced.)

The Kronecker product G × H of graphs G = (U,D) and H = (W , F) is defined as follows: V (G × H) = U × W , and
E(G × H) = {{(a, x), (b, y)} | {a, b} ∈ D and {x, y} ∈ F}. It is also known as the tensor product, direct product and cardinal
product [9]. Further, the Cartesian product G�H of graphs G and H is defined as follows: V (G�H) = U × W , and E(G�H) =

{{(a, x), (b, y)} | {a, b} ∈ D and x = y, or {x, y} ∈ F and a = b}.
Let Cn denote the cycle having the vertex set {0, . . . , n − 1}, n ≥ 3, where adjacencies {i, i + 1} exist in the natural way.

This paper focuses mainly on C2i+1 × C2j+1 that is connected and nonbipartite, and occasionally refers to C2i+1 × C2j that is
connected and bipartite [9]. (C2i × C2j is disconnected, hence not relevant in the present study.)

A spanning cycle in a graph (if one exists) is called a Hamiltonian cycle. Further, a graph is said to admit a Hamiltonian
decomposition if its edge set may be partitioned into Hamiltonian cycles. The length of a shortest (induced) odd cycle in a
nonbipartite graph G is called its odd girth.

Proposition 1.2 ([18,17]). Let m and n be both odd.

1. dia(Cm × Cn) =


m − 1 m = n

max{m,
1
2

(n − 1)} m < n.

2. α(Cm × Cn) =
1
2m(n − 1), where m ≤ n.

3. Cm × Cn admits a vertex partition as well as an edge decomposition into shortest odd cycles, each of which is of length
max{m, n}. �

Here is the baseline of the present study.

Proposition 1.3 ([6]). Cm × Cn is a circulant if and only if gcd(m, n) = 1. �

1.2. State of the art

The circulant graphs enjoy a rich literature. Alspach and Parsons [1] studied their isomorphism that was followed by Klin
and Pöschel [19] and later by Muzychuk et al. [21]. On the other hand, Boesch and Tindell [4] examined the connectivity
of circulants. See Tang et al. [22] for a hierarchy of progressively restricted classes of circulants, and Jha [15] for a family of
tight-optimal circulants.

In a seminal piece of work, Wong and Coppersmith [24] earlier presented a geometrical approach for finding shortest
paths from a fixed node in a circulant. For related results, see Du et al. [7] and Tzvieli [23], and the surveys [3,11,20].
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Fig. 1. Level diagrams of (i) C65(5, 6) and (ii) C65(1, 14).

Table 2
Minimality of the diameter of various graphs.

G (a odd) |V (G)| dia(G) (Proposition 1.2(1)) Lower bound on dia(G)

(Proposition 1.1)

Ca × C2a−1 2a2 − a a a
Ca × C2a+1 2a2 + a a a
Ca × C2a+3 2a2 + 3a a + 1 a + 1
a ≢ 0(mod 3)

The Kronecker product is one of the most important products, with numerous applications in areas such as computer
networks, perfect codes and algebraic systems [9]. In particular, C2i+1×C2j+1 possesses lower diameter, higher odd girth and
higher independence number relative to its closest rival C2i+1�C2j+1 [14]. For studies on long induced cycles and orthogonal
drawings/crossing numbers of Cm × Cn, see [13,16].
What follows: Section 2 characterizes those Cm × Cn that are representable as optimal circulants, while Section 3 renders
their detailed representations resulting in the step sizes associated with them. Further, Section 4 builds the distance-wise
level diagrams leading to average distances in the respective graphs and the identification of the tight-optimal cases. Finally,
Section 5 presents certain concluding remarks.

2. Characterization

Lemma 2.1. The following are optimal circulants:
• Ca × C2a−1, a odd
• Ca × C2a+1, a odd
• Ca × C2a+3, a odd and a ≢ 0(mod 3).
Proof. First note that gcd(a, 2a−1) = gcd(a, 2a+1) = 1, and if a ≢ 0(mod 3), then gcd(a, 2a+3) = 1. By Proposition 1.3,
each graph under consideration is a circulant. For minimality of the diameter, see Table 2. �

Lemmas 2.2 and 2.3 together establish the converse of Lemma 2.1.

Lemma 2.2. If m is odd and n is even, then Cm × Cn is not an optimal circulant.
Proof. Let m be odd and n even, and note that dia(Cm × Cn) = max{m, 1

2n} [18]. It suffices to consider only those cases in
which gcd(m, n) = 1, for otherwise Cm × Cn is not even connected. In that light,m ≠

1
2n.

First suppose that dia(Cm×Cn) = m =
1
2n+ i, where i ≥ 1, so n = 2m−2i. Accordingly, |V (Cm×Cn)| = mn = 2m2

−2mi
that is smaller than m2

+ (m − 1)2, hence the lower bound from Proposition 1.1 is less than or equal to m − 1. This means
that Cm × Cn (whose diameter is equal to m) cannot be an optimal circulant. The argument for dia(Cm × Cn) =

1
2n > m is

similar. �

Lemma 2.3. If m and n are both odd and Cm × Cn is different from the graphs in the statement of Lemma 2.1, then Cm × Cn is
not an optimal circulant.
Proof. Let m and n be both odd, and gcd(m, n) = 1. Without loss of generality, let m < n, in which case dia(Cm × Cn) =

max{m, 1
2 (n − 1)}.

Ifm+2 ≤ n ≤ 2m−3, then dia(Cm×Cn) = m. Also,m(m+2) ≤ mn ≤ m(2m−3) < m2
+(m−1)2, hence the lower bound

from Proposition 1.1 is at mostm−1. On the other hand, if n ≥ 2m+5, then dia(Cm×Cn) =
1
2 (n−1). Also,mn ≤

1
2 (n−5)n,

and it is easy to see that 1
2 (n − 5)n < ( 1

2 (n − 3) + 1)2 + ( 1
2 (n − 3))2, hence the lower bound from Proposition 1.1 is at

most 1
2 (n − 3). It follows that Cm × Cn cannot be an optimal circulant. �

Unless otherwise indicated,m and n are both odd in each occurrence of Cm × Cn in the rest of the paper.
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Fig. 2. Edge-disjoint Hamiltonian cycles in C5 × C9 .

3. Detailed representations of the circulants

The present section determines the precise values of the step sizes associated with the optimal circulants set out in
Section 2. To that end, it employs a known result on the Hamiltonian decomposition of Cm × Cn, and carefully indexes the
vertices in one of the Hamiltonian cycles to obtain an explicit isomorphism in each case.

Theorem 3.1 ([12]). If gcd(m, n) = 1, then Cm × Cn admits a Hamiltonian decomposition.

Proof. Consider the following sequences of vertices in Cm × Cn: x0, . . . , xmn−1 and y0, . . . , ymn−1, where xk = (k mod m, k
mod n) and yk = (k mod m, (−k) mod n), 0 ≤ k ≤ mn − 1. The two sequences correspond to as many edge-disjoint
Hamiltonian cycles in Cm × Cn. �

Intuitively, the first (resp. the second) Hamiltonian cycle is obtainable as follows: Start at (0, 0), and at each step, incre-
ment the first co-ordinate modulo m and simultaneously increment (resp. decrement) the second co-ordinate modulo n.
Fig. 2 illustrates the construction in respect of C5 × C9.
Note: As far as Hamiltonian decomposition of Cm × Cn is concerned, there exists a more general result, viz., Cm × Cn is
Hamiltonian decomposable if and only ifm and n are not both even [9].

3.1. Indexing functions

Consider the sequence x0, . . . , xa(2a−1)−1 corresponding to the first Hamiltonian cycle of Ca × C2a−1 based on the proof
of Theorem 3.1, and let f be the function such that f (i, j) = k if and only if (i, j) is the kth vertex in the foregoing sequence,
0 ≤ k ≤ a(2a−1)−1. The construction of the function is based on the observation that x0, . . . , xa(2a−1)−1 may be partitioned
into a blocks of 2a − 1 vertices each, where (i, j) is in the rth block if and only if (j − i) ≡ r(mod a), 0 ≤ r ≤ a − 1. Note
that the argument relies on the fact that gcd(a, 2a − 1) = 1.

Analogous to f , let g and h denote the indexing functions in respect of Ca × C2a+1 and Ca × C2a+3, respectively. The
associated partition of x0, . . . , xa(2a+1)−1 for Ca × C2a+1 is such that (i, j) is in the rth block if and only if (i− j) ≡ r (mod a).
Likewise (i, j) is in the rth block in respect of Ca × C2a+3 if and only if (i − j) ≡ 3r(mod a), where a ≢ 0(mod 3).

Precise formulations of the indexing functions appear in Table 3, and the illustrations appear in Figs. 3 and 4, where a
vertex and its index coexist at each ‘‘node’’. The ‘‘dotted’’ arrows in the figures highlight the sequencing associated with the
indices. It is not difficult to check the bijectivity of each of f , g and h.

3.2. Isomorphisms

Theorem 3.2. Ca × C2a−1 ∼= Ca(2a−1)(1, 4a − 1), where a is odd.

Proof. Consider the first Hamiltonian cycle of Ca × C2a−1 given by the sequence x0, . . . , xa(2a−1)−1 from the proof of
Theorem 3.1. It suffices to show that xk and xk+4a−1 are adjacent, where 0 ≤ k ≤ a(2a− 1) − 1, and k+ 4a− 1 is computed
modulo a(2a− 1). To that end, let xk = (i, j), so xk+4a−1 = (i+ 4a− 1, j+ 4a− 1), where i+ 4a− 1 is computed modulo a
and j+ 4a− 1 is computed modulo 2a− 1. It is easy to see that xk+4a−1 is given by ((i+ a− 1) mod a, (j+ 1) mod 2a− 1),
which is clearly adjacent to xk = (i, j) in Ca × C2a−1. �

Theorem 3.3. Ca × C2a+1 ∼= Ca(2a+1)(1, 4a + 1), where a is odd.

Proof. Similar to the proof of Theorem 3.2. �
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Table 3
Indexing functions.

Graph (a odd) Function

Ca × C2a−1 f (i, j) = (2a − 1)r + j, where r = (j − i) mod a
Illustration: Fig. 3(i)

Ca × C2a+1 g(i, j) = (2a + 1)r + j, where r = (i − j) mod a
Illustration: Fig. 3(ii)

Ca × C2a+3 h(i, j) = (2a + 3)r + j, where

a ≢ 0(mod 3) r =



1
3
c c ≡ 0(mod 3)

1
3
(c + 2a) c ≡ a(mod 3)

1
3
(c + a) c ≢ a(mod 3)


c = (i − j) mod a

Illustration: Fig. 4(i) and (ii)

Fig. 3. Functions f and g in respect of C5 × C9 and C5 × C11 .

Fig. 4. Function h in respect of C7 × C17 and C5 × C13 .
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Theorem 3.4. 1. If a ≡ 1(mod 6), then Ca × C2a+3 ∼= Ca(2a+3)(1, 1
3 (2a + 1)(a + 3)).

2. If a ≡ 5(mod 6), then Ca × C2a+3 ∼= Ca(2a+3)(1, 1
3 (2a − 3)(a + 1)).

Proof. Let a ≡ 1(mod 6), and c =
1
3 (2a+1)(a+3). It suffices to show that (i, j) and (i+ c, j+ c) are adjacent in Ca ×C2a+3,

where i + c is modulo a and j + c is modulo 2a + 3. Check to see that

• c =
1
3 (2a + 7)a + 1, so c ≡ 1(mod a), and

• c =
1
3 (a − 1)(2a + 3) + (2a + 2), so c ≡ 2a + 2(mod 2a + 3).

It is clear that i and i + c are adjacent in Ca, and j and j + c are adjacent in C2a+3. Accordingly, (i, j) and (i + c, j + c) are
adjacent in Ca × C2a+3.

Next, let a ≡ 5(mod 6), and d =
1
3 (2a − 3)(a + 1). Check to see that

• d =
1
3 (2a − 4)a + (a − 1), so d ≡ a − 1(mod a), and

• d =
1
3 (a − 2)(2a + 3) + 1, so d ≡ 1(mod 2a + 3).

It follows that (i, j) and (i + d, j + d) are adjacent in Ca × C2a+3. �

4. Distance-wise vertex distributions

This section builds the distance-wise level diagrams of the circulants, leading to vertex distributions, which in turn yield
the average distances in the respective graphs. To that end, the following technical result is useful.

Proposition 4.1 ([18]). Let m and n be both odd, 0 ≤ i ≤ m − 1; 0 ≤ j ≤ n − 1 and (i, j) ≠ (0, 0), and consider the graph
Cm × Cn.

1. If i and j are of the same parity, then dist((0, 0), (i, j)) = min{max{i, j},max{m − i, n − j}}.
2. If i and j are not of the same parity, then dist((0, 0), (i, j)) = min{max{i, n − j},max{m − i, j}}. �

In what follows, all distance-related discussions will be relative to (0, 0) in Cm × Cn. (Vertex transitivity of a circulant
affords this freedom of choice.)

Table 4 details top-level vertices in various graphs under discussion. The claims in respect of Ca × C2a−1 and Ca × C2a+1
are proved in Lemmas 4.2 and 4.3, respectively. The arguments being similar, the claims in respect of Ca × C2a+3 are left to
the reader. Illustrations appear in Fig. 5(i)–(iv).

Lemma 4.2. There are a total of a − 1 diametrical vertices in Ca × C2a−1.

Proof. Let (i, j) be a diametrical node, i.e., dist((0, 0), (i, j)) = a. For i and j of the same parity, min{max{i, j},max{a −

i, 2a − 1 − j}} = a.

• If max{i, j} = a ≤ max{a − i, 2a − 1 − j}, then the equality suggests that j = a (since i ≤ a − 1), which, applied to
the inequality, leads to i = 0 that is even while j = a is odd, contradicting the parity condition. On the other hand, if
max{a − i, 2a − 1 − j} = a ≤ max{i, j}, then the inequality suggests that j ≥ a, which, applied to the equality, leads to
i = 0. That along with the parity condition implies that (0, a + 1), (0, a + 3), . . . , (0, 2a − 2) are diametrical nodes.

For i, j not of the same parity, min{max{i, 2a − 1 − j},max{a − i, j}} = a.

• If max{i, 2a − 1 − j} = a ≤ max{a − i, j}, then the equality suggests that j = a − 1 (even), which, applied to the
inequality, leads to i = 0 (also even), contradicting the (dis)parity requirement. On the other hand, if max{a− i, j} = a ≤

max{i, 2a − 1 − j}, then the inequality implies that 0 ≤ j ≤ a − 1, which, applied to the equality, leads to i = 0. That
along with the (dis)parity condition implies that (0, 1), (0, 3), . . . , (0, a − 2) are diametrical nodes. �

Lemma 4.3. There are a total of 3a − 1 diametrical vertices in Ca × C2a+1.

Proof. Let (i, j) be such that dist((0, 0), (i, j)) = a. For i and j of the same parity, min{max{i, j},max{a− i, 2a+1− j}} = a.

• If max{i, j} = a ≤ max{a − i, 2a + 1 − j}, then the equality suggests that j = a (since i ≤ a − 1), which, applied to the
inequality, leads to i ≥ 0, so (1, a), (3, a), . . . , (a − 2, a) are diametrical nodes. (i and j are of the same parity.)

• If max{a − i, 2a + 1 − j} = a ≤ max{i, j}, then the equality suggests that i ≥ 0 and j = a + 1, or i = 0 and j ≥ a + 1,
so (0, a + 1), (2, a + 1), . . . , (a − 1, a + 1), and (0, a + 1), (0, a + 3), . . . , (0, 2a) are diametrical nodes. (Each case is
consistent with the inequality.)

For i, j not of the same parity, min{max{i, 2a + 1 − j},max{a − i, j}} = a.

• If max{i, 2a + 1 − j} = a ≤ max{a − i, j}, then the equality suggests that j = a + 1 (since i ≤ a − 1), which, applied to
the inequality, leads to i ≥ 0, so (1, a + 1), (3, a + 1), . . . , (a − 2, a + 1) are diametrical nodes.

• If max{a − i, j} = a ≤ max{i, 2a + 1 − j}, then the equality suggests that either i = 0 and j ≤ a, or i > 0 and j = a.
so (0, 1), (0, 3), . . . , (0, a) and (2, a), (4, a), . . . , (a − 1, a) are diametrical nodes. (Each case is consistent with the
inequality.) �
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Table 4
Top-level vertices in Ca × C2a+d, d = −1, 1, 3 (a odd).

Ca × C2a−1 Vertices at the ath (top) level:

(0, 1), (0, 3), . . . , (0, a − 2)
(0, a + 1), (0, a + 3), . . . , (0, 2a − 2)


Total: a − 1

Ca × C2a+1 Vertices at the ath (top) level:
(0, 1), (0, 3), . . . , (0, a)
(1, a), (2, a) · · · , (a − 1, a)
(0, a + 1), (1, a + 1), . . . , (a − 1, a + 1)
(0, a + 3), (0, a + 5), . . . , (0, 2a)

 Total: 3a − 1

Ca × C2a+3 Vertices at the (a + 1)th (top) level:
(0, a + 1), (1, a + 1), . . . , (a − 1, a + 1)
(0, a + 2), (1, a + 2) · · · , (a − 1, a + 2)


Total: 2a

a ≢ 0(mod 3) Vertices at the ath (second from the top) level:
(0, 1), (0, 3), . . . , (0, a − 2)
(0, a), (1, a) · · · , (a − 1, a)
(0, a + 3), (1, a + 3), . . . , (a − 1, a + 3)
(0, a + 5), (0, a + 7), . . . , (0, 2a + 2)

 Total: 3a − 1

Table 5
Vertex distribution in Ca × C2a+d , level 0 upward.

Graph (a odd) Vertex distribution (approx.) Av. distance Illustration

Ca × C2a−1 1 + 4i
1≤ i≤ a−1

+ (a − 1) 4a−1
6 Fig. 5(i)

Ca × C2a+1 1 + 4i
1≤ i≤ a−1

+ (3a − 1) 4a+1
6 Fig. 5(ii)

Ca × C2a+3 1+ 4i
1≤ i≤ a−1

+ (3a−1)+(2a) 4a+3
6 Fig. 5(iii)–(iv)

a ≢ 0(mod 3)

Lemma 4.4. There are 2a diametrical vertices and 3a − 1 pre-diametrical vertices in Ca × C2a+3.

Proof. Similar to the proof of Lemmas 4.2/4.3.

Lemma 4.5. For 1 ≤ i ≤ a − 1, there are 4i vertices at level i in each of Ca × C2a−1, Ca × C2a+1 and Ca × C2a+3.

Proof. First consider Ca × C2a−1. By Table 4, it has a − 1 diametrical vertices, so the cumulative number of vertices at the
lower levels is equal to (2a − 1)a − (a − 1) = 2a2 − 2a + 1.

It is known that themaximum number of vertices at a distance of k from a fixed vertex in a four-regular circulant is equal
to 4k [5,24]. Accordingly, the number of vertices between level 0 and level a − 1 in Ca × C2a−1 is at most 1 +


4

a−1
k=1 k


,

which coincides with 2a2 − 2a + 1. The claim follows. Arguments are similar for Ca × C2a+1 and Ca × C2a+3. �

Table 4 and Lemma 4.5 lead to vertex distributions and average distances that appear in Table 5. The following theorem
summarizes the central message of this paper.

Theorem 4.6. Let a be odd.

1. Each of Ca × C2a−1 and Ca × C2a+1 is a tight-optimal circulant.
2. For a ≢ 0(mod 3), Ca × C2a+3 is an optimal circulant, but it is not tight-optimal. �

5. Concluding remarks

The present paper distinguishes the Kronecker product of two cycles representable as an optimal circulant. The indepen-
dence number and the odd girth in each such graph are approximately equal to 1

2n and
√
2n, respectively, where n denotes

the order of the graph (cf. Proposition 1.2). Note that high independence number and high odd girth are welcome features
of a network.
Non-isomorphism vis-a-vis other circulants

Beivide et al. [2] presented a class of tight-optimal circulants, called midimew networks. Among them, the following are
similar to certain graphs in this paper: Ca(2a−1)(a − 1, a) and Ca(2a+1)(a, a + 1). The following questions arise:

1. Is Ca(2a−1)(1, 4a − 1) isomorphic to Ca(2a−1)(a − 1, a)?
2. Is Ca(2a+1)(1, 4a + 1) isomorphic to Ca(2a+1)(a, a + 1)?
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Fig. 5. Level diagrams of C5 × C9, C5 × C11, C7 × C17 and C5 × C13 .

It turns out that the answer to each of the foregoing is in the negative. The proof is based on Lemma 5.1. (Verification is
easy.)

Lemma 5.1. 1. If gcd(r, n) = 1, then Cn(r, s) ∼= Cn(1, r−1s mod n).
2. If s1 ≠ s2, s1 ≠ n − s2, and s1s2 ≢ ±1 (mod n), then Cn(1, s1) � Cn(1, s2) [8]. �

In separate studies, Du et al. [7] and Tzvieli [23] presented several infinite families of optimal circulants. Unfortunately,
there is no unanimity on the usage of the term ‘‘optimal’’. For example, Du et al. [7, p. 179] use tight for what we call optimal,
while they use optimal in a slightly different setting. On the other hand, Tzvieli’s definition [23] of an optimal circulant
coincides with ours.

It is important to note that the concept of a tight-optimal circulant (as it appears in the present paper) does not feature
in Du et al. [7] or in Tzvieli [23]. Nevertheless some of the circulants in their studies bear similarities to Ca(2a−1)(1, 4a − 1)
and Ca(2a+1)(1, 4a + 1) in the present study. The following comparisons are based on the referee’s remarks.

1. Theorem 4 in [7, p. 178] yields the circulants Ca(2a−1)(1, 2a − 2) and Ca(2a+1)(1, 2a) under the settings (k, h) = (3, 1)
and (k, h) = (5, 3), respectively. An application of Lemma 5.1 shows that (i) Ca(2a−1)(1, 2a − 2) is not isomorphic to
Ca(2a−1)(1, 4a − 1), and (ii) Ca(2a+1)(1, 2a) is not isomorphic to Ca(2a+1)(1, 4a + 1).

2. Theorem 4.2(ii) in [23, p. 402] yields the circulants Ca(2a−1)(1, 2a) and Ca(2a+1)(1, 2a) under the setting i = 0. By
Lemma 5.1 again, the two are different from Ca(2a−1)(1, 4a − 1) and Ca(2a+1)(1, 4a + 1), respectively.
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Circulants based on Cm�Cn
It is interesting to note that an exact analogue of Proposition 1.3 holds true in respect of the Cartesian product aswell, viz.,

Cm�Cn is a circulant if andonly if gcd(m, n) = 1 [6]. Now,Cm�Cn being itself a four-regular graph, the question ariseswhether
or not there exist optimal circulants representable as Cm�Cn. To that end, it is known that dia(Cm�Cn) = ⌊

1
2m⌋ + ⌊

1
2n⌋

[9]. Further, by Proposition 1.1, the lower bound on the diameter of a four-regular circulant on mn vertices is equal to
−

1
2 +

1
2

√
2mn − 1


[5].

It is easy to verify that ⌊
1
2m⌋ + ⌊

1
2n⌋ is strictly greater than the foregoing lower bound for all m, n with gcd(m, n) = 1.

Accordingly, there do not exist optimal circulants representable as Cm�Cn.
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