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1-Perfect Codes Over Dual-Cubes vis-à-vis
Hamming Codes Over Hypercubes

Pranava K. Jha

Abstract— A 1-perfect code of a graph G is a set C ⊆ V (G)
such that the 1-balls centered at the vertices in C constitute
a partition of V (G). In this paper, we consider the dual-cube
D Qm that is a connected (m + 1)-regular spanning subgraph of
the hypercube Q2m+1 , and show that it admits a 1-perfect code
if and only if m = 2k − 2, k ≥ 2. The result closely parallels the
existence of Hamming codes over the hypercube. The algorithm
for that purpose employs a scheme by Jha and Slutzki for a vertex
partition of Qm+1 into Hamming codes using a Latin square, and
carefully allocates those codes among various m-cubes in D Qm.
The result leads to tight bounds on domination numbers of the
dual-cube and the exchanged hypercube.

Index Terms— 1-perfect codes; Hamming codes; dual-cubes;
hypercubes; exchanged hypercubes; Latin square; domination
number; resource placement; interconnection networks.

I. INTRODUCTION

1 -PERFECT codes constitute a significant field of study
by virtue of their applications in multiprocessor systems,

communication systems, and a number of other areas in the
wide digital world. They have the capability to detect two or
fewer errors, and correct a single error. Among various types of
1-perfect codes, the Hamming codes [4], based on the topology
of the hypercubes, are the foremost. Meanwhile the problem
of deciding whether or not a graph supports a 1-perfect code
is NP-complete [15] even for planar 3-regular graphs.

The dual-cube [17], [20] constitutes one of several
variants [16], [19], [25] of the hypercube. The idea grew
out of the necessity to mitigate the latter’s rapid scaling
while retaining most of its good characteristics. Indeed, the
dual cube exhibits a number of welcome features like vertex
transitivity [24], efficient collective communication [17], high
connectivity and fault tolerance [24], Hamiltonian decompos-
ability [22], and low diameter and easy routing [24]. The
present paper adds another distinctive property to that list,
viz., the existence of 1-perfect codes.

A concept closely related to 1-perfect codes is that of
domination [21]. Indeed, a 1-perfect code, a fortiori,
corresponds to a smallest dominating set in the graph [9].
Applications exist in areas such as resource placement
in parallel/distributed systems, construction of an efficient
backbone for routing, and partition of a network into small
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clusters [6], [7]. Meanwhile the problem of obtaining a
smallest dominating set is known to be NP-hard [21].

A. Definitions and Preliminaries

Graphs in this paper are simple, undirected and connected.
Let dist(u, v) denote the (shortest) distance between vertices
u and v, where the underlying graph will be clear from the
context. The eccentricity ecc(u) of a vertex u in a graph G is
given by max{dist(u, v) | v ∈ V (G)}. The radius rad(G) and
the diameter dia(G) of G are defined to be min{ecc(u) | u ∈
V (G)} and max{ecc(u) | u ∈ V (G)}, respectively.

A vertex subset S of a graph G constitutes a dominating
set if every vertex of G not in S is adjacent to some vertex
in S. If, in addition, the distance between any two distinct
elements of S is at least three, then S constitutes a 1-perfect
code. Thus the closed neighborhoods of the vertices in such
a code are mutually exclusive and exhaustive with respect to
the vertex set of the graph. The domination number γ(G) of
G is the least cardinality of a dominating set. For undefined
terms, see West [21].

For x, y ∈ {0, 1}n , let H (x, y) denote the Hamming distance
between the two, i.e., the number of bit positions in which
they differ from each other. The n-dimensional hypercube Qn

is the graph on the vertex set {0, 1}n , where {x, y} ∈ E(Qn)
iff H (x, y) = 1. For a ∈ {0, 1}, let a := 1 − a. Meanwhile we
view an n-bit string x as xn−1 . . . x1x0 as well as xn . . . x2x1,
and use the context to disambiguate the expression.

For binary strings x and y, let x · y denote the concate-
nation of x and y, and for sets X and Y of binary strings,
let X • Y := {x · y | x ∈ X and y ∈ Y }. Further,
let u j :i denote the substring u j . . . ui of a binary string u,
where j ≥ i .

Definition 1: For n ≥ 1, the dual-cube DQn is a spanning
subgraph of Q2n+1. Its edge set is given by E0 ∪ E1 ∪ E2,
where

a. E0 = {{u0, v0} | u, v ∈ {0, 1}2n, H (u2n:n+1, v2n:n+1)= 1
and un:1 = vn:1}

b. E1 = {{u1, v1} | u, v ∈ {0, 1}2n, u2n:n+1 = v2n:n+1 and
H (un:1, vn:1) = 1}

c. E2 = {{u0, u1} | u ∈ {0, 1}2n}.
Note that |V (DQn)| = 22n+1; E0, E1 and E2 are pairwise

disjoint; and |E0| = |E1| = n22n−1, and |E2| = 22n ,
so |E(DQn)| = (n + 1)22n. Meanwhile it is known that DQn

is connected, (n + 1)-regular and bipartite [24] (p. 1732).
Intuitively, a vertex u = u2n . . . un+1un . . . u1 c consists of

three “components,” viz., the “leading half” u2n . . . un+1, the
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Fig. 1. The graph DQ2 (cf. Definition 1).

“trailing half” un . . . u1 and the “end bit” c. Let 〈E0〉 and 〈E1〉
denote the subgraphs induced by E0 and E1, respectively.

Note: Whereas vertices of Qn and DQn are binary strings,
we refer to them as decimal integers as well, where the
mapping σ : {0, 1}n → {0, . . . , 2n − 1} is given by the
well-known recurrence: σ(0) = 0, σ(1) = 1, and
σ(x0) = 2σ(x), σ(x1) = 2σ(x) + 1.

Say that a vertex u (binary) is an even vertex if it is
0-ending, and an odd vertex otherwise.

Proposition 2 [17]: DQn admits a vertex partition into
2n+1 n-cubes segregated as follows:

• Collection 0 (based on 〈E0〉) of 2n n-cubes, where the
i -th n-cube has the vertex set {2n+1 j + 2i | 0 ≤ j ≤
2n − 1}, 0 ≤ i ≤ 2n − 1. In binary, two vertices u and v
in this collection belong to the same n-cube iff u = xz0
and v = yz0 for a fixed n-bit string z, and x, y ∈ {0, 1}n.

• Collection 1 (based on 〈E1〉) of 2n n-cubes, where the
i -th n-cube has the vertex set {2n+1i + (2 j + 1) | 0 ≤
j ≤ 2n − 1}, 0 ≤ i ≤ 2n − 1. In binary, two vertices
u and v in this collection belong to the same n-cube iff
u = xy1 and v = xz1 for a fixed n-bit string x , and
y, z ∈ {0, 1}n .

Whereas the n-cubes in Collection 0 are on even vertices,
those in Collection 1 are on odd vertices. For n = 6, for
instance, the vertex sets of some of the (even) 6-cubes in
Collection 0 are {128×0+0, 128×1+0, 128×2+0, . . . , 128×
63 + 0} and {128 × 0 + 2, 128 × 1 + 2, 128 ×2 + 2, . . . , 128 ×
63 + 2}, and the vertex sets of some of the (odd) 6-cubes in
Collection 1 are {128×0+1, 128×0+3, 128×0+5, . . . , 128×
0+127} and {128×1+1, 128×1+3, 128×1+5, . . . , 128×
1 + 127}.

Proposition 3 [17]:
1) Between each n-cube Q in Collection 0 and each n-cube

Q′ in Collection 1, there exists a unique edge, one end of
which is in Q and the other end is in Q′, and that edge
itself belongs to E2 (cf. Definition 1).

2) If u and v are vertices in distinct n-cubes in Collection
0 (resp. Collection 1), then the distance between u and v
is at least three.

DQ2 appears in Fig. 1, where a distinction has been made
between different edge types. Meanwhile Loh et al. [16]
recently introduced what is called an exchanged hypercube
that refines the concept of the dual-cube. In particular, the
exchanged hypercube E H (s, t) is a spanning subgraph of
Qs+t+1, s, t ≥ 1. Its edge set is given by F0 ∪ F1 ∪ F2, where

a. F0 = {{u0, v0} | u, v ∈ {0, 1}s+t ,
H (us+t :t+1, vs+t :t+1) = 1 and ut :1 = vt :1}

b. F1 = {{u1, v1} | u, v ∈ {0, 1}s+t , us+t :t+1 = vs+t :t+1
and H (ut :1, vt :1) = 1}

c. F2 = {{u0, u1} | u ∈ {0, 1}s+t}.
It is easy to see that DQn is isomorphic to E H (n, n) [10],

hence formulas relating to the distance, radius and diameter
of DQn are obtainable from those of E H (s, t). The following
result deals with the distance function.

Lemma 4 [11]: If u, v ∈ V (DQn), where u =
u2n . . . un+1un . . . u1c and v = v2n . . . vn+1vn . . . v1d with
c, d = 0, 1, then dist(u, v) is equal to

⎧
⎨

⎩

H (u, v) + 2, u2n:n+1 
= v2n:n+1 and c = d = 1, or
un:1 
= vn:1 and c = d = 0

H (u, v), otherwise.

Note that dist(u, v) = H (u, v) + 2 iff u and v are both
odd vertices and they differ in the leading halves, or u and v
are both even vertices and they differ in the trailing halves.
Meanwhile rad(DQn) = dia(DQn) = 2n + 2 [11].

Among various properties that DQn inherits from Qn , one
is the existence of a unique antipodal vertex relative to every
vertex in it, i.e., for every vertex u in DQn , there exists a
unique v such that dist(u, v) = dia(DQn).

Lemma 5: (a) If u ∈ V (Qn) and u = un−1 . . . u0, then
u’s antipodal counterpart is un−1 . . . u0. In decimal, u and
2n − 1 − u are mutually antipodal.

(b) If u ∈ V (DQn) and u = u2n . . . un+1un . . . u1c, then
u’s antipodal counterpart is u2n . . . un+1un . . . u1c [11].
In decimal, if u is an even vertex, then u and 22n+1−2−u
are mutually antipodal, and if u is an odd vertex, then u
and 22n+1 − u are mutually antipodal.
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The 1-perfect code that we build is closed under the
property of every element being co-existent with its antipodal
counterpart.

B. State of the Art

Hamming codes [4] are based on the topology of the
hypercube Q2k−1, k ≥ 2. Jha and Slutzki [9] presented
a scheme to construct such codes using Latin squares.
(See Sec. II.)

There exist codes on other topologies, too. For example,
the Lee metric codes, devised by Golomb and Welch [3],
are r -perfect codes over the Cartesian product of two cycles.
Meanwhile Biggs [1] initiated the study of codes based on
the topology of general graphs. Kratochvil [14], [15] followed
with several useful results.

There have been other interesting developments on this
topic during the past two decades. For example, 1-perfect
codes have been shown to exist in the Towers-of-Hanoi
graphs [2] and Sierpiński graphs [12]. More recently, the
existence of r -perfect codes in the Kronecker products (also
known as direct products and tensor products) of finitely many
cycles was studied by Jha [6], [7], Jerebic et al. [5] and
Klavžar et al. [13], culminating in a complete characterization
by Žerovnik [23]. The circulants [18] constitute other useful
kinds of graphs that have been a subject of study in this
direction.

C. Bounds on γ(Qn) and γ(DQn)

There exists a tight upper bound on γ(Qn) that is within
twice the optimal.

Theorem 6 [9]:
2n

n + 1
≤ γ(Qn) ≤ 2n

2�log 2 (n+1)� .

Corollary 7 below is based on Theorem 6 and the facts that
(i) DQn is an (n + 1)-regular graph, and (ii) DQn admits a
vertex partition into 2n+1 copies of Qn .

Corollary 7:
22n+1

n + 2
≤ γ(DQn) ≤ 22n+1

2�log 2 (n+1)� .

Note that if n = 2k − 1, then
22n+1

n + 2
≤ γ(DQn) ≤ 22n+1

n + 1
,

where the bounds are pretty close. Based on the forthcoming
result in Sec. III-B, it turns out that the lower bound from
Corollary 7 corresponds to the exact value if n = 2k − 2, and
the upper bound is subject to an improvement.

D. Latin Squares

For a positive integer r , an r × r Latin square is defined
to be a square matrix L over the set {0, . . . , r − 1} such that
every row and every column of L contains each element of
{0, . . . , r − 1} exactly once.

The central scheme in this paper critically relies on the
employment of a particular kind of Latin square for each
power of two. To that end, see the 4 × 4 Latin square L(4)

in Table I, where the “top left” 2 × 2 submatrix is equal to
the “bottom right” submatrix, and the “top right” submatrix
is equal to the “bottom left” submatrix. Further, this property

TABLE I

THE LATIN SQUARE L(4)

TABLE II

THE LATIN SQUARE L(2r) OBTAINABLE FROM L(r)

TABLE III

THE LATIN SQUARE L(8)

holds with respect to the entries in each submatrix as well.
In general, the Latin square L(2r) is obtainable from L(r)
as in Table II, where r + L(r) itself is obtainable from L(r)

by systematically adding r to each of its entries. See L(8)

in Table III.
What Follows: Sec. II presents the essentials of a scheme [9]

to construct Hamming codes. This is in view of the fact that the
algorithm to construct a 1-perfect code in DQm heavily relies
on the employment of the Hamming codes. Sec. III consists
of the results. There is a detailed discussion on the algorithm
and its correctness. Whereas Sec. IV derives tight bounds on
γ(E H (s, t)) and γ(DQn), Sec. V presents certain concluding
remarks.

II. A SCHEME TO CONSTRUCT HAMMING CODES

The present section recounts the essentials of the scheme
by Jha and Slutzki [9] that builds Hamming codes using Latin
squares. See Algorithm 1.

Theorem 8 [9]: Algorithm 1 returns a partition of V (Qn)
into Hamming codes, where n = 2k − 1, k ≥ 2, and the
following hold:

(a) Each set in the partition contains as many even vertices
as odd vertices.

(b) If x is in a set, then so is its antipodal counterpart.
Toward a partition of V (Q7) into Hamming codes, Table IV

presents the initial working of Algorithm 1 on Q3. Further,
Table V presents the details of the construction using the Latin
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Algorithm 1 A Scheme to Construct Hamming Codes [9]

Require: n = 2k − 1, k ≥ 2.
if k = 2 then

return {{000, 111}, {001, 110}, {010, 101} and {011, 100}};
else

for some k ≥ 2, let U0, . . . , Un be the sets that constitute a partition

of V (Qn) into Hamming codes, where |Ui | = 2n

n + 1
= r + 1 (say);

let Ui := {ui,0, . . . , ui,r }, 0 ≤ i ≤ n;
for i := 0 → n do

let Ci := {ui,0 · bi,0, . . . , ui,r · bi,r } and Di := {ui,0 · bi,0, . . . , ui,r · bi,r },
where bi, j = 0 (resp. 1) if the no. of 1s in ui, j is even (resp. odd);

end for
let T = (ti, j ) be an (n + 1) × (n + 1) Latin square;
 In this particular scheme, any (n + 1) × (n + 1) Latin square will work;
return {V0, . . . , V2n+1}, where

Vi :=
{

(C0 • Uti,0 )
⋃

. . .
⋃

(Cn • Uti,n ), 0 ≤ i ≤ n
(D0 • Uti−n−1,0)

⋃
. . .

⋃
(Dn • Uti−n−1,n ), n + 1 ≤ i ≤ 2n + 1;

end if

TABLE IV

SETS RELATING TO Q3 IN THE INITIAL WORKING OF ALGORITHM 1

TABLE V

BUILDING A PARTITION OF V (Q7) USING ALGORITHM 1

square of Table I, and Table VI depicts the final partition.
(Technically, vertices of Qn are binary strings of length n.
For the sake of compactness, they appear in decimal in each
of Table IV and Table VI.)

A. Canonical Hamming Codes

Whereas Hamming codes are many, not all are useful in
the present study. Say that subsets A and B of V (Qn) are
cognates of each other if the following holds: An even vertex
v is in A iff the odd vertex v + 1 is in B , and an odd vertex
w is in A iff w − 1 is in B .

Definition 9: For n = 2k − 1, k ≥ 2, a partition {V0, . . . ,
Vn} of V (Qn) into Hamming codes is said to be canonical
if there exists a pairing {Vi0 , Vi1}, . . ., {Vin−1 , Vin } of the sets
such that Vi2 j and Vi2 j+1 are cognates, 0 ≤ j ≤ 1

2 (n − 1).
Lemma 10: For n = 2k − 1, k ≥ 2, there exists a canonical

vertex partition {V0, . . . , Vn} of Qn such that V2i and V2i+1
are cognates, 0 ≤ i ≤ 1

2 (n − 1).

Proof: Use induction on k. For k = 2, the partition
{U0, U1, U2, U3} of V (Q3) appearing in Table IV is canon-
ical, where the pairing consists of {U0, U1} and {U2, U3}.
For k = 3, similarly, the partition in Table VI is canonical,
where the pairing consists of {V0, V1}, {V2, V3}, {V4, V5} and
{V6, V7}.

For some k ≥ 3, let {U0, . . . , Un} be a canonical vertex
partition of Qn , where U2i and U2i+1 are cognates,
0 ≤ i ≤ 1

2 (n−1), and obtain the partition {W0, . . . , W2n+1} of
V (Q2n+1) by means of Algorithm 1 using the (n+1)×(n+1)
Latin square L(n+1) that is based on the scheme in Sec. I-D.
(For example, L(8) appears in Table III.) That the resulting
partition is canonical follows from the following fact: If Up

and Uq are cognates, then so must be Ci • Up and Ci • Uq

(resp. D j •Up and D j •Uq ). See the last step of Algorithm 1.
Illustrations appear in Tables V and VI.

Domination of Q7 : Using decimal notation for the vertices,
Fig. 2 depicts the domination of Q7 by means of the set V0
from Table VI. The even elements of V0 dominate a total of
8×7 = 56 even vertices (including themselves) plus eight odd
vertices. The odd vertices of V0 in turn dominate a total of
8 × 7 = 56 odd vertices (including themselves) plus eight
even vertices. Further, the even vertices not dominated by
their “even counterparts” and the odd vertices not dominated
by their “odd counterparts” comprise the set V1 that is the
cognate of V0. This property holds for other pairs of cognates
too. Meanwhile the scheme that is forthcoming in Sec. III-B
employs an amplified form of the “dovetailing” that exists
in Fig. 2.

III. RESULTS

The degree of each vertex of DQm being equal to m + 1,
a 1-perfect code in this graph is feasible iff m + 2 evenly
divides |V (DQm)| = 22m+1. In that light, m = 2k − 2 in the
rest of this section, where k ≥ 2.

Fig. 3 depicts a 1-perfect code (consisting of the vertices
that are “circled”) in DQ2. The line types representing the
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TABLE VI

A CANONICAL VERTEX PARTITION OF Q7

Fig. 2. Domination of Q7 by means of the Hamming code V0 (cf. Table VI).

three kinds of edges are same as those in Fig. 1(i). Notice
that (i) the graph admits a vertex partition into 2-cubes that
contribute equally to the code, and (ii) a vertex and its
antipodal counterpart coexist in the code. It turns out that
these properties hold in general. In the rest of this section,
let m = 2k − 2, k ≥ 3.

Note: Fig. 1 and Fig. 3 are adaptations of Fig. 2 from
Klavžar and Ma [10].

A. A Partition of V (Qm)

We build a partition {W0, . . . , Wm+1} of V (Qm) obtainable
from the canonical partition of V (Qm+1) from Sec. II-A,
and capture it by means of a “distinguishing” array � of
2m elements. See Algorithm 2, and Lemmas 11 and 12. The
idea is useful in the sequel.

Lemma 11: The sets W0, . . . , Wm+1 at the conclusion of
Step 7 in Algorithm 2 constitute a partition of V (Qm), where
m = 2k − 2, k ≥ 2.

Proof: By Theorem 8(b), half of the elements in each
Vi at Step 1 of Algorithm 2 are of the form 0x , and the
remaining half are of the form 1x , where x ∈ {0, 1}m .
Accordingly, the (twin) sets W2i and W2i+1 are well-defined,
and |W2i | = |W2i+1| = 1

2 |Vi | = 2m

m+2 = 2m−k , 0 ≤ i ≤
m/2. In that light, it suffices to show that W0, . . . , Wm+1

Fig. 3. A 1-perfect code in DQ2.

are mutually disjoint. Clearly, W2i ∩ W2i+1 = ∅, since the
Hamming distance between any two distinct elements of Vi is
at least three. Further, V0, · · · , Vm/2 being mutually disjoint,
so must be W0, W2, W4, . . . , Wm and, similarly, so must be
W1, W3, W5, . . . , Wm+1.
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Algorithm 2 Building Array �[0..2m −1], m = 2k −2, k ≥ 2
1: consider the sets V0, . . . , Vm/2 in a canonical partition

{V0, . . . , Vm+1} of V (Qm+1) based on Algorithm 1;
2:  The elements of each Vi are viewed as (m+1)-bit binary

strings as well as integers between 0 and 2m+1 − 1;
3: for i := 0 → m/2 do
4: derive the sets W2i and W2i+1 from Vi as follows:
5: W2i = {w | 0w ∈ Vi };
6: W2i+1 = {w | 1w ∈ Vi };
7: end for
8:  |Wi | = 2m−k , 0 ≤ i ≤ m + 1
9: for i := 0 → m + 1 do

10: for each j (decimal) in Wi do
11: �[ j ] := i ;
12: end for
13: end for
14:  0 ≤ �[i ] ≤ m + 1, where 0 ≤ i ≤ 2m − 1
15: return �;

TABLE VII

ILLUSTRATING THE PROOF OF LEMMA 11 (m = 6 AND k = 3)

What remains to show is that W2i ∩ W2 j+1 = ∅, where
0 ≤ i 
= j ≤ m/2. To that end, let u · v ∈ W2i and x · y ∈
W2 j+1, where u, v, x, y ∈ {0, 1}m/2. At this point, note that
the following hold: (i) 0u ·v ∈ Vi , (ii) 1x · y ∈ Vj , and (iii) 0u
and 1x are of the same parity, cf. Algorithm 1. It is clear that
u and x are of different parities, hence u · v 
∈ W2 j+1 and
x · y 
∈ W2i .

Note that each of 0, . . . , m + 1 appears equally often in
Array �. In particular, |{p | �[p] = i}| = 2m−k , where
0 ≤ i ≤ m +1. Using decimal notation, Table VII presents the
sets W0, . . . , W7 based on the canonical partition of V (Q7)
appearing in Table VI. The resulting array itself appears
in Table VIII.

Lemma 12: The following hold relative to array � returned
by Algorithm 2:
(a) If �[p] = �[q] and p 
= q , then H (p, q) ≥ 3
(b) If �[p] = 2i and �[q] = 2i + 1, then H (p, q) ≥ 2, and
(c) For every p such that �[p] = 2i , there exists a q such

that �[q] = 2i + 1 and p + q = 2m − 1, and vice versa,
where 0 ≤ p, q ≤ 2m − 1, and 0 ≤ i ≤ m/2.

Proof: It is clear that the Hamming distance between two
distinct elements in W2i (resp. W2i+1) is at least three. Next,
if w, x ∈ Vi , where 0 ≤ w ≤ 2m − 1 and 2m ≤ x ≤ 2m+1 − 1,
then the fact that H (w, x) ≥ 3 implies that H (w, x −2m) ≥ 2.

Fig. 4. Successive vertex partition of DQm as per Defintion 13.

Finally, by Theorem 8(b), the elements p and 2m+1 − 1 − p
coexist in each Vi , where 0 ≤ p ≤ 2m − 1, hence p ∈ W2i iff
2m − 1 − p ∈ W2i+1.

The foregoing properties of the elements of W2i and W2i+1
are seamlessly inherited by the elements in the array �.

B. 1-Perfect Code

In the rest of this section, let {V0, . . . , Vm+1} be a canon-
ical vertex partition of Qm+1 into Hamming codes, and let
{W0, . . . , Wm+1} be the corresponding vertex partition of Qm

obtainable by means of Algorithm 2, where m = 2k − 2. Note
that |Vi | = 2m−k+1 and |Wi | = 2m−k .

Definition 13: Let Y0, . . . , Ym/2 be the vertex subsets
of DQm , where Yi is the (disjoint) union of the sets
Yi,0, Yi,1, Yi,2 and Yi,3 that appear in Eq. (1), and let Gi be
the subgraph induced by Yi , 0 ≤ i ≤ m/2.

Yi,0 =
⋃

r ∈ V2i
r even

{2m+1 j + r | 0 ≤ j ≤ 2m − 1}

Yi,1 =
⋃

s ∈ W2i

{2m+1s + 2 j + 1 | 0 ≤ j ≤ 2m − 1}

Yi,2 =
⋃

r ∈ V2i+1
r even

{2m+1 j + r | 0 ≤ j ≤ 2m − 1}

Yi,3 =
⋃

s ∈ W2i+1

{2m+1s + 2 j + 1 | 0 ≤ j ≤ 2m − 1}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Fig. 4 depicts the successive vertex partition of DQm as
per Defintion 13. The following are salient features of the
partition.

a. Whereas each of Yi,0 and Yi,2 consists of even vertices,
each of Yi,1 and Yi,3 consists of odd vertices. Further,
V2i and V2i+1 being disjoint, the sets Yi,0 and Yi,2 must
themselves be disjoint. Similarly, Yi,1 and Yi,3 are dis-
joint. It follows that Yi,0, Yi,1, Yi,2 and Yi,3 are mutually
disjoint for each i .

b. For each i , |Yi,0| = |Yi,2| = 1
2 |Vi |2m = 22m−k , and

|Yi,1| = |Yi,3| = |Wi |2m = 22m−k . Accordingly, Yi,0,
Yi,1, Yi,2 and Yi,3 are equinumerous. Indeed, each may
be viewed as consisting of 2m−k m-cubes. Accordingly,
Gi may be laid out as a 2m−k × 4 array of m-cubes.
(See Fig. 7 that is forthcoming.)

c. The facts that V0, . . . , Vm+1 are mutually disjoint,
and W0, . . . , Wm+1 are mutually disjoint ensure that
Y0, . . . , Ym/2 are mutually disjoint.

1) For each i , |Yi | = |Yi,0|+|Yi,1|+|Yi,2|+|Yi,3| = 22m−k+2.
Further, 22m−k+2(1 + m

2 ) = 22m+1 = |V (DQm )|. This
and the fact that Y0, . . . , Ym/2 are mutually disjoint
together imply that Y0, . . . , Ym/2 constitute a vertex par-
tition of DQm .
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TABLE VIII

ARRAY �[0..63] (m = 6 AND k = 3)

Fig. 5. The induced subgraphs G0 and G1 in respect of DQ2.

It is clear that |V (Gi )| = 22m−k+2. By symmetry,
G0, . . . , Gm/2 are mutually isomorphic. We later prove that
|E(Gi )| = m22m−k+1+22m−2k+2. See Fig. 5 that depicts G0
and G1 in respect of DQ2. (The line types representing the
three kinds of edges are same as those in Fig. 1(i).) It turns out
that each Gi itself admits a 1-perfect code. See Algorithm 3.

Lemma 14: The following hold relative to an iteration of
the outer “for” loop in Algorithm 3:

• (∪2m−k−1
j = 0 A j ) ⊆ Yi,0

• (∪2m−k−1
j = 0 B j ) ⊆ Yi,1

• (∪2m−k−1
j = 0 C j ) ⊆ Yi,2 and

• (∪2m−k−1
j = 0 D j ) ⊆ Yi,3

where Yi,0, Yi,1, Yi,2 and Yi,3 are as in Eq. (1).
Proof: By Line 13 of Algorithm 3, ∪2m−k−1

j = 0 A j =
∪2m−k−1

j = 0 {2m+1 pa + u j | 0 ≤ a ≤ 2m−k − 1} where
(i) p0, . . . , p2m−k−1 are indices of the array � such that
�[p0] = . . . = �[p2m−k−1] = 2i , and (ii) u0, . . . , u2m−k−1
are the even elements in V2i . Since |�| = 2m , it is clear that
0 ≤ p0, . . . , p2m−k−1 ≤ 2m − 1. By Eq. (1),

Yi,0 =
⋃

r ∈ V2i
r even

{2m+1 j + r | 0 ≤ j ≤ 2m − 1}.

It is easy to see that every element of (∪2m−k−1
j = 0 A j ) belongs

to Yi,0, i.e., (∪2m−k−1
j = 0 A j ) ⊆ Yi,0. Note also that |∪2m−k−1

j = 0 A j | =
22m−2k and |Yi,0| = 22m−k . The other cases are similar.

Lemma 15: The set returned by Algorithm 3 is such that
the code elements in each m-cube dominate a total of
(m + 1)2m−k vertices (including themselves) within the cube

Fig. 6. Sets associated with an m-cube, cf. Definition 16.

plus 2m−k vertices outside the cube.
Proof: In binary, p0, . . . , p2m−k−1 and q0, . . . , q2m−k−1 that

appear on Lines 5 and 6, respectively, are each an m-bit string.
Accordingly, each of 2m+1 pa and 2m+1qa is an (2m + 1)-bit
string whose rightmost (m + 1) bits are all zeros, where
0 ≤ a ≤ 2m−k − 1. Further, u0, . . . , u2m−k−1, v0, . . . , v2m−k−1,
w0, . . . , w2m−k−1 and x0, . . . , x2m−k−1 that appear on
Lines 7, 8, 9 and 10, respectively, are each an (m + 1)-bit
string, so H (2m+1 pa + u j , 2m+1 pb + u j ) = H (pa, pb).
By Lemma 12(a), H (pa, pb) ≥ 3 if �[pa] = �[pb], where
pa 
= pb.

Consider the set A j on Line 13. It is clear that (i) the
closed neighborhoods of its elements are mutually disjoint,
and (ii) one neighbor of each element is an odd vertex that
lies outside the (even) cube, and the remaining m neighbors
lie within the cube itself. The argument is similar in respect
of the set C j on Line 15.

For the elements in the set B j on Line 14 in respect of
an odd cube, note that H (2m+1 p j + vb, 2m+1 p j + vc) =
H (vb, vc) that is greater than or equal to three, where vb 
= vc.
For D j on Line 16, similarly, H (xb, xc) ≥ 3 where xb 
= xc.
The rest of the reasoning is as in the preceding
paragraph.

Definition 16: For a set S of code elements in a particular
m-cube Q in DQm , let S− denote the set of vertices in Q not
dominated by S, and let S+ denote the set of vertices outside
Q dominated by S.

Fig. 6 depicts the sets S, S− and S+ associated with an
m-cube in DQm . Its correctness follows from Lemma 15.
An arrowhead from, say, u to v is relevant to the extent that
u dominates v. Note that each element of S+ is dominated by
a unique element of S. Meanwhile elements of S+ belong to
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Algorithm 3 Building a 1-Perfect Code in DQm , m = 2k − 2, k ≥ 3
Require: Sets V0, . . . Vm+1, cf. Table VI, and Array �[0..2m − 1], cf. Table VIII
Ensure: Sets V2i and V2i+1 are cognates, 0 ≤ i ≤ m/2
1:  Each Vs consists of 2m−k even elements and as many odd elements.
2: Z := ∅  Initialization
3: for i := 0 → m/2 do
4:  Build the set of code elements corresponding to the subgraph Gi .
5: let p0, . . . , p2m−k−1 be such that �[p0] = . . . = �[p2m−k−1] = 2i ;
6: let q0, . . . , q2m−k−1 be such that �[q0] = . . . = �[q2m−k−1] = 2i + 1;
7: let u0, . . . , u2m−k−1 be the even elements in V2i ;
8: let v0, . . . , v2m−k−1 be the odd elements in V2i ;
9: let w0, . . . , w2m−k−1 be the even elements in V2i+1;

10: let x0, . . . , x2m−k−1 be the odd elements in V2i+1;
11:  u j = x j − 1 and w j = v j − 1, 0 ≤ j ≤ 2m−k − 1.
12: for j := 0 → 2m−k − 1 do
13: A j := {2m+1 pa + u j | 0 ≤ a ≤ 2m−k − 1};  within an even cube
14: B j := {2m+1 p j + va | 0 ≤ a ≤ 2m−k − 1};  within an odd cube
15: C j := {2m+1qa + w j | 0 ≤ a ≤ 2m−k − 1};  within an even cube
16: D j := {2m+1q j + xa | 0 ≤ a ≤ 2m−k − 1};  within an odd cube
17: Z := Z ∪ A j ∪ B j ∪ C j ∪ D j ;
18: end for
19:  Note that each Gi houses 22m+2−2k code elements.
20: end for
21: return Z ;

TABLE IX

SETS IN THE j -th ITERATION OF THE INNER “FOR” LOOP IN ALGORITHM 3

mutually distinct m-cubes.
Lemma 17: The equations relative to Algorithm 3

in Table IX are correct.
Proof: First consider A j that is a subset of the vertex set

of an even cube, say Q, where V (Q) = {2m+1r +u j | 0 ≤ r ≤
2m − 1}. The elements of A j dominate (m + 1)2m−k vertices
including themselves (all of which are within Q itself) plus
2m−k vertices, each of which belongs to a unique odd cube.
Thus there are 2m−k vertices within Q that are not dominated
by A j . The collection of such vertices is equal to {2m+1qc +
u j | 0 ≤ c ≤ 2m−k − 1}. To see this, note that H (2m+1 pa +
u j , 2m+1qc + u j ) = H (pa, qc) that is greater than or equal to
two, cf. Lemma 12(b). Next, it is easy to see that the set of
vertices outside Q dominated by A j is equal to {2m+1 pa +
u j + 1 | 0 ≤ a ≤ 2m−k − 1}.

The argument is similar for each of the remaining
statements.

Lemma 18: The set returned by Algorithm 3 allocates a
1-perfect code to each (induced) subgraph Gi of DQm ,

0 ≤ i ≤ m/2.
Proof: It suffices to show that the following four identities

hold:

• ∪A+
j = ∪B −

j
• ∪B+

j = ∪C −
j

• ∪C+
j = ∪D −

j , and
• ∪D+

j = ∪A −
j ,

where the subscript j runs from 0 to 2m−k − 1 in each union,
and the sets themselves are as in Table IX. To that end, observe
that

∪2m−k−1
j=0 A+

j

= ∪2m−k−1
j=0 {2m+1 pa + u j + 1 | 0 ≤ a ≤ 2m−k − 1}

= ∪2m−k−1
j=0 ∪2m−k−1

a=0 {2m+1 pa + x j }
= ∪2m−k−1

j=0 ∪2m−k−1
a=0 {2m+1 p j + xa}

= ∪2m−k−1
j=0 B−

j .
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Fig. 7. Illustration of the proof of Lemma 18.

The remaining three identities follow by analogous
arguments.

Fig. 7 illustrates the proof of Lemma 18. Each m-cube in
the figure is as per the template in Fig. 6.

Lemma 19: The number of edges in each induced subgraph
Gi of DQm is equal to m22m−k+1 + 22m−2k+2, 0 ≤ i ≤ m/2.

Proof: Note that Gi consists of 2m−k+2 m-cubes.
As depicted in Fig. 6 and Fig. 7, the vertex set of each
m-cube Q admits a partition into S−, V (Q)\ (S− ∪ S) and S,
where |S−| = |S| = 2m−k . Whereas each vertex in each of
S− and S has all of its m + 1 neighbors contained in Gi

itself, each vertex in V (Q) \ (S− ∪ S) has its m neighbors
within the m-cube and the remaining one neighbor outside Gi .
Accordingly, the total number of edges in Gi is equal to
2m−k+2( 1

2 (m + 1)(|S−|+ |S|) + 1
2 m|V (Q) \ (S− ∪ S)|) that is

m22m−k+1 + 22m−2k+2.
By Lemma 19, |E(Gi )| = (m

2 + 1
2k )|V (Gi )|, i.e., Gi is

almost m-regular, i.e., almost all vertices of Gi are of degree
m each. This and Lemma 18 yield the following: DQm that is
an (m+1)-regular graph admits a vertex partition into 1

2 (m+2)
subgraphs that are mutually isomorphic, where each subgraph
is almost m-regular, and each admits a 1-perfect code.

Lemma 20: If a code element z is in the subgraph Gi , then
so is its antipodal counterpart.

Proof: Consider an iteration of the outer “for” loop of the
algorithm.

First suppose that z is an even vertex that is added
to the code on Line 13, so z = 2m+1 pa + u j1 , where
0 ≤ a ≤ 2m−k − 1, �[pa] = 2i , u j1 is even, and u j1 ∈ V2i .
By Lemma 12(c), there exists a qb such that �[qb] = 2i + 1
and qb = 2m − 1 − pa . Next, V2i and V2i+1 being cognates,
u j1+1 ∈ V2i+1. By Theorem 8(b), 2m+1−1−(u j1+1) ∈ V2i+1.
Accordingly, 2m+1qb + (2m+1 − u j1 − 2) gets added to the
code on Line 15 during some iteration of the inner “for” loop.
Check to see that 2m+1qb + (2m+1 − u j1 − 2) is equal to

(22m+1−2)−z that is antipodal to z, cf. Lemma 5(b). Similarly,
if z is an even vertex that is added to the code on Line 15, then
its antipodal counterpart gets added to the code on Line 13, not
necessarily during the same iteration of the inner “for” loop.

An analogous argument leads to the following: If z is an
odd vertex that gets added to the code on Line 14, then its
antipodal counterpart gets added to the code on Line 16, and
vice versa.

By the proof of Lemma 19, if there are two code elements,
one of which is in Gi and the other in G j with i 
= j , then the
(shortest) distance between the two code elements in DQm is
at least three. In the process, the set Z returned by Algorithm 3
is a 1-perfect code of DQm . The following result is immediate.

Theorem 21: If m = 2k − 2, k ≥ 2, then DQm admits a
1-perfect code.

Corollary 22: If m = 2k − 2, k ≥ 2, then DQm admits a
vertex partition into 1-perfect codes.

Proof: Use vertex transitivity of DQm [24] and
Theorem 21 to build the necessary vertex-disjoint 1-perfect
codes in the graph.

Corollary 23: If m = 2k − 2, k ≥ 2, then γ(DQm) =
22m+1

m + 2
= 22m−k+1.

IV. BOUNDS ON γ(E H (s, t)) AND γ(DQn)

As stated in Sec. I-A, the exchanged hypercube E H (s, t)
refines the concept of the dual-cube. In particular, E H (n, n)
is isomorphic to DQn [10]. Meanwhile E H (s, t) is isomor-
phic to E H (t, s) [16]. This section presents tight bounds on
γ(E H (s, t)) and γ(DQn) that are based on the results of
Sec. III-B. See [8], [10] for recent results on γ(E H (s, t)).

Lemma 24: If 2 ≤ s ≤ t , and S is a dominating set of
E H (s, t), then each of E H (s + 1, t) and E H (s, t + 1) admits
a dominating set of cardinality 2 · |S|.
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Proof: Each of E H (s + 1, t) and E H (s, t + 1) admits a
vertex partition into two copies of E H (s, t) [16].

Theorem 25: If 2 ≤ s ≤ t , then γ(E H (s, t)) ≤
2s+t+1

2�log 2 (s+2)� .

Proof: Let m be the largest integer such that m = 2k − 2
and m ≤ s, so m = �log 2 (s + 2)�. By Corollary 23,
E H (m, m) admits a dominating set, say S, of cardinality
22m+1

m+2 . By repeated applications of Lemma 24, E H (s, t)
admits a dominating set of cardinality 2s−m · 2t−m · |S| that is

2s+t+1

2�log 2 (s+2)� .

It is clear that the upper bound from Theorem 25 corre-
sponds to the exact value if s = t = 2k − 2. This is also the
case if s = 2 and t ≥ 3 [10].

Corollary 26: If n ≥ 2, then 22n+1

n+2 ≤ γ(DQn) ≤
22n+1

2�log 2 (n+2)� .

Note that the upper bound from Corollary 26 is slightly
better than that from Corollary 7. Further, there is a striking
similarity between Theorem 6 and Corollary 26, and the upper
bound in each case is within twice the optimal.

V. CONCLUDING REMARKS

The dual-cube DQm is an (m + 1)-regular connected
spanning subgraph of the hypercube Q2m+1 [17], [20].
It is endowed with a number of welcome features that are of
immediate relevance to a network topology in various areas
of computing and communications [17], [20], [22], [24]. The
present paper further enhances its importance by showing
that DQm admits a 1-perfect code iff m = 2k − 2. The
algorithm for that purpose carefully employs a scheme by
Jha and Slutzki [9] for constructing Hamming codes using a
Latin square. The result leads to tight bounds on domination
numbers of the dual-cube and the exchanged hypercube.
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