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Abstract 

Let G x H denote the Kronecker product of graphs G and H. Principal results are as follows: 
(a) If m is even and n -  0 (mod 4), then one component of P,.+l x P,+1, and each component of 
each of CA x Pn+l, Pm+l x (7, and Cm x C, are edge decomposable into cycles of uniform length 
rs, where r and s are suitable divisors of m and n, respectively, (b) if m and n are both even, 
then each component of each of Cm X P,+I, P,.+l X C, and C,. × C. is edge-decomposable into 
cycles of uniform length ms, where s is a suitable divisor of n, (c) C2i+1 × C2j+l is factorizable 
into shortest odd cycles, (d) each component C4i x C4j is factorizable into four-cycles, and (e) 
each component of Cmx C4j admits of a bi-pancyclic ordering. 
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1. Introduction and preliminaries 

The central message o f  this paper is that a connected component of  each o f  Pm × Pn, 
Cm x P, and Cm × Cn has a rich cycle structure. Consequently, each o f  these graphs is 

amenable to applications in areas such as VLSI layout, computer and communication 

networks, management o f  multiprocessors, and X-ray crystallography. 

By a graph is meant a finite, simple and undirected graph. Unless indicated otherwise, 

graphs are connected and contain at least two vertices. The Kronecker product G × H 
of  graphs G= (V ,E )  and H = ( W , F )  is defined as follows: V(G × H ) = V  × W and 

E(G x H ) =  { {(u,x),(v, y)}: {u,v} C E and {x, y}  E F}. Note that [V(G × H)[----IVIIWl 

and IE(G × H)I =21EIIFI. 
Let Cm and Pn, respectively, denote a cycle on m vertices and a path on n vertices, 

where V(Ck)= V(Pk)= {0 . . . . .  k -  1} and where adjacencies are defined in the natural 
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way. If  S = {v 1 . . . . .  Vr} is a vertex subset of G, then (S) or (Vl . . . . .  Vr) represents the 

subgraph induced by S. 

Definition 1. A decomposition ~ of a graph G consists of subgraphs GI . . . . .  Gr which 

constitute a partition of the edge set of  G. 

Definition 2. A factorization ~ of a graph G consists of spanning subgraphs F1 . . . . .  Fr 
which constitute a partition of the edge set of  G. The spanning subgraphs F1 . . . . .  Fr 

are called factors of  G. 

~- may be viewed as an edge-coloring of G using r = [~[ colors, where F/ consists 

of  all the edges of  color i, 1 ~<i ~< r. A factorization of G in which each factor is 

regular of  degree k is called a k-factorization, and G is said to be k-factorizable. 
Decomposition/factorization of product graphs has a rich literature. For example, 

see [1,3,4,8,12]. 

Definition 3. A bipartite graph on an even number of vertices is said to admit of 
a bi-pancyclic ordering if there is an ordering Vo, Vl, . . . ,  V2r-1 of its vertices such that 

(vo, vl . . . . .  v2k-l) contains a spanning cycle for all k E {2 . . . . .  r}. 

Bi-pancyclicity is essentially a restriction of the concept of  pancyclicity (which asks 

whether a given graph contains cycles of  all possible length) to bipartite graphs, all 
of whose cycles are necessarily even. This topic has received attention for a long 

time. Bondy [2], Ramachandran and Parvathy [9], Schmeichel and Mitchem [10], and 

Teichert [11] are representatives. 

Each of C2i+1 ×Pn and C2i+! x C n is a connected graph while each of Pro × Pn, C2i ×Pn 
and C2i × Czj consists of two connected components. Further, (a) the two components 

of Pm × Pn are isomorphic if and only if mn is even, and (b) the two components of  
C2i × Pn (resp. C2i × C2j) are isomorphic. It is also useful to note that vertices (p ,q)  

and (r,s) of Pm ×P~ or  C2i ×en or  C2i × C2j belong to the same component if  and 
only if p + q and r ÷ s are of  the same parity. Based on this observation, a compo- 

nent of  Pm x Pn or C2i × Pn or  C2i × C2j will be called an even component (resp. odd 
component) if vertices (p, q) of  that component are such that p + q is even (resp. odd). 

Graphs P7 × P5 and C6 × P5 appear in Figs. 1 and 2, respectively. For the sake of 

clarity, a vertex (p ,q)  has been shown as pq. 

Among Pm × P,, C,n × P, and C m x Cn, the graph C2i+1 × C2j+l  is nonbipartite while 
all others are bipartite. 

The number of vertices in the even component of  Pm× Pn is Imn/2] while that in 

the odd component is Lmn/2J. Vertices of  this graph which are of  degree one or two 
will be called border vertices. (All of  the remaining vertices are of  degree four.) Some 
additional remarks are as follows: 
• Pm x P, contains a total of  2(m + n - 2) border vertices; out of these, four are of 

degree one while others are of degree two. 
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Fig. 1. Graph P7 × Ps. 
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Fig. 2. Graph C6 × Ps. 

• The border vertices are equally divided between the two components. Further, if m 
and n are both odd, then all four pendant vertices appear in the even component, 
otherwise, they are equally divided between the two components. 
Note that cycle Cm is obtainable from path Pm+l by identifying the terminal vertices. 

The following proposition makes certain analogous statements. 

Propos i t ion  1.1. (1) The even (resp. odd) component of Czi × Pn is obtainable from 
the even (resp. odd) component of P2i+l x P, by identifying the pair of  border vertices 
(O,k) and (2i, k) for all even k (resp. odd k) between 0 and n -  1. 

(2) The even (resp. odd) component of  C2i x C2j is obtainable from the even (resp. 
odd) component of P2i+l × C2j by identifying the pair of  border vertices (O,k) and 
(2i, k) for all even k (resp. odd k) between 0 and 2 j -  1. 
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Graphs P7 x P5 and C6 × Ps, which appear in Figs. 1 and 2, illustrate the statement 
of Proposition 1.1(1). The following result will be useful in the sequel. 

Lemma 1.2. l f  m is even, m/2 is odd and G is a bipartite graph, then each component 

o f  Cmx G is isomorphic to Cm/2 × G [6]. 

A classical result about factorization of graphs is Petersen's theorem that every regu- 
lar graph of even degree is 2-factorizable [7]. It follows that C,n x Cn is 2-factorizable. 
However, one may modify the classical problem by imposing bounds on the number 
and size of the components of the factors. Indeed, decomposition/factorization into 
cycles of uniform length has a strong appeal. 

It is demonstrated in Section 2 that Cm X C, admits of certain 2-factorizations in 
which each factor consists of cycles of (uniform) length rs, where r and s are suitable 
divisors of m and n, respectively. Additional results of Section 2 include (a) decompo- 
sitions of a component of each of Pm× Pn, Cm x Pn and Cm x Cn into cycles and paths, 
and (b) decomposition of these graphs into four-cycles. 

It is shown in Section 3 that if m is even and n -  0 (mod 4), then the odd compo- 

nent of Pm+l >( Pn+l (as well as each component of each of Cm × Pn+l and Pm+l × Cn) 

contains a subgraph on mn/2 vertices which has a bi-pancyclic ordering. This leads to 
a similar ordering of each component of Cm x C4j. 

Proposition 1.1 and Lemma 1.2 are frequently invoked in the rest of the paper. 

2. Decomposition and factorization 

The present section is subdivided into five parts. Section 2.1 builds a cycle decom- 
position of the odd component of P2i+~ x Paj+1, which in turn leads to (a) a similar 
decomposition of each component of each of C,n x Paj+1 and P2i+l x Caj, and (b) a 2- 
factorization of each component of Cm × C4j. Analogous results appear in Section 2.2 

with respect to P2i+l × P4j+3, Cm X Paj+3 and C,n x C4j+2. Section 2.3 consists of cer- 
tain decompositions of P2i+l x Pzj and Cm x Pn. That Czi+~ x C2j+1 has a factorization 
into shortest odd cycles appears next. Finally, Section 2.5 deals with four-cycles in 
these graphs. 

2.1. Graphs P2i+l × P4j+l, Cm × P4j+l, P2i+I x C4j and Cm × C4j 

Lemma 2.1. I f  m and n are even >t4 and n - O ( m o d 4 )  then the odd component o f  
Pm+l x Pn+l is decomposable into two equal-length cycles ~ and [3 such that 
1. each vertex of  degree four appears on ~ as well as on [3, 
2. among the border vertices (2 i+  1,0) and (2 i+  l,n), exactly one belongs to ~ and 

the other belongs to [3, where 0 <<. i <~ (m - 2 )/2, and 
3. among the border vertices (0, 2j + 1 ) and (m, 2j + 1 ), exactly one belongs to ~ and 

the other belongs to [3, where O<~j <~(n-2 )/2. 
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Fig. 3. Cycle decomposition of  odd component o f / ~  1 x P9. 

Proof. Fig. 3 contains a cycle decomposition of the odd component of  Pll x P9 (m = 10 
and n = 8). Pattern suggests the proof. [] 

Remark. The subgraphs (of the odd component of Pm+l × P,+l ) induced by the two 

cycles traced in the proof of Lemma 2.1 are isomorphic. Each has mn/2 vertices and 
mn - (m - 1 ) - (n - 1 ) edges. 

Theorem 2.2. Let m, n be even />4, where n=_O(mod4), and let r, s be even >>,4 
such that rim, sin and s ~ 0 ( m o d 4 ) .  
1. Each of  the following graphs is decomposable into 2(re~r). (n/s) cycles, each of 

length rs/2 : 
(a) the odd component Of Pm+l × P,+I, and 
(b) each component of  each of  Cm × P,+l and Pm+l × Cn. 

2. Each component of  Cm × C~ has a 2-factorization in which each factor consists of  
(m/r). (n/s) cycles, all of  length rs/2. 

Proofi Let m, n, r and s be as stated, and note that (a) Pm+l is decomposable into 

m/r paths, each isomorphic to Pr+l, and (b) Pn+l is decomposable into n/s paths, each 
isomorphic to P~+t. 

Based on the proof of  Lemma 2.1, let ao,0 and flo,0 be the two cycles (each of 
length rs/2) which constitute a decomposition of the odd component of Pr+l X P~+I, 

and let ( ao, bo ) . . . . .  ( ars/2-1, brs/2- l ) and (co, do) . . . . .  ( Crs/2-- 1, dry~2-1 ) be the sequences 
which correspond to a0,0 and flo, o, respectively. 

L e t  ~i,j be the cycle given by the sequence 

(ao 4- ir, bo + js)  . . . . .  (ars/2-1 4- ir, brs/2-1 + js), 

where 0 <~ i <~ m/r - 1 and 0 <<,j <~ n/s - 1. 
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Cycles ~i,j are each of length rs/2, are mutually vertex-disjoint, and span mn/2 
vertices of the odd component of Pm+l x Pn+l, which has a total of ( m n + m + n ) / 2  
vertices. The following may be noted with respect to {cq,j}: 
• Each vertex of degree four appears on a unique cycle in this collection, 
• among the pair of border vertices (0, 2j + 1) and (m, 2j + 1), one does not appear 

on any of these cycles while the other appears on a unique cycle, O<~j<~(n-2)/2, 
and 

• among the pair of border vertices (2i + 1,0) and (2i + 1, n), one does not appear on 
any of these cycles while the other appears on a unique cycle, O<<.i<<.(m- 2)/2. 
The odd component of Cm x Pn+l is obtainable from the respective component of 

Pm+l ×Pn+l as stated in Proposition 1.1(1). This process of construction is such that 
the cycles O~i, j traced in the odd component of Pm+l x Pn+l remain 'undisturbed'. An 
analogous statement holds with respect to the odd component of P,,+l x C,. 

The odd component of  Cm × Cn is obtainable from the respective component of 
Cm x Pn+l as stated in Proposition 1.1(2). Again, the collection of (m/r)(n/s) cy- 
cles, derived from {~i,j} continues to be one such collection with respect to the 
odd component of Cm x C,. Indeed, these cycles constitute a 2-factor of this com- 
ponent. 

Next, let fli,j be the cycle given by the sequence 

(co + ir, do + js)  . . . . .  (crs/z-1 + it, drs/2-1 +is) ,  

where O<~i<~m/r- 1 and O<<.j<~n/s- 1. 
Note that {cti, j} tA {fli, j}  constitutes a decomposition of the odd component ofPm+l x 

P,+I. Also, the line of argument presented earlier with respect to the collection {t~i,j} 
holds true with respect to {fli, j}  as well. 

Finally note that m and n being both even, the odd component of each of Cm x Pn+l, 
P,,+I x C, and Cmx C, is isomorphic to the corresponding even component. [] 

Remark. The subgraph (of the odd component of Pm+l x en+l ) induced by the vertices 
on each cycle cti, j (or/~i.j) traced in the proof of Theorem 2.2 has rs/2 vertices and 
rs - (r - 1 ) - (s - 1 ) edges. 

2.2. Graphs e2i+l x P4j+3, C m x  e4j+3 and Cmx C4j+2 

Lemma 2.3. Let m and n be even ~>2, where n- -2 (mod4) .  The odd component of  
Pm+l × Pn+l is decomposable into two equal-length paths ? and 6 such that 
1. each vertex of  degree four appears on 7 as well as on 6, 
2. the terminal vertices of  each of  7 and 6 are (0, 1 ) and (m, 1 ), 
3. among the border vertices ( 2 i+  1,0) and (2 i+  1,n), exactly one appears on ? and 

the other appears on 6, where O<~i<~m/2, and 
4. among the border vertices (0, 2j + 1 ) and (m, 2j + 1), exactly one appears on 

and the other appears on 6, where 1 <<.j<~n/2. 



P.I( JhalDiscrete Mathematics 182 (1998) 153-167 159 

0 1 2 3 4 5 6 ? 8 9 I 0  0 1 2 3 4 5 6 7 8 9 I 0  

/ "  / ' \  • / . \  • 

\ \ \ \ \ 
/ / / / / 
\ \ \ \ \ 
/ / "  / / / 
\ /  \ /  \ 

/ \  / \  \ 
/ \ /  \ /  

o \ / \  / \  

/ / / / / 
2 • • • • • 

\ \ \ \ \ 
3 • • • • • • 

/ / / / / 
4 • • • • • 

\ \ \ \ \ 
. \ /  \ /  / 

6 / . \  / . \  / 
? • • • • • • 

\ \ /  \ /  
8 • • • • • 

First Path Second Path 

Fig. 4. Path decomposition of the odd component of P9 × P l l -  

Proof. Fig. 4 contains a decomposition of the odd component of P9 × Pll (m = 8 and 
n = 10). Proof is implicit in the pattern. [] 

Remark. Each of the subgraphs (of the odd component of Pm+l × Pn+l ) induced by the 
paths traced in the proof of Lemma 2.3 has mn/2 + 1 vertices and mn - ( m -  1 ) - (n - 2) 
edges. 

Theorem 2.4. Let m, n be even >>. 4, and let s >~ 2 be such that s---2 (mod 4) and sin. 
1. The odd component of  Pm+l x Pn+l is decomposable into 2n/s paths, all of  length 

ms~2. 
2. Each component of  Cmx Pn+l is decomposable into 2n/s cycles, all of  lenoth 

ms~2. 

3. Each component of  Cm x Cn has a 2-factorization in which each factor consists of  
n/s cycles, all of  length ms~2. 

Proof. The argument is somewhat similar to that in the proof of Theorem 2.2. Based 
on the proof of Lemma 2.3, let Y0 and g0 be two paths (each of length ms/2) which 
constitute a decomposition of the odd component of Pm+l × P~+l, and let 

(ao, bo) . . . . .  (ares~2, bins~2 ) 

and 

(Co, d0) . . . . .  ( Cms/2, dins~2 ) 

be the sequences, which correspond to Yo and 60, respectively. 
Let ~j be the path given by the sequence 

(ao, bo + js)  . . . . .  (ams/2, bms/2 + js) ,  
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where O<<.j<~n/s- 1. Paths in the collection {yj} are each of length ms~2, are mutually 
vertex-disjoint, and span ran~2 + n/s vertices in the odd component of Pro+1 x Pn+l. The 
following observations are relevant with respect to {~,j}: 
1. Each vertex of degree four appears on a unique path in this collection, 
2. Among the pair of border vertices (2 i+  1,0) and (2 i+  1,n), one does not appear 

on any of these paths while the other appears on a unique path, O<<.i<~(m-2)/2, 
and 

3. Among the pairs of border vertices (0, 2j + 1 ) and (m, 2j + 1 ), the pair of (0, ks + 1 ) 
and (m, ks + 1 ) appear as terminal vertices of 7k while all of the remaining pairs have 
the characteristic similar to that mentioned in (2) above, where 0 ~<j ~< ( n -  2)/2 and 
O ~ k ~ n / s -  1. 

The odd component of Cm x Pn+l is obtainable from the respective component of 
Pm+l x Pn+l as stated in Proposition 1.1(1). In this process, each path Yk gets trans- 

t 7t formed into a cycle, say 7k, of the same length. The resulting collection { k} consists 
of n/s vertex-disjoint cycles. Similarly, the odd component of Cm x Cn is obtainable 
from that of Cm × P~+I as stated in Proposition 1.1(2), and the collection {V~} now 
corresponds to a 2-factor of this component. 

Next, let 6j be the path given by the sequence 

(co, do + js)  . . . . .  (Cms/2, dins~2 ÷ js), 

where O<~j<~n/s-1. Note that {Tj}U{fj} forms a decomposition of the odd com- 
ponent of Pm+l x Pn+l. Also, the line of argument presented earlier with respect to 7j 
applies to 6) as well. Additional details are routine. [] 

2.3. Graphs P2i+l x P2j and Cm x Pn 

Consider a component of the graph P2i+I × P2j. It has exactly two pendant vertices, 
and hence, cycle decomposition of this graph is not possible. Lemma 2.5 below shows 
that this graph has a decomposition into a cycle and a path. 

Lemma 2.5. L e t  m a n d  s be even >>.4. 

1. I f  s ~ 0(mod4), then the even component of  Pm+l x P~ has a decomposition into 
a cycle C o f  length ms~2-  2 and a path P o f  length ms~2-  m + 2. 

2. I f  s - 2 (mod 4), then the even component o f  Pm+I x P~ has a decomposition into 
a path P o f  length ms~2 - 2 and a cycle C of  length ms~2 - m + 2. 

In each case, cycle C and path P satisfy the following conditions: 
• Each vertex o f  degree four appears on C as well as on P, 
• the terminal vertices o f  P are (0, O) and (m, O) which are the pendant vertices o f  

this graph, and 

• among the border vertices (0,2j) and (m,2j), exactly one belongs to C and the 
other belongs to P, where l <~j<~(s- 2)/2. 
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Fig. 5. Decomposition of  the even component of P9 × P8. 

Proof .  Argument for (1) is implicit in the decomposition of  the even component of  
P9 ×/)8 (m = 8 and s = 8) that appears in Fig. 5. Construction for (2) is similar. [] 

Corol lary 2.6. Let re, n>>.4, where m is even, and let s>~4 be even such that (s - 1)[ 

( n - 1  ). Each component o f  Cm × P~ has a decomposition into a total o f  2 (n -1  ) / ( s -1  ) 
cycles, where half o f  the cycles are o f  length ms~2- 2 each, and the remaining cycles 

are of  length ms~2 - m + 2 each. 

An application of  Lemma 1.2 to Corollary 2.6 leads to a similar result with respect 

to C2i+1 × P2j. 

2.4. Shortest odd cycles in C2i+l × Czj+l 

It is known that a shortest odd cycle in (the nonbipartite graph) C2i+1 x C2j+l is o f  

length max{2i + 1 ,2 j  + 1 }. The present subsection consists o f  a theorem dealing with 
shortest odd cycles in this graph. 

Theorem 2.7. I f  m and n are both odd, m >~ n, then Cm × C, has a 2-factorization in 

which each factor consists of  n shortest odd cycles. 

Proof.  Let tr0 denote the shortest odd cycle of  Cm x Cn given by the sequence (0,b0), 

(1 ,h i )  . . . . .  (m - 1,bin-l),  where b i = i  for O<~i<~n - 1, and b i=( i  + 1 ) m o d 2  for 
n<<.i<~m - 1. For iE  {1 . . . . .  n -  1}, consider the sequence (0,b0 + i ) , (1 ,bl  + i) . . . . .  
(m - 1,bm-I + i), where the sum bj + i is modulon.  This sequence corresponds to 
a shortest odd cycle, say o-i, in Cm × Cn. Further, the resulting cycles tr0, trl . . . . .  trn-i 
constitute a 2-factor o f  Cm × Cn. 
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Next consider the sequence (0 ,co) , (1 ,c l )  . . . .  , ( m -  1,Cm-1), where (i) co = 0 ,  (ii) for 
l < ~ j < . n -  1, c j = n - j ,  and (iii) for n ~ j < . m -  1, c j = 0 ,  i f j  is odd, and c j = n -  1, 
if j is even. This sequence corresponds to a shortest odd cycle, say zo. Additional 
n - 1 shortest odd cycles Zl . . . . .  ~n-1 are obtainable from zo in exactly the same way 
as or1 . . . . .  an-1 have been obtained from ao. The cycles Vo . . . . .  rn-I constitute another 
2-factor of  Cm x C n. Also, {ai} U {zi} forms a decomposition of  C m x C n. [] 

2.5. Four-cycles in Pm x Pn, Cm × P, and C m x  Cn 

In certain cases, there is a decomposition/factorization into four-cycles. This is being 
treated separately, since it is not covered by results of  the previous subsections. 

Theorem 2.8. Let  m, n be odd >13, and let 

p = L(m + 1)/4J L(n + 1)/4J + [(m - 1 )/4J [(n - 1)/4J, 

q = L(m + 1)/4J [(n - 1)/4J + [(m - 1)/4J L(n + 1)/4J. 

The odd component o f  Pm X Pn admits o f  a decomposition into four-cycles aq . . . . .  ~p, 

fll . . . . .  flq such that ~1 . . . . .  ~p (resp. fll . . . . .  flq) are mutually vertex-disjoint. 

Proof.  Let G denote the odd component of  Pm x P~. Further, let S be the set 

{(4r,4s + 1): 0~<r~< t(m - 3)/4J, 0~<s~< L(n - 3)/4J } 

u {(at  + 2,4s + 3): 0~<r~< [(m - 5)/4J, 0~<s~< [(n - 5)/4J}, 

and let S t be the set 

{(4r,4s + 3): 0~<r~< L(m - 3)/4J, 0~<s~< [(m - 5)/4J } 

U{(4r  + 2 , 4 s +  1): 0~<r~< [ ( m -  5)/41 , 0~<s~< L ( n -  3)/4J}. 

It is easy to check that for each (a, b) in S, the set 

{(a ,b) , (a  + 1,b - 1),(a + 2 ,b) , (a  + 1 , b +  1)} 

induces a four-cycle, say Gab, in G, and if (a ,b)  ¢ (a' ,b ') ,  then Gab and Go,b, are 
mutually vertex-disjoint. Analogous statement holds with respect to the set S'. 

Note further that S n S t = 0, and the four-cycles corresponding to S U S' are mutually 
edge-disjoint. To conclude the proof, observe that IsI = p ,  IS'l = q  and p + q = ( m  - 
1 ) ( n -  1)/4, which is one-fourth of  the number of  edges in G. [] 

It is useful to note that if m and n are both odd, then the largest number of  vertex- 
disjoint four-cycles in the odd component of  Pm x P, is exactly 

L(m + 1)/4J [(n + 1)/4J + [(m - 1)/4J [(n - 1)/4/. 
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Because of  the result of  Theorem 2.8, it suffices to show that the number of  vertex- 
disjoint four-cycles cannot exceed this figure. This can be argued by appropriately 
partitioning the set of  border vertices into four subsets So, S1, $2 and $3, and by showing 
that for each i, at least []Si]/2J vertices cannot participate in any collection of  vertex- 
disjoint four-cycles of  this graph. 

Corollary 2.9. Each component o f  each of  Cm x P2j+I and C,n × C2j admits o f  a 
decomposition into four-cycles. 

The next result is analogous to Theorem 2.8. 

Theorem 2.10. Let m be even >>. 4, n >1 3, and let p = [m/4J [(n - 1)/2J. 
1. Each component o f  Cm × Pn contains edge-disjoint four-cycles C~l . . . . .  Ctp, fll . . . . .  tip 

such that ~l . . . . .  gp (resp. fll . . . . .  tip) are mutually vertex-disjoint. 
2. The largest number o f  vertex-disjoint four-cycles in each component o f  C,, × Pn is 

at most [ ( m n / 8 ) -  ~m/aJ/2J. 

Proof. Consider the odd component of  Cmx Pn, where m is even. Let S be the vertex 
subset 

{(4r,4s + 1): O~r<~ km/4J - 1, O<~s~ [(n + 1)/4J - 1} 

u { ( 4 r  + 2 , 4 s +  3): O~<r~< [rn/4J - 1, O~<s~< k ( n -  1)/4j - 1}, 

and let S' be the vertex subset 

{(4r + 2,4s + 1): O~r<.Lm/4J - 1, 0~<s~< L(n + 1)/4] - 1} 

U{(4r ,4s  + 3): O<~r<<. Lm/4J - 1, O<~s~ L ( n -  1)/4J - 1}. 

Analogous to the proof of  Theorem 2.8, the set S (resp. S ' )  corresponds to a col- 
lection of  vertex-disjoint four-cycles cq . . . . .  ~p (resp. fll . . . . .  tip) such that c~1 . . . . .  C~p, 
fll . . . . .  tip are mutually edge-disjoint, where p = Em/4] [(n - l) /2J.  

For the upper bound on the number of  vertex-disjoint four-cycles, the argument is 
somewhat similar to that preceding Corollary 2.9. [] 

Note that when m = 0 (mod 4) and n is odd, the lower bound and the upper bound on 
the number of  vertex-disjoint four-cycles, appearing in the statement of  Theorem 2.10, 
coincide and hence yield the exact value of  m(n - 1 )/8. 

Remark.  By Lemma 1.2, if m is odd and n ~> 3, then a result with respect to (the con- 
nected graph) Cm × Pn holds simply by replacing 'Lm/4J L(n - 1)/2J'  by 'Lm/2J L(n - 
1)/2J,' and ' L ( m n / 8 ) -  Lm/4J/2j' by ' L ( m n / 4 ) -  [.m/2J/2J' in the statement 
of  Theorem 2.10. 

The next theorem deals with four-cycles in C2i x C2j. (Proof is omitted.) 
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Theorem 2.11. Let  m and n be even, and let p = 2  [m/4J [n/4J. Each component 

o f  Cm x Cn contains mutually edge-disjoint four-cycles ~1 . . . . .  ~p, i l l , . . . ,  tip such that 

~l . . . . .  ~p (resp. i l l , . . . ,  tip) are mutually vertex-disjoint. 

It follows that each component of C4i x C4j has a 2-factorization into four-cycles. 

Remark. By Lemma 1.2, if m is odd and n is even, then a result with respect to (the 

connected graph) Cm × Cn holds simply by replacing '2 [m/4J [n/4]' by '2 Lm/2J [n/4J' 
in the statement of Theorem 2.11. 

The final result of this subsection deals with four-cycles in x -product of odd cycles. 
(Proof is omitted.) 

Theorem 2.12. Let  m and n be odd, and p = ( m  - 1)(n - 1)/4. The graph Cm × Cn 

contains mutually edge-disjoint four-cycles ~1 . . . . .  ~p, fll . . . . .  tip such that ~1, . . . ,~p 
(resp. fll . . . .  , tip) are mutually vertex-disjoint. 

Note. The lower bound on the largest number of vertex-disjoint four-cycles appearing 
in results 2.10, 2.11 and 2.12 appear in [5] also, and was established by the author 
toward an upper bound on the length of a longest induced cycle. 

3. Bi-pancyclicity 

The end result of this section is that each component of Cm × C4j has a bi-pancyclic 
ordering. The method of attack is similar to that in Subsection 2.1. 

Lemma 3.1. I f  m is even >>.4, then the odd component o f  Pm+l × P5 contains a sub- 
graph G on 2m vertices such that G has a bi-pancyclic ordering. Vertices missed by 

G are (0,3), (m, 1), (1,4), and (2i + 1,0), 1 <~i<~(m - 2)/2. 

Proof. Let m be even ~>4, and consider the following sequence x0 . . . . .  X2m- 1 of 
vertices in the odd component of Pm+l × Ps" 
• xo----(1,O), x l= (2 ,1 ) ,  x2=(1,2) ,  x3=(O, 1), 
• x4=(3 ,2) ,  x5=(2 ,3) ,  
• x6=(4 ,3) ,  x7=(3 ,4) ,  
• x8=(4 ,1) ,  x9=(5 ,2) ,  

xt0 =(6 ,3) ,  xll-----(5,4), 
• xak = (2k, 1 ), xak+l --(2k + 1,2), x4k+2 = (2k + 2, 3), xnk+3 = (2k + 1,4), 

where 3 <~k<~(m - 2)/2. 
Let G be the (induced) subgraph (x0 . . . . .  X2m-l). It is claimed that for all 2<~i<~m, 

the subgraph (xo . . . . .  x2i-l) contains a spanning cycle. Proof is by induction on i. 
Clearly (xo,xl,x2,x3) induces a four-cycle. Also, each of (x0 . . . . .  xs) and (xo . . . . .  XT) 
contains a (unique) spanning cycle. 
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Suppose that C is a spanning cycle of (:Co . . . . .  X 2 i _ l )  for some i>~4. First assume 
that i is even. The vertex x2i-2 = (i, 3) is of degree two in (x0 . . . . .  x2i-1). Therefore, the 
edge (i - 1 ,2)- ( i ,3)  must appear on C. Now, X2i=(i,  1) and x2i+l = ( i  + 1,2). Cycle 
C may be extended by replacing the edge ( i -  1 ,2)-( i ,3)  by the segment ( i -  1 ,2) -  
(i, 1 ) - ( i  + 1,2)-( i ,3) .  The resulting cycle is of length ICI +2, and spans all vertices 
of (x0 . . . . .  x2i+l). Argument is similar for the case when i is odd. 

Vertices missed by G are as claimed. [] 

Theorem 3.2. I f  m and n are even >14 and n =-0 (mod 4), then the odd component o f  

Pm+l × P,+I contains a subgraph G on mn/2 vertices such that G has a bi-pancyclic 

ordering. Vertices missed by G are 

(a) (0,4s + 3), O<~s<~(n - 4)/4, 
(b) (m,4s+  1), O<~s<~(n-4)/4, 

(c) ( 2 r + l , 0 ) ,  l <~r<<.(m- 2)/2, and 

(d) (1,n). 

Proof. Let m and n be even ~> 4, where n = 4k. Proof is by induction on k, the basis 
being immediate from Lemma 3.1. 

Suppose that for some n = 4k, the odd component of Pm+l x Pn+l contains a subgraph 
G on mn/2 vertices such that G has characteristics mentioned in the statement of the 
theorem. It will be shown that the odd component of Pm+l × Pn+5 contains a subgraph 
on m(n + 4)/2 vertices with similar properties. 

Let xo,xl . . . . .  X2,n-I be the sequence of vertices presented in the proof of Lemma 3.1, 
and suppose that x i - - (a i ,  bi). Consider the sequence yo, y l , . . . ,y2m-1 where yi = 

(ai, b i + n ) ,  O<<.i<~2m-1. Note that y0--(1,n) ,  y l = ( 2 , n +  1), y 2 = ( 1 , n + 2 ) a n d  
Y3 = ( 0 , n  + 1). Let 

G' = (V(G) U {Y0, Y, . . . . .  Y2m-I }). 

G' is a subgraph of the odd component of Pm+l x P,+5 and ]V(G')[--m(n +4) /2 .  In 
what follows, a bi-pancyclic ordering of G is extended to a similar ordering of G/. 

Let V(G) =  {w0,wl . . . . .  w,nn/2-1}, and let C be a spanning cycle of G. It is claimed 
that for all j E {1 . . . . .  m}, the induced subgraph 

(W0,14'1 . . . . .  Wmn/2--1, Y0, Yl . . . . .  Y2j-- 1 ) 

contains a spanning cycle. 
First note that the vertex (3, n) appears on G (hence on C) and is of degree two with 

respect to G. Therefore, the edge (2,n - 1)- (3 ,n)  is necessarily a part of C. Now, this 
cycle may be extended to a cycle of length [C1+2 by replacing the edge (2, n -  1 ) - (3 ,  n) 
by the segment (2, n - 1 )-Y0-Yl -(3,  n). Recall that Y0 = (1, n) and Yl = (2, n + 1 ), and 
hence, this cycle extension is valid. It follows that (wo, wl . . . . .  W,,n/2-1, YO, Yl) contains 
a spanning cycle. That 

(W0, WI . . . . .  Wmn/2--1, Y0, Yl , -  • -,  Y2j--I ) 
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0 1 2 3 4 5 6 7 8  

0 / \ "  / \ -  

i " \ / \ / \ / \  " 
3 . " N / N / ' \ . / \ .  
, . / \ . /  . / \ . /  
5 .  \ . / \ .  \ . / \ .  
8 . / \ /  . / \ /  
, .  ',,,./',,,. , , , . / \ .  
. . / \ /  . / \ . /  
~ .  \ . / \ .  \ . / \ .  

, o  . " , . /  . \ . /  
Fig. 6. Illustration of the proof of Theorem 3.2. 

contains a spanning cycle for all j E {2 . . . . .  m} follows by an argument as in the proof 
of Lemma 3.1. 

The reader may further verify that the vertices of P,n+l x Pn+5 missed by G ~ are: 
(a) (0 ,4s+3) ,  O<~s~n/4, (b) (m,4s+ l ) ,  O<~s<.n/4, (c) (2 r+ l ,O) ,  1 <.r<~(m-2)/2, 
and (d) (1,n-l-4). [] 

Example. Proof of Theorem 3.2 is illustrated in Fig. 6, where m--10  and n = 8. Only 
relevant edges have been shown. The isolated vertices are those missed by G. 

Letting G be the subgraph of the odd component of Pm+l x Pn+l (where m = 2i and 
n = 4 j )  as in the statement of Theorem 3.2, it is easy to see that the vertices missed 
by G are such that an invocation of Proposition 1.1(1-2) to this theorem leads to 
analogous result with respect to a component of each of Cm x Pn+l, Pm+l X C, and 

C m X C  n. 

Corollary 3.3. L e t  m, n be even t>4, where n-0(mod4).  
1. Each component of each of  Cm XPn+l and Pm+l x C, contains a subgraph on ran~2 

vertices which admits of a bi-pancyclic ordering. 
2. Each component of  Cmx Cn has a bi-pancyclic ordering. 

An application of Lemma 1.2 to Corollary 3.3(2) yields analogous result with respect 

to C2i+1 x C4j. 
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