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A b s t r a c t - - L e t  G be a connected graph on n vertices, and let c~, ~, y and 5 be edge-disjoint cycles 
in G such tha t  

(i) c~, ~ (respectively, "~, 5) are vertex-disjoint and 

(ii) Ic~l + ]~1 = [VI + 151 = n, 

where Ic~l denotes the length of c~. We say tha t  a,  ~, ~, and 5 yield two edge-disjoint Hamiltonian 
cycles by edge exchanges if the four cycles respectively contain edges e, f ,  g and h such tha t  each 
of (a  - {e}) U ( ~  - {f}) U{g,  h} and (~ - {g}) [J(5 - {h}) [.J{e, f}  constitutes a Hamiltonian cycle 
in G. We show tha t  if G is a nonbipartite,  Hamiltonian decomposable graph on an even number  of 
vertices which satisfies certain conditions, then Kronecker product of G and K2 as well as Kronecker 
product  of G and an even cycle admits a Hamiltonian decomposition by means of appropriate edge 
exchanges among smaller cycles in the product graph. 

Z e y w o r d s - - K r o n e c k e r  product, Hamiltonian decomposition, Edge exchange, Alternate four- 
cycle. 

1. I N T R O D U C T I O N  

Whether a product of the Hamiltonian decomposable graphs (henceforth called H-decomposable 
graphs) is itself H-decomposable has been an object of study for a long time. For example, 
Barayani and Szasz [1] showed that this problem has an affirmative answer with respect to the 
lexicographic product. For certain other graph products, similar (not so exact) results were 
reported by Alspach, Bermond and Sotteau [2], Bosak [3] and Zhou [4]. Among other things, 
graph products offer an intuitive and systematic means of constructing H-decomposable graphs 
from smaller such graphs. 

H-decomposable graphs possess a highly regular structure, and are amenable to several appli- 
cations. We would like to mention here applications in the areas of fault-tolerant networks [5] 
and block designs [6]. 

In this paper, we continue the study of constructing H-decomposable graphs by means of 
Kronecker product (or x-product) of two or more H-decomposable graphs. For graphs G = (V, E) 
and H = (W, F), the Kronecker product of G and H is denoted by G × H, where V(G × H) = 
V x W a n d E ( G × g )  = {{(u,x),(v,y)} I {u,v} e E a n d  {x,y} e F}. It is easy to see that 
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IV(G × H)I = ]V] . [W[ and IE(G × H)I = 2. IEI . IFI. This product (which is commutative and 
associative up to isomorphism) is variously known as direct product [3], categorical product [7], 
tensor product [8] and graph conjunction [9]. It is considered to be one of the most important of 
all graph products. Several applications and characteristics appear in [7,8,10-14]. 

For H-decomposition of a Kronecker product of H-decomposable graphs, the following result 

was obtained by one of the authors [15]: 

(i) If the number of factor graphs of even order is at most one, then the Kronecker product is 

H-decomposable; and 
(ii) if the number of factor graphs which are bipartite is at least two and the remaining factor 

graphs (if any) are all of odd order, then the Kronecker product consists of isomorphic 
components each of which is H-decomposable. 

(Here all factor graphs are themselves H-decomposable.) The result for a Kronecker product of 
two cycles one of which is of odd order was earlier established by  Bosak [3] and Zhou [4]. 

The central problem that  we have addressed is whether a Kronecker product of a nonbipartite 
graph of even order and an even cycle is H-decomposable. Since this product is distributive with 
respect to edge-disjoint union of graphs, it is easy to see that  a clear solution to the foregoing 
problem coupled with the above-stated result would lead to a complete characterization for 
H-decomposition of a Kronecker product of finitely many H-decomposable graphs. While an 
absolute answer is still elusive, we report a partially affirmative answer. An interesting aspect of 
our scheme is that  Hamiltonian cycles (henceforth called H-cycles) are obtainable by means of 
appropriate edge exchanges among smaller cycles in the product graph. 

Certain aspects of our construction are too technical to warrant a description in purely intuitive 
terms, and hence we spell out the method of attack in general terms. Let G be a nonbipartite 
graph of even order, say m, such that  G is decomposable into two H-cycles, and let n be an 
even integer > 4. Since the Kronecker product of two even cycles consists of two isomorphic 
components each of which is decomposable into two H-cycles, it follows that  the graph G × Cn 
(which is connected) is decomposable into eight cycles each of length ran~2. Now, if these 
eight cycles are "interwoven" in a certain fashion, then it may be possible to do some kind of 
"dovetailing" by means of appropriate edge exchanges among them to yield four edge-disjoint 
H-cycles in the graph G × Cn. We present a sufficient condition in terms of the structure of 
the graph G which facilitates this construction. We further show that  for every even m _> 6, 
there exist graphs on m vertices which are easily constructible and which satisfy that  condition. 
We also present a result on H~decomposition of a Kronecker product of a graph having that  
characteristic and the graph K2. 

The remainder of this paper is organized as follows. Basic definitions and preliminary results 
appear in Section 2 while main results appear in Section 3. In Section 4, we show that  many 
graphs G which are responsive to edge exchanges in each of G × K2 and G × Cn are easily 
constructible from the complete graph whose order is same as that  of G. Finally in Section 5, we 
offer concluding remarks. 

2. PRELIMINARIES 

By a graph we mean a finite, simple and undirected graph having at least two vertices. Graphs 
are also connected, unless indicated otherwise. 

By decomposition Of a graph G, we ordinarily mean an  edge-decomposition of G into certain 
subgraphs. A graph is said to admit a cycle decomposition (respectively, H-decomposition) if and 
only if its edge set may be partitioned into cycles (respectively, Hamiltonian cycles or H-cycles). 
For example, a complete graph on an odd number of vertices is H-decomposable. The general 
problem of determining whether or not a graph contains an H-cycle is NP-complete, and so is the 
problem of determining whether or not a graph G is decomposable into subgraphs isomorphic to 
a given graph H [16]. For any undefined terms, see [17]. 
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For m >_ 3, let Cm denote the cycle on m vertices, where V(Cm) = {0 , . . . ,  m - 1} and 
where adjacencies are defined in the natural way. The following theorem states certain relevant 
characteristics of Kronecker-product graphs. 

THEOREM 2. I. Let  G and H be graphs. 

1. I f  G and H are both bipartite, then G x H consists of two components, otherwise G x H is 
connected [14]. 

2. G x H is bipartite i f  and only if  G or H is bipartite [18]. 
3. Kronecker product of graphs is distributive with respect to edge-d/sjoint union of  graphs. | 

The next result refines part (1) of Theorem 2.1. 

LEMMA 2.2. I f  G and H are bipartite graphs, then vertices (u, x) and (v, y) of the graph G x H 
belong to the same component i f  and only i f  da(u, v) and dH(X, y) are of the same parity. | 

Indeed, if G = (V0 [.J V1, E) and H = (W0 ~J W1, F)  are bipartite graphs, then (V0 x W0) U(v1 x 
W1) and (V0 x W1) U(v1 x w0), respectively, correspond to vertex sets of the two components of 
the graph G x H [15]. By Theorem 2.1(3), it is interesting to note that  if G and H are bipartite 
graphs which, respectively, appear as subgraphs of (not necessarily bipartite) graphs G' and H' ,  
then the two components of G x H appear as vertex-disjoint subgraphs in G' x H' .  We will 
effectively make use of this observation in subsequent discussions. 

It is easy to see that  if G is an H-decomposable graph on an odd number of vertices, then 
G x K2 is H-decomposable and that  if G is an H-decomposable bipartite graph (in which case 
G must have an even number of vertices), then G x K2 consists of two (vertex-disjoint) copies 
of G. On the other hand, if G is an H-decomposable, nonbipartite graph on an even number of 
vertices, then it is not immediately clear whether G x K2 (which is connected) is H-decomposable. 
We obtain a partially affirmative answer to this question in the next section. 

The following result deals with H-decomposition of a x-product of finitely many H-decom- 
posable graphs. 

THEOREM 2.3. [15] Let  G1 . . . .  , Gr be H-decomposable graphs and let k be the number of even 

integers among IV(G1)[, . . . ,  [Y(Gr)l. 

1. H k _< 1, then the graph G1 x . . .  x Gr is H-decomposable. 

2. I f  k >_ 2 and the corresponding graphs are bipartite, then G1 x . . .  x Gr (is disconnected 
and) consists of  isomorphic components, each of which is H-decomposable. | 

Here again, if G is a nonbipartite, H-decomposable graph on an even number of vertices and 
n is even, then it is not immediately clear whether G x 6' ,  is H-decomposable. We obtain a 
partially affirmative answer to the foregoing problem in the next section. 

We now present the definition of an H-decomposable graph containing an alternate four-cycle. 

DEFINITION 1. Let G be a graph such that 

• IV(G)[ is even >_ 6; 
• G is decomposable into two H-cycles; 
• G contains a four-cycle a - b - c - d - a (say) where edges {a, b}, {c, d} belong to one of  the 

two H-cycles while edges {b,c}, {d,a} belong to the other H-cycle; and 
• vertices a and c (or b and d) are at an odd d/stance a/ong each of the two (even) H-cycles. 

The cycle a - b - c - d - a is said to be an a/ternate four-cycle in G. | 

It is straightforward to check that  a graph which satisfies Definition 1 is nonbipartite. The 
converse is not true. We next show that  for every even n >_ 6, there exists a graph on n 
vertices which conforms to Definition 1. Let n = 2k, k > 3. We specify a graph An as follows: 
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V(An) = { 0 , 1 , . . . , n  - 1}, and E(A, 0 = EI[.JE2, where E1 consists of  the  edges 0 - 1 - 
2 . . . . .  (n - 1) - 0, while E2 consists of  the  following edges: 0 - (k - 1) - (k + 1) - (k - 

3 ) - ( k + 3 )  . . . . .  1 - ( 2 k - 1 ) - 2 - ( 2 k - 2 ) - 4 - ( 2 k - 4 )  . . . . .  k - 0 i f k i s e v e n ,  a n d  

0 - (k - 1) - (k + 1) - (k - 3) - (k + 3) . . . . .  2 - (2k - 2) - 1 - (2k - 1) - 3 - (2k - 3) . . . . .  k - 0 if 

k is odd.  Note  t h a t  E1 N E2 = 0, and each of E1 and E~_ cons t i tu tes  an H-cycle in An. Fur ther ,  
the  cycle 1 - 2 - (2k - 2) - (2k - 1) - 1 is an a l te rna te  four-cycle in An for the  following reasons: 

(i) (1, 2}, {2k - 2, 2k - 1} e E1 and (1, 2k - 1}, {2, 2k - 2} e E2; and 

(ii) the  d is tance  between 1 and 2k - 2 along E1 is three, and  the  dis tance be tween I and  2k - 2 
along E2 is ei ther  one or three.  

G r a p h s  As and A10 appea r  in Figure 1. 

As A m  
Figure 1. Graphs As and AlO. 

I t  will follow from discussions in Section 4 t h a t  for every even n _> 6, the  g raph  K n  admi t s  a 

decompos i t ion  into cer tain spanning subgraphs ,  mos t  of  which are isomorphic  to  An. 

DEFINITION 2. Let Af~T denote a class of graphs, each member G of which is such that [V(G)[ 

is even >_ 6 and G is decomposable into spanning subgraphs G1, . . . ,  Gr, all of which satisfy 
Definition 1. | 

T h u s  G E AF~T if and only if 

(i) [V(G)t is even _> 6; 

(ii) G is decomposable  into an even number ,  say r ,  of  H-cycles; and 

(iii) there  is a par t i t ion  of these r H-cycles into r/2 pairs  such t h a t  there  is an a l t e rna te  four-cycle 

between each such pair. 

Note  t h a t  An is in AF.T. We will show in Section 4 t h a t  A £ T  contains  several  o the r  easily 
const ruct ib le  graphs.  

We next  define edge exchanges in graphs.  Let  G be a connected g r aph  on n vertices,  and  l e t  

a ,  j3, 7 and  5 be edge-disjoint cycles in G such t h a t  

(i) a ,  f~ (respectively, 7, 5) are vertex-disjoint ,  and  

(ii) [a[ + [f~l = 19'[ + 161 = n. 

We say t h a t  a ,  f~, ~ /and  ~f yield two edge-disjoint H-cycles by  edge exchanges  if the  four cycles 
respect ively  contain  edges e, f ,  g and h such t h a t  each of (c~ - {e} ) [ . J ( f~ -  {f})( .J{g,  h} and  
('r - (g})  [.J(~f - {h}) U{e,  f }  const i tu tes  an H-cycle in G. 

3 .  M A I N  R E S U L T S  

We first present  a theorem which deals wi th  H-decomposi t ion  of G x K2, where  G is a g r aph  
as in Definit ion 1. 
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THEOREM 3.1. I f  G is a graph on an even number of vertices such that G is decomposable into 
two H-cycles and G contains an a/ternate four-cycle, then G ×/{2 admits an H-decomposition. 

PROOF. Let G be as stated, and let H1 and H2 be two edge-disjoint H-cycles in G. Let a - b - c - 
d - a be an alternate four-cycle in (the nonbipartite graph) G, where edges (a, b), {c, d) belong 
to H1 and edges (b,c),  (d ,a)  belong to H2. Further suppose that  IV(G)I = m (even), and that  
0 and 1 are the two (adjacent) vertices of/{2. 

By Theorem 2.1(3), the graph G x/{2  admits a decomposition into H1 x /{2  and/-/2 × K2. 
Further, H1 x /{2  (respectively,//2 ×/{2) is decomposable into cycles a and ~ (respectively, V 
and 6), each of length m. Thus, c~, ~, 3' and 6 constitute a cycle decomposition of G ×/{2. 

By Lemma 2.2, we may assume that  edges e = {(a,0), (b, 1)) and f -- ((c,0), (d, 1)), respec- 
tively, belong to c~ and /~ while edges g = {(a,0),(d, 1)) and h -- ((c,0),(b, 1)), respectively, 
belong to 3' and 6. Note that  each of (c~,/~) and (V, 6) constitute a vertex decomposition of 
G × K 2 .  

Finally observe that  the following sets of edges constitute an H-decomposition of G × K2: 

(a - (e)) U(f~ - ( f ) )  U(g, h) and (7 - (g)) (J(6 - (h)) U(e, f ) .  | 

Note that  the four edges which take part in the "exchange" process in the proof of Theorem 3.1 
are ((a, 0), (b, 1)), ((b, 1), (c,0)), ((c,0), (d, 1)) and ((d, 1), (a, 0)), which constitute a four-cycle 
in G × /{2. Alternatively, we could employ the edges {(a, 1), (b, 0)), ((b, 0), (c, 1)), ((e, 1), (d, 0)) 
and ((d,0), (a, 1)) for that  purpose. 

Let G be a graph on an even number of vertices such that  G admits an H-decomposition into 
two H-cycles. We claim that  H-decomposition of G ×/{2 by means of edge exchanges (as in the 
proof of Theorem 2.1) is possible if and only if G contains an alternate four-cycle. Whereas the 
"if" part of the claim is implicit in the proof of that  theorem, the "only if" follows easily. 

By Theorem 2.1(3), there is a natural generalization of Theorem 3.1 as follows: if G E A £ T ,  
then G x K2 admits an H-decomposition. (Recall Definitions 1 and 2). 

We now proceed to obtain a result (analogous to that  of Theorem 3.1) for H-decomposition of 
G x Cn where G is as in Definition 1 and n is even. The following lemma is a special case of 
Theorem 2.3. We state and prove it because our subsequent arguments heavily rely on it. 

LEMMA 3.2. If  m and n are even integers, then the graph C m x  Cn consists of two isomorphic 
components, each of which is H-decomposable. 

PROOF. [15] Let m, n be even _ 4. There is a natural bipartition of V(C,~) into the following 
sets: V0 -- {0, 2 , . . . ,  m - 2} and V1 = {1, 3 , . . . ,  m - 1}. Let W0 and W1 correspond to analogous 
bipartition of V(Cn). Now consider the component of Cm × C,~ on the vertex subset (V0 × 
W0) U(V1 x W1). The following sequences w0,...,W(m,~/2)-i and x0 , . . . ,  x(m,~/2)-i of vertices 
correspond to an H-decomposition of that  component: wmi+j = (j ,a),xmi+j = (j,b) where 
0 < i < (n /2 ) -1 ,  0 < j <_ m - l ,  a = 2. i+( j  mod 2) and b = ( - a )  mod n. The other component of 
Cm x Ca is on vertex subset (V0 x W1) U(V1 x W0). The following sequences Yo, . . . ,  Y(mn/2)-I and 
Zo, . . . ,  z(,~,~/2)-1 of vertices correspond to an H-decomposition of that  component: Ymi+j - ~  (j, e), 
zmi+j = (j ,d)  where i and j are as above, and c -- ( ( n - 2 . i )  4 - ( j 4 - 1 )  m o d 2 ) m o d n  and 
d = ( 2 -  c) mod n. 

That  the two components of C m x  Cn are isomorphic follows from a simple observation. | 

Certain remarks on the construction in the proof of Lemma 3.2 are in order. Let m and n 
be even. Note that  there are exactly m edges of the form ((a,0), (b, 1)} in each component of 
C m x  C,~. Out of these m edges in the first component, exactly m - 1 appear in the H-cycle 
corresponding to the sequence wo, . . . ,  W(mn/2)-1, while the remaining edge appears in the H-cycle 
corresponding to x o , . . . ,  X(mn/2)-l. An analogous statement holds for the two H-cycles in the 
second component. Observe also that  edge (( a, 0), (b, 1)} appears in one component of Cm × C,~ 
if and only if edge ((a, 1), (b, 0)} appears in the other component. Based on this statement and 
general symmetry existing in the twin components of C m x  C,~, we have the following corollary. 
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COROLLARY 3.3. Let m, n be even >_ 4, and let { i , j }  be an arbitrary but fixed edge of C, .  For 
an edge {(a , i ) , (b , j )  } in a particular component of C m x  Cn, there exists a decomposition o£ 
that component into two B-cycles a and ~, such that a (respectively, 13) includes (respectively, 
excludes) {(a,i),  (b,j)} and excludes (respectively, includes) the remaining m -  1 edges of that 
type. | 

We are now ready to state and prove our central result. 

THEOREM 3.4. Let G be a graph on an even number of vertices such that G is decomposable 
into two H-cycles and G contains an aiternate four-cycle, and let n be even. The graph G x C ,  
admits an H-decomposition. 

PROOF. Let G and n be as stated, where [V(G)[ = m (even). Let G be decomposable into 
H-cycles H1 and/-/2, and let p - q - r - s - p be an alternate four-cycle between H1 and/-/2 
where {p, q}, {r, s} E V(H1) and {q, r}, {s,p} E V(H2). The (sub)graph Hi  x Cn (respectively, 
H2 x Cn) consists of two components, say, X1, X2 (respectively, Y1, I/2), where each of X1, )(2, 
}'1 and Y2 is isomorphic to a component of Cm x Cn. 

The following eight edges correspond to x-product  of the cycle p - q - r - s - p of G and 
the edge 0 - 1 of Cn, and will play an important role in our construction: a = {(p, 0), (q, 1)}, 
b = {(r, 1), (s,0)}, c--- {(p, X), (q,0)}, d - -  {(r,0), (s, 1)}, e = {(q, 1), (r,0)}, ] -- {(p, 1),(s ,0)},  
g -- {(q, 0), (r, 1)}, and h -- {(p, 0), (s, 1)}. Since {p, q}, {r, s} E /-/1, it follows that  a, b, c, d E 
E(H1 x Cn). Similarly e, f ,  g, h E E(H2 x Cn).. 

By Lemma 2.2, we may assume that 

(i) a,b e E(X1),  

(ii) c, d E E(X2), 

(iii) e, f e E(Y1), 

(iv) g, h E E(Y2). 

Note that  X1, )(2 (respectively, }'1, Yu) constitute a vertex decomposition of G x C, .  

By results 3.2 and 3.3, we may assume that 

(i) X1 (respectively, X2) is decomposable into H-cycles aa and ab (respectively, ac and ca),  
where ca,  ab, ac and ad, respectively, contain the edges a, b, c and d, and 

(ii) Y1 (respectively, Y2) is decomposable into H-cycles ae and a f  (respectively, ag and ah), 
where ae, a f ,  ag and ah, respectively, contain the edges e, f ,  g and h. 

Note that  Ca,. • •, a h  (each of which is of length mn/2)  constitute a cycle decomposition of G x Cn. 
The successive edge decompositions of G x Cn mentioned above are shown in Figure 2. 

G x C,~ 

/ \  / \  
x2 Y1 Y2 

/ \  / \  / \  / \  
O~ a O~ b Ol c O~ d O~ e O~.f O~g ~h 

Figure 2. Successive edge decompositions of G × C,~. 
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The  following sets of edges form an H-decomposition of G x C,~: 

(1) (aa - {a}) U(ad - {d}) U{e, h}, 

(2) (ae - {e}) U(ah - {h}) U{a,  d}, 

(3) (~b - {b}) U(oLc - {C}) LJ{ f ,g } ,  

(4) (~f  - {f}) U(~9 - {g}) U(b, c}. | 

By results 2.1(3) and 3.1, if G e A £ T  and H is an H-decomposable graph on an even number of 
vertices, then G x H is H-decomposable. Indeed, we may now strengthen the result of Theorem 2.3 

as follows. 

THEOREM 3.5. Let  G 1 , . . . ,  Gr be H-decomposable graphs and let k be the number of even inte- 

gers among IV(G1)I , . . . ,  IV(G~)I. 

1. I l k  < 1, then the graph G1 x . . .  x Gr is H-decomposable. 

2. I f  k >_ 2 and the corresponding graphs are bipartite, then G1 x . . .  x Gr (is disconnected 
and) consists of isomorphic components, each of which is H-decomposable. 

3. I f  k >_ 2 and at least k - 1 of the corresponding graphs are in Af~T, then G1 x . .. x Gr is 
H-decomposable. | 

4. M E M B E R S H I P  PROPERTIES 

In this section, we show that  the class Af~T contains certain easily constructible and familiar 
graphs. The following result is at tr ibuted to Walecki. (See [2].) 

LEMMA 4.1. I f  m is even _> 4, then the graph Kn is decomposable into (n - 2)/2 H-cycles and a 
perfect matching. 

PROOF. [2] For n = 4, the result is clear. For n = 2k _> 6, let C be the cycle 0 - 1 - 2 -  
(2k - 1) - 3 - (2k - 2) . . . . .  (k - 1) - (k + 2) - k - (k + 1) - 0 and let g be the permutat ion 
(0)(1 2 3 . . .  2 k - 2  2 k - 1 ) .  Then, C, g o C  . . . .  , g k - 2 o C  are k - l e d g e - d i s j o i n t  H-cycles 
of Kn. The remaining edges {0, k}, {k - 1, k + 1}, {k - 2, k + 2 } , . . . ,  {1,2k - 1} form a perfect 
matching. | 

THEOREM 4.2. Let n be even >_ 6. 

1. I f  n = 4i + 2, then Kn admits a decomposition into a perfect matching and i graphs, each 
isomorphic to An. 

2. I f  n = 4i, then Kn admits a decomposition into a perfect matching, an H-cycle and i - 1 
graphs, each isomorphic to An. 

NOTE. Definition of the graph An appears in Section 1. 

PROOF OF THEOREM 4.2. Let n be as stated, and let C, a o C , . . . ,  a(n/2)-2oC be the edge-disjoint 
H-cycles of Kn as outlined in the proof of Lemma 4.1. 

For n -- 4i + 2, we partition the foregoing H-cycles into the following pairs: {C, a i o C}, ( a  o C, 
(7/+10 C},..., {gi--10 C, 0 .2i-10 C}. Let B o , . . . ,  Bi-1 be the spanning subgraphs of Kn where 
Bj has all the edges of the jth pair, i.e., E ( B j )  = E(a  J o C) U E(  gi+J o C), 0 < j <_ i - 1. (By go 
we mean identity permutation.) Because of symmetry, it is easy to see that  graphs Bo, . .  •, Bi-1 
are mutually isomorphic. Further, each is isomorphic to An. (Verification is left to the reader.) 

For n --- 4i, we consider the following pairs of H-cycles of K: {C ,c  i o C} ,{a  o C , c  i+1 o C}, 
. . . .  {ai-2 0 C, a2i-2 o C}. Note that  c i -  1 o C does not appear in any of these pairs and that  each of 
the remaining H-cycles appears in exactly one pair. The spanning subgraphs of Kn corresponding 
to these i - 1 pairs are each isomorphic to An. | 
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Let n be even > 6. By Theorem 4.2, the graph K n  contains [ ( n - 2 ) / 4 J  edge-disjoint (spanning) 
subgraphs  isomorphic to An. Clearly An C .ALT.  Note further t ha t  any subgraph of K n  which 

is obta inable  by union of edge sets of  two or more of those spanning subgraphs  belongs to  .AET. 
In part icular,  if n -- 4i + 2, then "Kn minus a perfect matching" is in J tET .  

COROLLARY 4.3. 

1. I f  m and n are both even >_ 4, and a t  least one is o f  the  form 4i + 2, then  K m x K n  contains  

a t / e a s t  (m - 2)(n - 2) /2  edge-disjoint H-cycles.  

2. I f  m and n are both mul t ip les  o f  four, m > 8 and m >_ n, then K m  x K n  contains  at  least  

( m -  4 ) ( n -  2) /2  edge-disjoint  H-cycles.  | 

It  is easy to see tha t  
(a) if m and n are bo th  odd, then Km x Kn is H-decomposable,  and 

(b) if m is odd and n is even _> 4, then K m  x K n  contains at least ( m -  1 ) ( n - 2 ) / 2  edge-disjoint 

H-cycles. 

5. C O N C L U D I N G  R E M A R K S  

Let G1 , . .  •, Gr be H-decomposable  graphs. We have addressed the problem of obta in ing con- 

ditions for H-decomposi t ion of the Kronecker p roduc t  (or x -p roduc t )  of G 1 , . . . , G r .  While a 

complete  character izat ion is still elusive, we have obtained a partial  character izat ion which ap- 

pears in Theorem 3.5. 

We have a similar result for Kronecker product  of an H-decomposable  g raph  and /(2. Our  

schemes rely on construct ing Hamil tonian cycles by means of  suitable edge exchanges among  

smaller cycles in the produc t  graph. In the process, we have defined a class A E T  of graphs  which 

has interesting membership  properties. 

The  results yield impressive lower bound on the number  of edge-disjoint H-cycles in K m  x g n. 

Sprague [19] has developed a concept  of edge exchanges, which is different from ours, and which 

deals with Hamil tonian cycles in interval graphs. 
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