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L(j; k)-Labelings of Kronecker Products of
Complete Graphs

Md. Enamul Haque and Pranava K. Jha

Abstract—For positive integers , an ( )-labeling of
a graph is an integer labeling of its vertices such that adjacent
vertices receive labels that differ by at least and vertices that are
distance two apart receive labels that differ by at least . We deter-
mine ( ) for the case when is a Kronecker product of finitely
many complete graphs, where there are certain conditions on and

. Areas of application include frequency allocation to radio trans-
mitters.

Index Terms— -labeling, complete graph, frequency alloca-
tion, graph theory, interchannel interference, Kronecker product.

I. INTRODUCTION

THE PROBLEM OF -labeling of a graph is a vari-
ation of the classical problem of allocating frequencies to

radio transmitters; see Hale [8], Roberts [15], and Griggs and
Yeh [7]. Vertices of a graph represent the transmitters, and where
an edge exists if the transmitters at the two end points are “very
close” to each other. It is assumed that signal transmission is
isotropic.

Formally, an -labeling of a graph is an integer assign-
ment to the vertices of such that

if
if

where and are fixed integers with . Elements of
the image of are called labels, and the difference between the
largest label and the smallest label is called the span of . Fur-
ther, the minimum span over all -labelings of is called
the -number of , denoted by . The general problem
of determining this graph invariant is known to be NP-hard [6].
The present study consists of determining for the case
when is the Kronecker product (defined below) of finitely
many complete graphs. In a similar study, Georges, Mauro and
Stein [5] earlier reported results with respect to the Cartesian
product of complete graphs. See Adams et al. [1], Jha [10], [11],
and Jha et al. [12] for other results on this topic.

When we speak of a graph, we mean a finite, simple and
undirected graph having at least two vertices. The order of a
(sub)graph refers to the number of vertices in it. For a graph ,
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let denote the diameter of , and let clique number refer
to the maximum order of a set of vertices that are mutually ad-
jacent to each other in .

The Kronecker product of graphs and
is defined as follows:

and : and
. This product is variously known as direct product, cardinal

product and tensor product [9]. It is commutative and associative
in a natural way. Further, it is distributive with respect to edge-
disjoint union of graphs. It is easy to see that

and .
Let denote the complete graph on vertices where

and where any two distinct vertices
are mutually adjacent. For and , the graph

is regular of degree , and
its clique number is equal to [9].

The following are certain salient characteristics of the graph
where and are greater than or equal to three:

1) This graph is distance-regular if and only if [2]; 2)
It admits a vertex partition into largest cliques, each of order

[9]; and 3) If or is even, then
is edge decomposable into Hamiltonian cycles, otherwise

it is edge decomposable into Hamiltonian cycles and a perfect
matching [3].

Note that two vertices and
are adjacent in if and only if for
each .

1) Lemma 1.1: If and , then
.

Proof: First consider two vertices and
in , where and

. It is clear that these two vertices are nonadjacent,
hence . For the reverse inequality,
let and be two nonadjacent
vertices in . It is easy to see that for each
, there exists a vertex in such that and

is a well-defined walk of length two between
and . (Note that .) Therefore,

and are at a distance of two. It follows that
.

Here is a lower bound on .
2) Lemma 1.2: (Georges and Mauro [4]) Let be a graph

with maximum degree , and suppose that there is a vertex in
having neighbors, each of which is of degree .

1) If , then .
2) If , then .
It is also relevant to note that where is a

positive integer [4].
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The results of this brief are mostly theoretical in nature, and
these particular graphs are not yet known to be specifically im-
portant in applications. However, the results may be used to
provide a bound on the -number of subgraphs of products of
complete graphs.

II. LABELING OF

In this section, we consider the graph ,
where is greater than or equal to two and each is greater
than or equal to three.

We first present an inductive scheme, called procedure
indexing, that assigns a nonnegative integer to each vertex

of in such a way that the
indexes assigned to any two adjacent vertices of the graph
differ by at least . We will prove that this indexing
scheme satisfies this property in Lemma 2.1, and then we will
use this property to obtain the -number for these products in
Theorem 2.2.

procedure indexing

Input: , and , each greater than or equal
to 3

Output: Indexing of the vertices of

(1) if then assign index to vertex of
as follows:

{

(a) for to

;

(b) for to

;

(c) for to

for to

;

return;

}

// in what follows,

(2) assume that vertices of have been
indexed so that each vertex receives the index

;

(3) for the graph , let each vertex
receive the index

as follows:

(a) ;

(b) ;

(c) for to

;

end of the procedure

Fig. 1. Working of procedure indexing onK �K .

Fig. 2. Working of procedure indexing onK �K �K .

Figs. 1 and 2 illustrate the working of the foregoing procedure
on graphs and , respectively. Further,
Fig. 3 outlines the working on . The arrows
indicate the sequential order in which indexes are assigned to
various vertices.

We now work toward Lemma 2.1, which states that the in-
dexes assigned to adjacent vertices differ by a minimum of a
certain value. To that end, here are relevant observations.

• Vertices of may be viewed to be organized into
“columns,” where elements in column have as its

rightmost co-ordinate, (see Fig. 1 where
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Fig. 3. Working of procedure indexing onK �K �K �K .

.) To that end, Steps 1(a) and 1(b) of the procedure
correspond to column 0 and column 1, respectively. Fur-
ther, Step 1(c) corresponds to the remaining columns. Note
that indexing is such that any two consecutive vertices in
the sequence agree in some co-ordinate and are, therefore,
nonadjacent. Equivalently, the indexes assigned to any two
adjacent vertices in the graph differ by at least two.

• Vertices of may be viewed to be
organized into columns, where elements in column
have as its rightmost co-ordinate, .
Further, each column may be viewed to be consisting of

“blocks,” where a block in this graph corresponds to a
column in (see Fig. 2 where various blocks
of appear within dotted rectangles.)

• In general, for , vertices of
may be organized into columns, where each column
consists of blocks, and where each block consists of

vertices. To that end, Steps 3(a) and 3(b) of the
procedure correspond to column 0 and column 1, respec-
tively, and Step 3(c) corresponds to the remaining columns
(see Fig. 3.)

For , say that a block of vertices in
succeeds another block if the smallest index assigned

to a vertex in is one greater than the highest index assigned
to a vertex in . The reader may check to see that the following
holds:

• Let and be two successive blocks in
. If they belong to the same column, then elements

in the two blocks agree in the rightmost co-ordinate. On
the other hand, if they belong to different columns, then
elements in the two blocks agree in all but the rightmost
co-ordinate (see Figs. 2 and 3) It follows that vertices be-
longing to two successive blocks in
(where ) are mutually nonadjacent.

The foregoing discussion leads to the following lemma.
1) Lemma 2.1: If , then the indexes assigned to any two

adjacent vertices of by procedure indexing
differ by at least .

Lemma 1.1 and Lemma 2.1 (which relies on procedure in-
dexing) lead us to the following theorem, our central result.

2) Theorem 2.2: If , and
, then

where .
Proof: By Lemma 1.1, is a graph of

diameter two, hence labels assigned to any two distinct vertices
of this graph in an -labeling must differ by at least . It
follows that the span of such a labeling must be at least
where denotes the number of vertices in .
In other words, where

. In what follows, we prove the reverse inequality for
the case when

Perform procedure indexing on , and if a
vertex of this graph receives the index , then assign the label
to it, where . It is clear that the labels assigned to
any two distinct vertices differ by at least . Further, by Lemma
2.1, the labels assigned to any two adjacent vertices differ by at
least .

Note: We may assume without loss of generality that
in the statement of Theorem 2.2. In the

process, there may be a slight improvement in the span of the
labels.

Observe that the number of factor graphs in the statement of
Theorem 2.2 is at least three. The following result takes care of
the remaining case when the number of factor graphs is two. The
proof of Theorem 2.3 is similar to the proof of Theorem 2.2.

3) Theorem 2.3: If , and , then
.

III. LABELING OF

In this section, we consider , where . This
graph is different from the product considered earlier. In partic-
ular, graphs in the previous section are nonbipartite and of di-
ameter two whereas is bipartite and of diameter three.
Here are certain other distinguishing characteristics of .

• It is a distance-regular graph [2].
• It is an antipodal graph. In particular, for each vertex ,

there exists a unique vertex, viz., whose distance
from is equal to the diameter of the graph.
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Fig. 4. Graphs K �K and K �K .

• It is isomorphic to minus a perfect matching. Indeed,
if is odd, then is edge decomposable into

Hamiltonian cycles, and if is even, then
is edge decomposable into Hamiltonian cycles
and a perfect matching.

• For a vertex of this graph, let denote the
closed neighborhood of , where and

. Then and
.

Note that is isomorphic to while is
isomorphic to , the hypercube of dimension three. Graphs

and appear in Fig. 4.
1) Theorem 3.1: If and , then

.
Proof: For , let and

. It is clear that is a well-defined mapping
from to . We claim that
it is a valid -labeling.

Let and be two distinct vertices of ,
where , and , . If ,
then the two vertices are distance two apart and (since labels
are not repeated) they receive different labels. Without loss of
generality, let and . If , then the two vertices
are distance three apart, so suppose that . Now,

Since , we have . Accordingly,
.

It turns out that if and , then we can do better
than Theorem 3.1.

2) Theorem 3.2: If , then .
Proof: Let each of the vertices and of

receive the label , where . This is a valid
-labeling of the graph for the following reasons: 1) for

each , vertices and are distance three apart, so they
may as well receive the same label, and 2) any two distinct ver-
tices that are within a distance of two from each other receive

labels that differ by at least two. Accordingly,
.

For the reverse inequality, first note that no label can be used
more than twice. Now suppose that a label, say , is used twice.
Then the two vertices with this label must be of the form
and , and since and span the entire vertex
set of , the labels and cannot be used. At
this point, it is easy to see from the pigeonhole principle that
if only labels 0 through were used, then some pair of
consecutive labels must be used to label at least three vertices,
a contradiction. Therefore, .

The latter half of the proof of Theorem 3.2 is a generalization
of Jonas’s proof [13] (p. 57) of the fact that . Ob-
serve that the value of given by Theorem 3.2 is
strictly greater than the lower bound suggested by Lemma 1.2.
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