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1. Introduction 

Let B,, denote the set of n-bit binary strings, 
and let Q, denote the graph of the n-cube where 
V(Q,> = B, and where two vertices are adjacent 
iff their Humming distance is exactly one. A sub- 
set C of B, is called a code, and the elements of 
C are referred to as codewords. C is said to be a 
linear code if the codeword obtained from com- 
ponent-wise sum (modulo 2) of any two elements 
of C is again in C; otherwise it is a nonlinear 
code. By a distance-three code is meant a code in 
which the Hamming distance between any two 
distinct codewords is at least three. Distance-three 
codes possess the capability to correct one error 
and detect two or fewer errors. 

It is known that if n is of the form 2k - 1, then 
B, admits of a partition into equal-size sets 
V O,. . . , V, such that each F is a distance-three 
code and is maximal with respect to this property 

* Corresponding author. Email: pkj@dit.ernet.in. 

(see e.g. [5] or [3].) The main contribution of this 
paper is a scheme that systematically constructs a 
large family of such partitions by means of l&n 
squares. In a somewhat similar study, Sloane and 
Seidel [61 earlier employed conference matrices 
to construct a family of nonlinear codes with high 
minimum distance. 

We derive sharp bounds on the domination 
number and the independent domination number 
of the n-cube. Indeed, our upper bound on each 
of the two invariants of Q, is within twice the 
optimal. These corollaries are important in their 
own right, since the general problem of determin- 
ing any of these two invariants is known to be 
NP-hard. In fact, independent domination num- 
ber is, in general, not even approximable in poly- 
nomial time within a factor of n’ p-E for any E > 0 
unless P = NP, cf. [l]. 

By a graph is meant a finite, simple, undi- 
rected graph. Let G = (V, E) be a graph, and let 
S & V. S is said to be an independent set if all 
elements of S are mutually nonadjacent in G. An 
independent set that is maximal with respect to 
the independence property is called a maximal 
independent set. S is said to be a dominating set if 
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every vertex of G that is not in S is adjacent to 
some vertex of S. It is easy to see that S is a 
maximal independent set iff it is an independent 
set as well as a dominating set. The domination 
number dam(G) of G is defined to be the size of 
a smallest dominating set. A maximal indepen- 
dent set of smallest size is called a minimum 
independent dominating set (mids), and its cardi- 
nality is referred to as independent domination 
number, denoted by idom(G). 

For two binary strings x and y, let x . y denote 
concatenation of x and y, and for two sets X 
and Y of binary strings, let X * Y = {x * y I x E X 
A y E Y}. A subset S of B, is said to be closed 
under bitwise complementation if a, * * * a,_r E S 
implies 5, - - *Z,_,~S,wherefi=l and l=O. 

It is straightforward to see that Q, is a bipar- 
tite graph with 2” vertices and n2”-l edges. The 
following two lemmas are relevant. 

Lemma 1.1.2”/(n + 1) < dom(Q,> Q idom(Q,). 

Proof. It suffices to settle the lower bound on 
dom(Q,). Note that every vertex of Q, is adja- 
cent to n other vertices and hence dominates a 
total of n + 1 vertices including itself. Thus, in 
order to dominate all 2” vertices of Q,, we need 
to select a minimum of 2”/(n + 1) vertices. 0 

Lemma 1.2. Let n = 2k - 1 where k > 2, and let S 
be a vertex subset of Q, such that I S I = 2”/(n + 
1). S is a minimum independent dominating set of 
Q, iff for any two distinct elements x and y of S, 
d&x, y) > 3. 

Proof. Let n, k and S be as in the statement of 
the lemma. First suppose that d&x, y) 2 3 for 
any two distinct elements x and y of S. Thus, no 
two distinct elements of S have a common neigh- 
bor, so a vertex of Q, that is not in S is adjacent 
to at most one element of S. Consequently, S 
dominates a, total of 1 S 1 * (n + 1) = 2” vertices of 
Q,, that is, all of them. By Lemma 1.1, S is a 
minimum independent dominating set of Q,. 

For the converse, note that if x, y E S and 
d,(x, y) < 3, then S (which is of size 2”/(n + 1)) 
cannot even be a dominating set of Q,. 0 

An r x r latin square is defined to be a square 
matrix M over the set (O,...,r - 1) such that 
every row and every column of M contains each 
element of {O,. . . , r - l} exactly once. For in- 
stance, the following cyclic matrix is a latin square. 

t 0 1 2 . . . r- 1 
\ 

1 23... 0 
. . 
. . 

/r-l (!I ; . . . ’ r-2, 

Section 2 consists of the main result while 
Section 3 contains certain corollaries, which lead 
to sharp bounds on dom(Q,) and idom(Q,). 

2. Main result 

Throughout this section, let n = 2k - 1, where 
k > 1. We present a scheme, called CubePartition, 
that inducts on k and builds a partition of B,, + 1 
from that of B,. The trick is to employ an (n + 1) 
x (n + 1) latin square and exploit its structure to 
construct mutually disjoint distance-three codes. 

procedure CubePartition; 

( * For n = 2k - 1, inductively construct a parti- 
tion of B, into n + 1 equal-size distance-three 
codes *) 

begin 
If n = 1, the partition is unique: return 

1101, {I)). 
If n = 3, the partition is unique: return 
((000, ill}, (001, 1101, (010, 1011, (011, 100~1. 
We have n = 2k - 1, where k> 2. Suppose 

{I&.., V,} is a partition of B, into equal-size 
distance-three codes. Thus, each I( is of size 
2”/(n + 1) = r + 1 (say). Let K = {v~,~, . . . , uJ, 
O<i<n. 
Let Ci = {v~,~* bi,o,. . . , u;,~ * bi,,) and Di = (vi.0 * 

Ei,07 . * . 7 Ui,r - bi,,), 0 6 i < n, where bi,o = 0 (resp. 
1) if the number of l’s in vi,i is even (resp. 
odd), and 6i,j = 1 - b,,j. 
(* Sets C,, . . . , C,, D,, . . . , 0, form a parti- 
tion of B,+l. *> 
( * Elements of Ci (resp. Di> are of even (resp. 
odd) parity. *) 
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5. Let T = (t,,j) be an (n + 1) x (n + 1) latin 
square. 

6. Return the sets IV,, . . . , W.n+l, where 2n + 1 
= 2k+’ - 1, and the I+$ are constructed as 
follows: 

C”.l/,” u . . . u C,.K‘“, 

wi = 
OGiGn, 

I ’ 

wVt,_“_,,o ” . . . “4eVt,_n_,,n’ 

n+lgi<2n+l 

end. ( * CubePartition * 1 

We now prove that sets W,,, . . . , W,,+ I, ob- 
tained above, constitute a well-defined partition 

of &n+l into equal-size distance-three codes. 

Proposition 2.1. Let W,, . . . , W, be sets obtained 
at the termination of procedure CubePartition, 
where m = 2n + 1 and n = 2k - 1. 
(1) IWiI=2”/(m+1),0gigm. 
(2) Each element of Wi is a binary string of length 

(3) Zv i #j, W. fI W. = fl 
(4) For distinct;, y : K; d,(x, y) 2 3. 

Proof. (1) follows from the fact that the sets 

GJ.l/,o’ ***, C,OK,~ (resp. the sets DOaVti_n_lO, 
. . . 7 UK,_,_, .) are mutually disjoint, where 0 k 

i 6 n (resp. n +’ 1 < i Q m). (2) is obvious while (3) 
is a consequence of the structure of a latin square 
and the facts that (a) the sets C,, . . . , C,, 
D ,,, . . . , II,, are mutually disjoint and (b) the sets 
V ,,, . . . , V, are mutually disjoint. 

We prove (4) by induction on k. The basis is 
trivially true. Let x, y be distinct elements of I& 
where 0 gi G n. Then for some a, b, c, d E 
(0,. . . ,n} we have x E C,@V, and y E CcOVdd, 
where b = ti a and d = tic, and (ti j) is a latin 
square as in’ Step 5 of the procedure. We may 
write x =x1 .x2 and y =y, .yz, where x1 E C,, 
x2 E V,, y1 EC, and y2 E V,. Since x, y are 
distinct, it cannot happen that xi = yi and x2 = 
y,. First suppose that x1 =y, and x2 #y,. That 
x1 = y, implies a = c, and hence b = d. Conse- 
quently, x2, y, are distinct elements of Vb. By 
induction hypothesis, d,(x,, yz) 2 3, and hence 

d,(x, y) > 3. Argument is similar for the case 
when x1 #y, and x2 =y,. Next suppose that 
nl # yi and xq # yZ. There are two subcases: a = c 
and a ZC. If a = c, then b = d, and hence x1, y1 
(resp. x2, yJ are distinct elements of C, (resp. 
VJ, and the claim is immediate. On the other 
hand, if a f c, then b f d, and we must have 
d,(x,, yl) > 2 and d,(x,, yz) > 1. (Note that 
two distinct binary strings that are of the same 
parity must have a Hamming distance of at least 
two.) It follows that dH(x, y) 2 3. The argument 
is similar for the case when x, y are distinct 
elements of lV., where n + 1 Q i Q m. 0 

At Step (6) of procedure CubePartition, sets 

w,, . . .7 WZn+l may alternatively be defined as 
follows: 

The resulting partition will, in general, be dif- 
ferent from that obtained earlier. 

If k 2 2, then each of the sets constructed by 
procedure CubePartition is closed under bitwise 
complementation. In other words, if a vertex x of 
the n-cube is in a particular set IV., then the 
antipodal (that is, diametrically opposite) vertex 
of x is also in Il$ This is seen by the following 
inductive proof. For k = 2 (and hence n = 3), this 
is clearly true. Suppose that {V,, . . . , V,} is a parti- 
tion of B,, as in Step (3) of the procedure and 
that each K is closed under bitwise complemen- 
tation. It is easy to see that each of the sets 
C o,...,C,,, Do,..., D,, will also have this prop- 
erty. Further, if two sets X and Y obey this 
closure property, then so do X U Y and XOY. 
The relevance of this observation may be seen 
from the fact that a code that is closed under the 
above operation and that does not contain the 
zero vector is necessarily nonlinear. 

Let (V,, . . .) V,} be a partition of B, as in Step 
(3) of CubePartition, and let M, and M2 be two 
distinct (n + 1) X (n + 1) latin squares. These latin 
squares may or may not lead to distinct partitions 
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of &I + 1' In particular, if the set of rows of M, is 
a permutation of the set of rows of M,, then the 
resulting partitions will not be different. On the 
other hand, if there is no such relationship be- 
tween M, and M2, then the corresponding parti- 
tions will be different. 

Our scheme may not generate all possible dis- 
tance-three codes. To demonstrate this, we pre- 
sent a partition of Q, that cannot be obtained by 
means of this procedure. For convenience, let us 
use decimal (rather than binary) notation for the 
vertices of Q,, that is, l/(Q7) = (0,. . . ,127). Eight 
sets that constitute one such partition are as 
follows. 

(0, 11, 21, 30, 38, 45, 51, 56, 

71, 76, 82, 89, 97, 106, 116, 127}, 

{ 1, 10, 20, 31, 39, 44, 50, 57, 

70, 77, 83, 88, 96, 107, 117, 126)) 

{2,9, 23, 28, 36, 47,49,58, 

69, 78, 80, 91, 99, 104, 118, 125)) 

(3, 8, 22, 29, 37, 46, 48, 59, 

68, 79, 81, 90, 98, 105, 119, 124)) 

(4, 15, 17, 26, 34, 41, 55, 60, 

67, 72, 86, 93, 101, 110, 112, 123)) 

(5, 14, 16, 27, 35, 40, 54, 61, 

66, 73, 87, 92, 100, 111, 113, 122}, 

(6, 13, 19, 24, 32, 43, 53, 62, 

65, 74, 84, 95, 103, 108, 114, 121)) 

(7, 12, 18, 25, 33, 42, 52, 63, 

64,75, 85, 94, 102, 109, 115, 120). 

The reader may verify that these sets have the 
desired characteristics. That this partition cannot 
be obtained by our scheme follows from the ob- 
servations that (i) there is a unique partition of 
B,, that is, ((0, 71, (1, 6}, (2, 51, {3, 41) and (ii) no 
4 x 4 latin square coupled with this partition can 
yield a partition of B, in which the elements 0 
(decimal) and 11 (decimal) appear in the same 
subset. Interestingly enough, all the above sets 
are also closed under bitwise complementation. 

3. Corollaries 

Recall Lemmas 1.1 and 1.2, and note that 
procedure CubePartition may be viewed as a 
scheme for a vertex decomposition of Q, into 
minimum independent dominating sets, where II 
is of the form 2k - 1. In this section, we discuss 
cube decomposition into maximal independent 
sets for the case when II is not of the foregoing 
form, and obtain bounds on do&Q,> and 
idom(Q,). 

Assuming that II # 2k - 1, let r be the largest 
integer such that IZ > r and r = 2k - 1, that is, 
r + 1 = 2L’ogz(n+1)J. Obtain a partition (V,, . . . , V,} 
of V(Q,> by means of procedure CubePartition. 
Next, let {A,, A,} be a partition of V(Q,_,) such 
that A, (resp. A,) is the set of binary strings of 
even (resp. odd) parity. Thus, I A, I = I A, I = 
2”-r-1. For 0 G i G (r - 1)/2, let 

Wii =A,oV,, uA~oV..~+~ and 

wzi+r =A,.V*,+i uA,.I/,,. 

That the sets W,,..., W, are equal-size maxi- 
mal independent sets of Q,, and constitute a 
partition of V(Q,) follows from the following five 
claims, which may be argued as in the proof of 
Proposition 2.1. 
(1) I I+( I = 2n/(r + 0, 0 Q i Q r. 
(2) Each element of Wi is a binary string of 

length n. 
(3) For i #j, y cl WOj = @. 
(4) For distinct X, y f Wi, d,(x, y) > 2. 
(5) Wi is a dominating set of Q,, 0 Q i G r. 

It follows from the discussions of the preced- 
ing section and of the present section that for all 
n 2 1, the n-cube admits of a vertex decomposi- 
tion into maximal independent sets each of which 
is of size 2n/2 [‘ogztn + I)‘. This conclusion and 
Lemma 1.1 yield the following bounds on 
dom(Q,) and idom(Q,): 

& d dom(Q,) Q idom( Q,) 

2” 

Q 21 hz(n+l)l . 

Note that the upper bound on idom(Q,) is the 
least power of two that is at least 2”/(n + 1). 
Observe also that the lower bound and the upper 
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bound are within a factor of two, and for IZ of the 
form 2k - 1, they coincide and hence yield the 
exact value. This partially answers a question 
raised by Harary et al 121 with respect to the 
determination of dom(Q,). Certain amplifica- 
tions of these issues appear in [4]. Exact determi- 
nation of dom(Q,) and idom(Q,) is open. 
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