A scheme to construct distance-three codes using latin squares, with applications to the n-cube

Pranava K. Jha ${ }^{\text {a, * }}$, Giora Slutzki ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Engineering, Delhi Institute of Technology: Delhi, Kashmere Gate, Delhi 110 006, India
${ }^{\text {b }}$ Department of Computer Science, Iowa State University, Ames, LA 50011, USA

Communicated by D. Gries; received 9 November 1994; revised 8 March 1995

Keywords: Combinatorial problems; Distance-three codes; n-cube; Latin squares; Independent domination number

1. Introduction

Let B_{n} denote the set of n-bit binary strings, and let Q_{n} denote the graph of the n-cube where $V\left(Q_{n}\right)=B_{n}$ and where two vertices are adjacent iff their Hamming distance is exactly one. A subset C of B_{n} is called a code, and the elements of C are referred to as codewords. C is said to be a linear code if the codeword obtained from com-ponent-wise sum (modulo 2) of any two elements of C is again in C; otherwise it is a nonlinear code. By a distance-three code is meant a code in which the Hamming distance between any two distinct codewords is at least three. Distance-three codes possess the capability to correct one error and detect two or fewer errors.

It is known that if n is of the form $2^{k}-1$, then B_{n} admits of a partition into equal-size sets V_{0}, \ldots, V_{n} such that each V_{i} is a distance-three code and is maximal with respect to this property

[^0](see e.g. [5] or [3].) The main contribution of this paper is a scheme that systematically constructs a large family of such partitions by means of latin squares. In a somewhat similar study, Sloane and Scidel [6] earlier employed conference matrices to construct a family of nonlinear codes with high minimum distance.

We derive sharp bounds on the domination number and the independent domination number of the n-cube. Indeed, our upper bound on each of the two invariants of Q_{n} is within twice the optimal. These corollaries are important in their own right, since the general problem of determining any of these two invariants is known to be NP-hard. In fact, independent domination number is, in general, not even approximable in polynomial time within a factor of $n^{1-\varepsilon}$ for any $\varepsilon>0$ unless $P=N P$, cf. [1].

By a graph is meant a finite, simple, undirected graph. Let $G=(V, E)$ be a graph, and let $S \subseteq V . S$ is said to be an independent set if all elements of S are mutually nonadjacent in G. An independent set that is maximal with respect to the independence property is called a maximal independent set. S is said to be a dominating set if
every vertex of G that is not in S is adjacent to some vertex of S. It is easy to see that S is a maximal independent set iff it is an independent set as well as a dominating set. The domination number $\operatorname{dom}(G)$ of G is defined to be the size of a smallest dominating set. A maximal independent set of smallest size is called a minimum independent dominating set (mids), and its cardinality is referred to as independent domination number, denoted by idom (G).

For two binary strings x and y, let $x \cdot y$ denote concatenation of x and y, and for two sets X and Y of binary strings, let $X \cdot Y=\{x \cdot y \mid x \in X$ $\wedge y \in Y\}$. A subset S of B_{n} is said to be closed under bitwise complementation if $a_{0} \cdots a_{n-1} \in S$ implies $\bar{a}_{0} \cdots \bar{a}_{n-1} \in S$, where $\overline{0}=1$ and $\overline{1}=0$.

It is straightforward to see that Q_{n} is a bipartite graph with 2^{n} vertices and $n 2^{n-1}$ edges. The following two lemmas are relevant.

Lemma 1.1. $2^{n} /(n+1) \leqslant \operatorname{dom}\left(Q_{n}\right) \leqslant \operatorname{idom}\left(Q_{n}\right)$.
Proof. It suffices to settle the lower bound on $\operatorname{dom}\left(Q_{n}\right)$. Note that every vertex of Q_{n} is adjacent to n other vertices and hence dominates a total of $n+1$ vertices including itself. Thus, in order to dominate all 2^{n} vertices of Q_{n}, we need to select a minimum of $2^{n} /(n+1)$ vertices.

Lemma 1.2. Let $n=2^{k}-1$ where $k \geqslant 2$, and let S be a vertex subset of Q_{n} such that $|S|=2^{n} /(n+$ 1). S is a minimum independent dominating set of Q_{n} iff for any two distinct elements x and y of S, $d_{H}(x, y) \geqslant 3$.

Proof. Let n, k and S be as in the statement of the lemma. First suppose that $d_{H}(x, y) \geqslant 3$ for any two distinct elements x and y of S. Thus, no two distinct elements of S have a common neighbor, so a vertex of Q_{n} that is not in S is adjacent to at most one element of S. Consequently, S dominates a total of $|S| \cdot(n+1)=2^{n}$ vertices of Q_{n}, that is, all of them. By Lemma $1.1, S$ is a minimum independent dominating set of Q_{n}.

For the converse, note that if $x, y \in S$ and $d_{H}(x, y)<3$, then S (which is of size $2^{n} /(n+1)$) cannot even be a dominating set of Q_{n}.

An $r \times r$ latin square is defined to be a square matrix M over the set $\{0, \ldots, r-1\}$ such that every row and every column of M contains each element of $\{0, \ldots, r-1\}$ exactly once. For instance, the following cyclic matrix is a latin square.
$\left(\begin{array}{ccccc}0 & 1 & 2 & \ldots & r-1 \\ 1 & 2 & 3 & \ldots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ r-1 & 0 & 1 & \ldots & r-2\end{array}\right)$
Section 2 consists of the main result while Section 3 contains certain corollaries, which lead to sharp bounds on $\operatorname{dom}\left(Q_{n}\right)$ and $\operatorname{idom}\left(Q_{n}\right)$.

2. Main result

Throughout this section, let $n=2^{k}-1$, where $k \geqslant 1$. We present a scheme, called CubePartition, that inducts on k and builds a partition of $B_{2 n+1}$ from that of B_{n}. The trick is to employ an ($n+1$) $\times(n+1)$ latin square and exploit its structure to construct mutually disjoint distance-three codes.

procedure CubePartition;

(* For $n=2^{k}-1$, inductively construct a partition of B_{n} into $n+1$ equal-size distance-three codes *)

begin

1. If $n=1$, the partition is unique: return $\{\{0\},\{1\}$).
2. If $n=3$, the partition is unique: return $\{\{000,111\},\{001,110\},\{010,101\},\{011,100\}\}$.
3. We have $n=2^{k}-1$, where $k \geqslant 2$. Suppose $\left\{V_{0}, \ldots, V_{n}\right\}$ is a partition of B_{n} into equal-size distance-three codes. Thus, each V_{i} is of size $2^{n} /(n+1)=r+1$ (say). Let $V_{i}=\left\{v_{i, 0}, \ldots, v_{i, r}\right\}$, $0 \leqslant i \leqslant n$.
4. Let $C_{i}=\left\{v_{i, 0} \cdot b_{i, 0}, \ldots, v_{i, r} \cdot b_{i, r}\right\}$ and $D_{i}=\left\{v_{i, 0}\right.$. $\left.\bar{b}_{i, 0}, \ldots, v_{i, r} \cdot b_{i, r}\right\}, 0 \leqslant i \leqslant n$, where $b_{i, 0}=0$ (resp. 1) if the number of 1 's in $v_{i, j}$ is even (resp. odd), and $\bar{b}_{i, j}=1-b_{i, j}$.
(* Sets $C_{0}, \ldots, C_{n}, D_{0}, \ldots, D_{n}$ form a partition of $B_{n+1} \cdot{ }^{*}$)
(* Elements of C_{i} (resp. D_{i}) are of even (resp. odd) parity. ${ }^{*}$)
5. Let $T=\left(t_{i, j}\right)$ be an $(n+1) \times(n+1)$ latin square.
6. Return the sets $W_{0}, \ldots, W_{2 n+1}$, where $2 n+1$ $=2^{k+1}-1$, and the W_{i} are constructed as follows:
$W_{i}=\left\{\begin{array}{l}C_{0} \bullet V_{t_{t, 0}} \cup \cdots \cup C_{n} \bullet V_{t_{i, n}}, \\ 0 \leqslant i \leqslant n, \\ D_{0} \bullet V_{t_{i-n-1,0}} \cup \cdots \cup D_{n} \bullet V_{t_{i-n-1, n}}, \\ n+1 \leqslant i \leqslant 2 n+1\end{array}\right.$
end. (* CubePartition *)

We now prove that sets $W_{0}, \ldots, W_{2 n+1}$, obtained above, constitute a well-defined partition of $B_{2 n+1}$ into equal-size distance-three codes.

Proposition 2.1. Let W_{0}, \ldots, W_{m} be sets obtained at the termination of procedure CubePartition, where $m=2 n+1$ and $n=2^{k}-1$.
(1) $\left|W_{i}\right|=2^{m} /(m+1), 0 \leqslant i \leqslant m$.
(2) Each element of W_{i} is a binary string of length m.
(3) For $i \neq j, W_{i} \cap W_{j}=\emptyset$.
(4) For distinct $x, y \in W_{i}, d_{H}(x, y) \geqslant 3$.

Proof. (1) follows from the fact that the sets $C_{0} \bullet V_{t_{i, 0}}, \ldots, C_{n} \bullet V_{t_{i, n}}$ (resp. the sets $D_{0} \bullet V_{t_{i-n-1,0}}$, $\ldots, D_{n} \bullet V_{t_{i-n-1, n}}$ are mutually disioint, where $0 \leqslant$ $i \leqslant n$ (resp. $n+1 \leqslant i \leqslant m$). (2) is obvious while (3) is a consequence of the structure of a latin square and the facts that (a) the sets C_{0}, \ldots, C_{n}, D_{0}, \ldots, D_{n} are mutually disjoint and (b) the sets V_{0}, \ldots, V_{n} are mutually disjoint.

We prove (4) by induction on k. The basis is trivially true. Let x, y be distinct elements of W_{i}, where $0 \leqslant i \leqslant n$. Then for some $a, b, c, d \in$ $\{0, \ldots, n\}$ we have $x \in C_{a} \bullet V_{b}$ and $y \in C_{c} \bullet V_{d}$, where $b=t_{i, a}$ and $d=t_{i, c}$, and $\left(t_{i, j}\right)$ is a latin square as in Step 5 of the procedure. We may write $x=x_{1} \cdot x_{2}$ and $y=y_{1} \cdot y_{2}$, where $x_{1} \in C_{a}$, $x_{2} \in V_{b}, y_{1} \in C_{c}$ and $y_{2} \in V_{d}$. Since x, y are distinct, it cannot happen that $x_{1}=y_{1}$ and $x_{2}=$ y_{2}. First suppose that $x_{1}=y_{1}$ and $x_{2} \neq y_{2}$. That $x_{1}=y_{1}$ implies $a=c$, and hence $b=d$. Consequently, x_{2}, y_{2} are distinct elements of V_{b}. By induction hypothesis, $d_{H}\left(x_{2}, y_{2}\right) \geqslant 3$, and hence
$d_{H}(x, y) \geqslant 3$. Argument is similar for the case when $x_{1} \neq y_{1}$ and $x_{2}=y_{2}$. Next suppose that $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$. There are two subcases: $a=c$ and $a \neq c$. If $a=c$, then $b=d$, and hence x_{1}, y_{1} (resp. x_{2}, y_{2}) are distinct elements of C_{a} (resp. V_{b}), and the claim is immediate. On the other hand, if $a \neq c$, then $b \neq d$, and we must have $d_{H}\left(x_{1}, y_{1}\right) \geqslant 2$ and $d_{H}\left(x_{2}, y_{2}\right) \geqslant 1$. (Note that two distinct binary strings that are of the same parity must have a Hamming distance of at least two.) It follows that $d_{H}(x, y) \geqslant 3$. The argument is similar for the case when x, y are distinct elements of W_{i}, where $n+1 \leqslant i \leqslant m$.

At Step (6) of procedure CubePartition, sets $W_{0}, \ldots, W_{2 n+1}$ may alternatively be defined as follows:
$W_{i}=\left\{\begin{array}{l}V_{0} \bullet C_{t_{i, 0}} \cup \cdots \cup V_{n} \bullet C_{t_{i, n}}, \\ 0 \leqslant i \leqslant n, \\ V_{0} \bullet D_{t_{i} n} \cup \cdots \cup V_{n} \bullet D_{t_{i-n-1, n}}, \\ n+1 \leqslant i \leqslant 2 n+1\end{array}\right.$
The resulting partition will, in general, be different from that obtained earlier.

If $k \geqslant 2$, then each of the sets constructed by procedure CubePartition is closed under bitwise complementation. In other words, if a vertex x of the n-cube is in a particular set W_{i}, then the antipodal (that is, diametrically opposite) vertex of x is also in W_{i}. This is seen by the following inductive proof. For $k=2$ (and hence $n=3$), this is clearly true. Suppose that $\left\{V_{0}, \ldots, V_{n}\right\}$ is a partition of B_{n} as in Step (3) of the procedure and that each V_{i} is closed under bitwise complementation. It is easy to see that each of the sets $C_{0}, \ldots, C_{n}, D_{0}, \ldots, D_{n}$ will also have this property. Further, if two sets X and Y obey this closure property, then so do $X \cup Y$ and $X \bullet Y$. The relevance of this observation may be seen from the fact that a code that is closed under the above operation and that does not contain the zero vector is necessarily nonlinear.

Let $\left\{V_{0}, \ldots, V_{n}\right\}$ be a partition of B_{n} as in Step (3) of CubePartition, and let M_{1} and M_{2} be two distinct $(n+1) \times(n+1)$ latin squares. These latin squares may or may not lead to distinct partitions
of $B_{2 n+1}$. In particular, if the set of rows of M_{2} is a permutation of the set of rows of M_{1}, then the resulting partitions will not be different. On the other hand, if there is no such relationship between M_{1} and M_{2}, then the corresponding partitions will be different.

Our scheme may not generate all possible dis-tance-three codes. To demonstrate this, we present a partition of Q_{7} that cannot be obtained by means of this procedure. For convenience, let us use decimal (rather than binary) notation for the vertices of Q_{7}, that is, $V\left(Q_{7}\right)=\{0, \ldots, 127\}$. Eight sets that constitute one such partition are as follows.
$\{0,11,21,30,38,45,51,56$,
$71,76,82,89,97,106,116,127\}$,
$\{1,10,20,31,39,44,50,57$,
$70,77,83,88,96,107,117,126\}$,
$\{2,9,23,28,36,47,49,58$,
$69,78,80,91,99,104,118,125\}$,
$\{3,8,22,29,37,46,48,59$,
$68,79,81,90,98,105,119,124\}$,
$\{4,15,17,26,34,41,55,60$,
$67,72,86,93,101,110,112,123\}$,
$\{5,14,16,27,35,40,54,61$,
$66,73,87,92,100,111,113,122\}$,
$\{6,13,19,24,32,43,53,62$,
$65,74,84,95,103,108,114,121\}$,
$\{7,12,18,25,33,42,52,63$,
$64,75,85,94,102,109,115,120\}$.
The reader may verify that these sets have the desired characteristics. That this partition cannot be obtained by our scheme follows from the observations that (i) there is a unique partition of B_{3}, that is, $\{\{0,7\},\{1,6\},\{2,5\},\{3,4\}\}$ and (ii) no 4×4 latin square coupled with this partition can yield a partition of B_{7} in which the elements 0 (decimal) and 11 (decimal) appear in the same subset. Interestingly enough, all the above sets are also closed under bitwise complementation.

3. Corollaries

Recall Lemmas 1.1 and 1.2, and note that procedure CubePartition may be viewed as a scheme for a vertex decomposition of Q_{n} into minimum independent dominating sets, where n is of the form $2^{k}-1$. In this section, we discuss cube decomposition into maximal independent sets for the case when n is not of the foregoing form, and obtain bounds on $\operatorname{dom}\left(Q_{n}\right)$ and $\operatorname{idom}\left(Q_{n}\right)$.

Assuming that $n \neq 2^{k}-1$, let r be the largest integer such that $n>r$ and $r=2^{k}-1$, that is, $r+1=2^{\left[\log _{2}(n+1)\right]}$. Obtain a partition $\left\{V_{0}, \ldots, V_{r}\right\}$ of $V\left(Q_{r}\right)$ by means of procedure CubePartition. Next, let $\left\{A_{0}, A_{1}\right\}$ be a partition of $V\left(Q_{n-r}\right)$ such that A_{0} (resp. A_{1}) is the set of binary strings of cven (resp. odd) parity. Thus, $\left|A_{0}\right|=\left|A_{1}\right|=$ 2^{n-r-1}. For $0 \leqslant i \leqslant(r-1) / 2$, let
$W_{i i}=\Lambda_{0} \bullet V_{2 i} \cup A_{1} \bullet V_{2 i+1} \quad$ and
$W_{2 i+1}=A_{0} \bullet V_{2 i+1} \cup A_{1} \bullet V_{2 i}$.
That the sets W_{0}, \ldots, W_{r} are equal-size maximal independent sets of Q_{n}, and constitute a partition of $V\left(Q_{n}\right)$ follows from the following five claims, which may be argued as in the proof of Proposition 2.1.
(1) $\left|W_{i}\right|=2^{n} /(r+1), 0 \leqslant i \leqslant r$.
(2) Each element of W_{i} is a binary string of length n.
(3) For $i \neq j, W_{i} \cap W 0_{j}=\emptyset$.
(4) For distinct $x, y \in W_{i}, d_{H}(x, y) \geqslant 2$.
(5) W_{i} is a dominating set of $Q_{n}, 0 \leqslant i \leqslant r$.

It follows from the discussions of the preceding section and of the present section that for all $n \geqslant 1$, the n-cube admits of a vertex decomposition into maximal independent sets each of which is of size $2^{n} / 2^{\left[\log _{2}(n+1)\right]}$. This conclusion and Lemma 1.1 yield the following bounds on $\operatorname{dom}\left(Q_{n}\right)$ and $\operatorname{idom}\left(Q_{n}\right)$:

$$
\begin{aligned}
\frac{2^{n}}{n+1} & \leqslant \operatorname{dom}\left(Q_{n}\right) \leqslant \operatorname{ddom}\left(Q_{n}\right) \\
& \leqslant \frac{2^{n}}{2^{\left\lfloor\log _{2}(n+1)\right]}}
\end{aligned}
$$

Note that the upper bound on $\operatorname{idom}\left(Q_{n}\right)$ is the least power of two that is at least $2^{n} /(n+1)$. Observe also that the lower bound and the upper
bound are within a factor of two, and for n of the form $2^{k} 1$, they coincide and hence yield the exact value. This partially answers a question raised by Harary et al [2] with respect to the determination of $\operatorname{dom}\left(Q_{n}\right)$. Certain amplifications of these issues appear in [4]. Exact determination of $\operatorname{dom}\left(Q_{n}\right)$ and $\operatorname{idom}\left(Q_{n}\right)$ is open.

Acknowledgments

The authors are grateful to Dr. Jonathan D.H. Smith for his interest, encouragement and perceptive comments. They are also thankful to Dr. David Gries and the anonymous referees whose observations led to a substantial improvement in the presentation of the paper.

References

[1] M.M. Halldórsson, Approximating the minimum maximal independence number, Inform. Process. Lett. 46 (1993) 169-172.
[2] F. Harary, J.P. Hayes and H.-J. Wu, A survey of the theory of hypercube graphs, Comput. Math. Appl. 15 (1988) 277-289.
[3] D.G. Hoffman, D.A. Leonard, C.C. Lindner, K.T. Phelps, C.A. Rodger and J.R. Wall. Coding Theory: The Essentials (Marcel Dekker, New York, 1991).
[4] P.K. Jha, Hypercubes, median graphs and products of graphs: Some algorithmic and combinatorial results, Ph.D. Dissertation, Iowa State, 1990.
[5] V. Pless, Introduction to the theory of error-correcting codes (John Wiley \& Sons, New York, 2nd ed., 1989).
[6] N.J.A. Sloane and J.J. Seidel, A new family of nonlinear codes obtained from conference matrices, Ann. New York Acad. Sci. 175 (1970) 363-365.

[^0]: * Corresponding author. Email: pkj@dit.ernet.in.

