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Abstract

If » > 1, andm andn are each a multiple of- + 1)2 + r2, then each isomorphic component@f, x C, admits of a vertex
partition into (r + 12+ r2 perfectr-dominating sets. The result induces a dense packing,o& C, by means of vertex-
disjoint subgraphs, each isomorphic to a diagonal array. Areas of applications include efficient resource placement in a diagonal
mesh and error-correcting codes.
00 2003 Elsevier B.V. All rights reserved.
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1. Introduction It has been studied with respect to a number of net-
work topologies, including hypercubes, 2D torus and

Consider a computer/communication network that 3D torus [1-3]. The concept has applications in sev-
usually has a regular structure. The nodes are distin- €@l other areas too, notablgror-correcting codes,
guishable into resource nodes and user nodes. EacHfame theory and frequency assignment [6,7,16,17].
of the former houses replicable items such as power 1he well-known Hamming code corresponds to a per-
sources, 1/0 ports and function libraries, while each of fect 1-domination in the:-cube, where: = zlf -1
the latter is within a distance of from at least one % = 2 [14,19]. Even when a perfectdominating set
resource node, whereis a fixed positive integer. Re- IS notknown for a given graph, an analogous informa-
sources are usually limited and expensive, hence thelion with respect to a related graph may be useful to
need for minimizing the number of respective nodes. N€lP construct a near-optimal set.

The foregoing problem of efficiemesource place- This paper presents a vertex partition of -
ment has a natural graph-theoretical formulation, Necker productof two cycles into perfeot-dominating

where the objective is to constructperfect r-dom- sets, where length of each cycle is a multiple(of-

inating set (defined below) of the underlying graph. 1)2 4 r2. The result closely parallels the existence of
Lee metric code [6]. A particularly useful application

consists of an optimal resource placement dago-
E-mail address: pkjha@stcloudstate.edu (P.K. Jha). nal mesh.
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In this paper, when | speak of a graph, | mean a
finite, simple and undirected graph. Unless indicated
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sets, or closure of context-free sets with a regular set,
under intersection (respectively shuffle) is provable by

otherwise, graphs are also connected and contain attaking the x-product (respectivelya-product) of the

least two vertices. Fom > 2 andn > 3, let P, (re-
spectivelyC,) denote gath (respectively aycle) on
m (respectivelyr) vertices, wherd/ (Py) = V(Cy) =
{0, ...,k — 1}, and where adjacencies are defined in a
natural way.
For a graphG = (V, E), a vertexv is said tor-do-
minate a vertex if 0 <dg(v, w) < r. Avertex subset
S is called anr-dominating set (respectively gerfect
r-dominating set) if every vertex ofG is r-dominated
by some vertex (respectively a unique vertex)Sin
The cardinality of a smallest-dominating set ofG
is called ther-domination number of G, denoted by
¥»(G). The general problem of determining(G) is
known to be NP-hard even for bipartite graphs [5].
The Kronecker product G x H of graphsG =
(V,E)andH = (W, F) is defined as followsV (G x
H)=V x W and E(G x H) = {{(a, x), (b, y)}:
{a,b} € E and{x, y} € F}. This product is variously
known as direct product, cardinal product and tensor
product. Another relevant structure is tlartesian
product G 0O H defined as followsY (GO H) =V x
WandE(GoH) = {{(u, x), (v, y)}: eitheru = v and
{x,y} e F; orx =y and{u, v} € E}. Each of the two
products is commutative and associative in a natural

way, and has found applications in a number of areas.

In automata theory, for example, closure of regular

corresponding machines. It is interesting to note that
if G and H are connected graphs, th&h x H is
isomorphic toG O H if and only if G and H are odd
cycles of the same size [18].

Tang and Padubidri [21] study diagonal mesh and
toroidal mesh (for connecting communication ele-
ments in parallel computers) that are actually repre-
sentable a€’; 1 x C2j11 andCy; 1 0 C2j41, respec-
tively. Certain common features of the two graphs are:
nonplanarity, nonbipartiteness, edge decomposability
into Hamiltonian cycles [8], and embeddability on a
torus. Except for these similarities, the two have a
number of dissimilarities, and hence each merits an
individual treatment; see Table 1.

Remark. Lower diameter, higher independence num-
ber and higher odd girth are welcome features of a
fault-tolerant communication network. In particular,

low diameter ensures low communication delay be-
tween two nodes in the worst case, and high odd girth
means that the graph is “locally bipartite”. By Table 1,

therefore, the diagonal mesh outperforms the toroidal
mesh in many ways. This is further supported by other
findings [21]. Diagonal mesh in some form appeared
earlier as the routing network of FAIM-1 computer [4].

Table 1
C x Cp, (diagonal mesh) versus,, 0 C, (toroidal mesh)n, n both odd;n >n >3
Cm x Cpy CnCy References
Diameter max(m —1)/2,n} ifm>n (m+n—-2)/2 [8,15]
n—1 ifm=n
Independence  (m — 1)n/2 m(n—1)/2 [9,13]
number
Odd girth m n [13]
Table 2
Perfectr-dominating sets in products of cycles
Cmg X =+ X Cry_4 CmgO -+ OCmy_4
r=1,k>2andmyo,..., my_1 each r=1,k>2andmy,..., my_1 each

amultiple of  + 1 [11]

r 21,k =3 andmg, m1, mp each
a multiple of (r + 1)3 + r3[12]

a multiple of 2 + 1 [6]

r 21,k =2 andmg, m1 each
amultiple of (r + 1)2 + 2 [6]
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For any undefined terms or missing references, see theDefinition 1. Let G be a graph with radius. For

book by Imrich and Klavzar [8].

Table 2 presents certain known results with respect

to perfectr-domination inC,,, x ---
CnoO - 0Cpy_,.

Section 2 characterizes theball in C,, x C, as
well as C,,0C,, and presents a lower bound on
v (Cw x Cp). Section 3 presents the main result.
Concluding remarks appear at end.

x Cp,_, and

2. Preliminaries

Itis known that (i) ifG andH are not both bipatrtite,
thenG x H is connected, otherwis@ x H consists
of two connected components, and (@) x H is
bipartite if and only ifG or H is bipartite. In particular,
C2i+1 x Cy, is connected andy; x C»; consists of two
isomorphic components. The graph x P; appears
in Fig. 1. The terms “even component” and “odd
component” have been chosen because vertieas)
in the former (respectively latter) are exactly those for
which p + ¢ is even (respectively odd).

Let DA(m, n) denote the even component Bf;, x
P, where 'DA” stands for “diagonal array”. It is
not difficult to see thaDA(m, n) consists offmn/2]
vertices andm — 1)(n — 1) edges [8].

Note. Ramirez and Melhem [20] present a fault-
tolerant computational array (called processor switch/
voter array) whose underlying graph is essentially
DA(2i +1,2j +1).

NSNS N\
VAVAVAN
NN NS
NN\
NN
NSNS

@

0 < r <s, anr-ball centered at a vertexof G is the
set{w € V(G): 0<dg (v, w) <r}.

An r-dominating set ofG is a spanning ofz by
r-balls. (In the case of a perfectdominating set, the
r-balls are mutually exclusive and exhaustive.) In what
follows, an ‘“r-ball” will be used also to denote the
corresponding induced subgraph. The following is a
consequence of a more general result.

Lemma 2.1 [12]. If m,n > 2r + 2, then an r-ball
in Cp, x Cy, is isomorphic to DA(2r + 1,2r + 1).
Accordingly, y,(Cu x Cn) = mn/((r + 1)% 4 r?).

DA(7,7) appearing in Fig. 1(a) may be viewed as
a 3-ball centered at verte®, 3). A consequence of
the main result of this paper is that the lower bound of
Lemma 2.1 is achieved i: andn are each a multiple
of r + 1)2 4 r2.

Interestingly enough, the subgraph induced by an
r-ball in C,, 0C, is also isomorphic tdA(2r + 1,
2r +1). To see this, letn,n > 2r +1,and 1< k < r.
A vertex at a distance df from a typical vertex, ;)
in C,, 0 C, is of the form(i + p, j +¢q) wherei + p is
modulom, j + ¢ is modulon, and|p| + |¢| = k. Itis
easy to check that the number of such vertices is equal
to 4k, and hence the order of anball in this graph
is equal to 1+ Y;_;(4k) = (r + 1)? + r2. That the
induced subgraph is isomorphicBA2r + 1, 2r + 1)
may be proved by induction on A 3-ballinC,, 0 C,,
appears in Fig. 2, and is isomorphicD#(7, 7) that
appears in Fig. 1(a).

(b)

Fig. 1. The graphP7 x P7. (a) Even component, (b) odd component.
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Fig. 2. 3-ball inC,, O Cy,.

3. Result

Theorem 3.1. If r > 1, and m and n are each
a multiple of (r + 1)2 + 2, then each connected
component of C,, x C, admits of a vertex partition
into (r + 1)2 + r2 perfect r-dominating sets.

Proof. Lets = (r + 1)2+ r2, and let vertexi, j) of
Cm x C, be assigned the integer label

[2(r + 1)i + 2rj] mods.

The assignment is clearly well-defined. It suffices to
show that a vertex distinct frorq, j) that is within
a distance of 2 from (i, j) receives a label that is
different from that of(i, j).

Let p € {1,...,2r}, and consider a vertex at a
distance ofp from (i, j). Such a node is of the form
(i +a, j+b), where

() a,be{—p+2k: 0<k<p},
(i) max{lal, |b|} = p, and
(iii) ¢ + a is modulom andj + b is modulon.

(Note thata andb are of the same parity.) The label
assigned td@i +a, j + b) is
[2(r + )i +2rj + 2(r + 1)a + 2rb] mods.

Accordingly, it needs to be proved that

[Z(r + 1a + 2rb] mods >0, i.e,

[(r +Da+rb] mods >0, sinces is odd

P.K. Jha/ Information Processing Letters 87 (2003) 163-168

The claim follows by a careful case analysis. However,
the following argument suggested by a referee is more
elegant and intuitive.

Consider the Diophantine equation

(r+1a —l—rb:k((r + l)2+r2).

If ag=A(r + 1) andbg = Ar is a particular solution,
then

(r+Va+rb=r+ag+rbo, e,

(r+1(a—ap) =r(bg—Db).

This means that divides (r + 1)(a — ag). Sincer
andr + 1 are coprime, this implies that divides
(a —ap), i.e.,(a — ag) = ur for someu. Accordingly,
r(bo—b)=@F+Dur,i.e.,b=bg— u(r+1).Let

S={(a,b): a=Ar+1)+ ur,
b=Ar—ur+1), A, ,u,GZ}.

We are looking for the choice @i, ) € Z x Z such
that the solutions satisfy:

a+biseven and |a|+ |b| < 2r.

Now, (a + b) is even iff (2ur + A — ) is even iff
(A + ) is even iff (|A] + |ul) =0 or (]A] + |u]) > 2.
If (a,b) # (0,0), then(|A| + |u|) > 2.

e For|A|=0and|u| > 2, we havgb| > 2(r +1) >
2r.

e For|u|=0and|r| > 2, we havda| > 2(r + 1) >
2r.

e For|A| > 1, || =21 andiu > 0, we havela| >
2(r+1) > 2r.

e For|A| > 1, || =21 andiu < 0, we haveb| >
2(r+1) > 2r.

Thus the Diophantine equation has a unique solu-
tion for (a, b) that is(0, 0), where(a + b) is even and
(lal+ b)) <2r. O

To see how the result may be used in practice,
consider a parallel computer whose processing units
(p.u’s) and the interconnection network are modeled
by C, x C,, where each p.u. is associated with a
vertex of the graph and a direct link between two p.u.'s
is indicated by an edge between the corresponding
vertices. Next suppose that there are resource units
(r.u’s) that are to be positioned in such a way that
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every p.u. is within a distance offrom at least one
r.u. A setV; constructed in the proof of Theorem 3.1
constitutes a collection of vertices where r.u.'s are to
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puter and communication networks, and management
of multiprocessors.
While C,,, x C,, and C,, 0 C,, are nonisomorphic

be located; this ensures that the number of r.u.'s (and (with the sole exception of whem andn are equal
hence the associated cost) is the minimum possible and odd), they have a similar local structure in that the

as each vertex is within a distanceofrom exactly
one “resource vertex”. As noted earlier, the diagonal
mesh [21] is isomorphic t@,, x C,,, wherem andn
are both odd.

Theorem 3.1 together with discussions in Section 2
lead to the following result.

Corollary 3.2. For r > 1, if m and n are each a
multiple of (r + 1)2 + r2, then C,, x C, as well as
C,, O0C, admits of a decomposition into mn/((r +
1)2 4 r2) subgraphs, each isomorphic to the diagonal
array DA(2r + 1, 2r + 1).

The foregoing result may be viewed as a packing of
Cpn x C, (respectivelyC,, 0 C,) by mn/((r + 1)%2 +
r2) vertex-disjoint (and hence edge-disjoint) copies of
DA(2r +1, 2r +1), that has 42 edges. All such copies
thus collectively account for# - mn/((r + 1)2 + r?)
edges ofC,, x C, (respectivelyC,, O C,), that has
2mn edges. Thus the “efficiency” of this packing is
equal to

2r2

1 5 mn
_ . 4r . =
2mn r+1)2+4r2 2r24+2r+1
that approaches 100% for large

4. Concluding remarks

The Kronecker product and the Cartesian prod-
uct have gained prominence by virtue of their appli-

cations in engineering, computer science and related

disciplines. Between the two, the latter is relatively
simple and intuitive, and hence more widely stud-
ied. For exampledg o g ((u, x), (v, y)) is given by
the simple formula otlg (u, v) + dg(x, y), whereas
doxu((u, x), (v, y)) is given by a rather complicated
formula [15].

A number of results with respect to the Kronecker

product are amenable to useful applications. In partic-

ular, each ofP,, x P,, C,, x P, andC,, x C, has a
rich cycle structure [10]. Accordingly, each is respon-

sive to applications in areas such as VLSI layout, com-

subgraph induced by anball centered at a particular
vertex is isomorphic to a diagonal array that itself has
proved to be a useful structure [20].
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