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Fig. 6. (a) Time-response of trajectory in chaotic Sin mapping with noise:
X = 0:7; no control whenn � 100; with control whenn > 100. (b) Control
signalU(k).

3) The coefficients in the model are determined in one pass through
the data set: no iterative calculation is needed. The scheme is a
highly parallel structure leading to efficient numerical compu-
tations. It is a fast learning algorithm that converges to the op-
timal predicting surface as the number of samples becomes large
enough. In our approach, usually20 � 30 data pairs are enough
for prediction. On the contrary, many existing standard fuzzy
models discussed require very long training time in general, and
often converges to a local minimum instead of the global min-
imum on the tracking error surface.

4) It reduces a complex problem to a least-squares estimation of
only a small number of constant parameters. The estimate con-
verges to the conditional mean predicting surface as more and
more samples are obtained and used. It also yields a very rea-
sonable prediction using only a few samples.

5) It is particularly suitable for sparse data in a real-time environ-
ment, because the predicting surface is instantly defined every-
where, even with just one available sample.

6) The structure of the entire system is simple, so a simulation pro-
gram is easy to write and use.

7) The control signals are generally quite small due to the fast con-
vergence of the tracking process.

The main disadvantage of this proposed fuzzy predictive modeling
technique, without clustering, is that it requires substantial amount of
computations (although in parallel) to evaluate new points. There are
several ways to overcome this disadvantage; one is to use the clustering
method [13], and another is to take advantage of the inherent parallel
structure of this fuzzy model (two in combination will provide both
high throughput and rapid adaptation).
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Optimal -Labeling of Cartesian Products of Cycles,
with an Application to Independent Domination

Pranava K. Jha

Abstract—The (2 1)-labeling of a graph is an abstraction of the
problem of assigning (integer) frequencies to radio transmitters, such that
transmitters that are “close”, receive different frequencies, and those that
are “very close” receive frequencies that are further apart. The least span
of frequencies in such a labeling is referred to as the -number of the
graph. Let be odd 5, = ( 3) 2 and let
each be a multiple of . It is shown that ( ) is
equal to the theoretical minimum of 1, where denotes a cycle of
length and “ ” denotes the Cartesian product of graphs. The scheme
works for a vertex partition of into smallest
(independent) dominating sets.

Index Terms—Cartesian product, cycle, frequency assignment, graph
theory, independent dominating set, (2 1)-labeling.

I. INTRODUCTION

Consider the problem of assigning frequencies to the radio trans-
mitters at various nodes in a region. The transmitters that are close
must receive frequencies that are sufficiently apart, for otherwise they
may be at the risk of interfering with each other. This problem was
first placed on a graph-theoretical footing by Hale [1] in 1980. Subse-
quently, Roberts [2] proposed a variation, in which distinction is made
between transmitters that are “close,” and those that are “very close.”
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Fig. 1. GraphP P .

This enabled Griggs and Yeh [3] to formulate theL(2; 1)-labeling of
graphs, that has since been an object of extensive research [4]–[7].

Formally, anL(2; 1)-labeling of a graphG is an assignmentf of
nonnegative integers to the vertices ofG such that

jf(u)� f(v)j �
2; if d(u; v) = 1

1; if d(u; v) = 2.

The difference between the largest label and the smallest label assigned
byf is called the span off , and the minimum span over allL(2; 1)-la-
belings ofG is called the�-numberof G, denoted by�(G). The gen-
eral problem of determining�(G) is NP-hard [4]. Indeed, if the graph
is known to be a tree, then there is an efficient solution [6].

By “graph”, it is meant a finite, simple, undirected, and connected
graph. TheCartesian productG H of graphsG = (V; E) andH =
(W; F ) is defined as follows:V (G H) = V �W andE(G H) =
ff(u; x); (v; y)g: eitheru = v and fx; yg 2 F or x = y and
fu; vg 2 Eg. This product (that is commutative and associative in
a natural way) is one of the most important graph products, with po-
tential applications. For example, then-cubeQn is easily seen to be the

-product ofn copies ofK2. It is known that 1)G H is connected
iff G andH are connected, and 2)G H is bipartite iffG andH are
bipartite.

A vertex subsetS of a graphG is said to be anindependent setif
elements ofS are mutually nonadjacent inG. If everyx not inS is ad-
jacent to at least one element ofS, thenS is said to be adominating set.
An independent dominating sethas an obvious definition. The general
problem of obtaining an (independent) dominating set of smallest size
is NP-hard [8].

There is a clear connection between independent sets and�-num-
bering of a graph. In particular, if�(G) = n, then there is a partition
of V (G) into at mostn + 1 independent sets.

For m � 3 andn � 2, let Cm denote thecycleon m vertices,
and letPn denote thepathonn vertices, whereV (Ck) = V (Pk) =
f0; � � � ; k � 1g and where adjacencies are defined in the natural way.
The graphP5 P4 appears in Fig. 1. For simplicity, a vertex(p; q) has
been shown aspq. It is easy to see that the graphCm Cn is obtainable
fromPm Pn by introducing the edgesf(0; j); (m�1; j)g,0 � j �
n � 1, and the edgesf(i; 0); (i; n � 1)g, 0 � i � m� 1.

Lemma 1.1: (Griggs and Yeh [3]) Let G be a graph with maximum
degree� � 2. If G contains three vertices of degree� such that one
of them is adjacent to the other two, then�(G) � �+ 2.

The lower bound of Lemma 1.1 is achievable in certain cases. This is
particularly so with respect toPm � � � Pm , where eachmi �
3, and either 1)mj � 5 for somej, or 2)mp = mq = 4 for somep; q
wherep 6= q [5].

Let n be odd� 5, k = (n � 3)=2 and letm0; � � � ; mk�1; mk

each be a multiple ofn. The central result of this paper is
that �(Cm � � � Cm ) is equal to the theoretical minimum
of n � 1. The method of attack leads to a vertex partition of
Cm � � � Cm Cm into smallest (independent) dominating
sets. Among other things, the latter result constitutes a simple proof
of a theorem of Klavžar and Seifter [9] relating to the domination
number of Cm � � � Cm Cm . Finally, it is shown that

the graphs Cm � � � Cm and Cm � � � Cm Cm

admit optimal labeling with respect to certain other distance-two
parameters also.

Remark: Form0; � � � ; mk�1 � 3, the graphCm � � � Cm

is edge-decomposable intok Hamiltonian cycles [10], and hence
it has high fault tolerance with respect to node failure and edge
failure. Also, the shortest distance between vertices(u0; � � � ; uk�1)
and (w0; � � � ; wk�1) of this graph is given by the simple formula
of k�1

i=0
d(ui; wi), whered(ui; wi) denotes the shortest distance

betweenui andwi in Cm , 0 � i � k � 1. Accordingly, this graph
is amenable to application as an interconnection network in computer
science and telecommunication engineering. In particular, the toroidal
network used in multiprocessor architecture is representable as the
Cartesian product of two cycles.

II. M AIN RESULT

Theorem 2.1:Let n be odd � 5, and let k = (n �
3)=2. If m0; � � � ; mk�1 are each a multiple ofn, then
�(Cm � � � Cm ) = n � 1.

Proof: Let G denoteCm � � � Cm , and note thatG is a
regular graph of degree2k = n � 3. By Lemma 1.1,�(G) � n �
1, so it suffices to present anL(2; 1)-labeling ofG using the labels
0; � � � ; n � 1.

Let a vertexv = (v0; � � � ; vk�1) of G be assigned the integer

f(v) =

k�1

i=0

2(i+ 1) � vi modn;

where0 � vi � mi�1. The assignment is clearly well-defined. Also,
it corresponds to a desiredL(2; 1)-labeling for the case whenn = 5.
In what follows, letn be odd� 7, and letu = (u0; � � � ; uk�1) and
w = (w0; � � � ; wk�1) be two distinct vertices ofG.

Case 1:d(u; w) = 1: There exists somei such that 1)jui�wij =
1 ormi � 1, and 2)uj = wj , j 6= i. If jui � wij = 1, then the label
assigned to one ofu andw is of the formN modn, and that to the other
is of the form[N + 2(i + 1)]modn, whereN is some nonnegative
integer. Since2(i+1) is between 2 andn� 3, jf(u)� f(w)j is equal
to 2(i+ 1) or n� 2(i+ 1), each of which is between 2 andn� 2.

If jui � wij = mi � 1, then assume without loss of generality that
ui = 0 andwi = mi�1 = pn�1 (say). Heref(u)may be written as
N modnwhilef(w)may be written as[N+2(i+1)�(pn�1)]modn
= [N�2(i+1)]modn. Again,jf(u)�f(w)j is between 2 andn�2.

Case 2:d(u; w) = 2: Here thek-tuple representations ofu and
w will differ by precisely 2 in one position, or by precisely 1 in two
positions. If the former condition holds, then 1)jui � wij = 2 or
mi�2, and 2)uj = wj , j 6= i. In casejui�wij = 2, one off(u) and
f(w) will be of the formN modn while the other will be of the form
[N +4(i+1)]modn. Sincen is odd� 7 and1 � i+1 � (n�3)=2,
it is easy to see thatf(u) 6= f(w). A similar conclusion is reached for
the case whenjui � wij = mi � 2 = pn � 2 (say).

Next examine the case whenu andw differ in precisely two posi-
tions, sayi andj, such that 1)ui, wi are adjacent inCm , 2) uj , wj

are adjacent inCm , wherei 6= j, and 3)ul = wl, l 6= i; j. It suffices
to consider the following four subcases.

Subcase 2.1:wi = ui + 1 andwj = uj + 1: Heref(u) may
be written asN modn, andf(w) may be written as[N + 2(i+ 1) +
2(j + 1)]modn = [N + 2(i + j + 2)]modn. Sincen is odd and
2 � i+ j + 2 � n � 3, it follows thatf(u) 6= f(w).

Subcase 2.2:wi = ui + 1 andwj = uj � 1: Heref(u) may
be written asN modn, andf(w) may be written as[N + 2(i+ 1)�
2(j+1)]modn = [N +2(i� j)] mod n. Sincei 6= j andji� jj �
maxfi; jg � (n � 5)=2, it follows thatf(u) 6= f(w).
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Fig. 2. L(2; 1)-labeling ofP P toward that ofC C .

Subcase 2.3: (ui = 0, wi = mi � 1) and (uj = 0, wj =
mj � 1): Heref(u) may be written asN modn, andf(w) may be
written as[N + 2(i + 1)(mi � 1) + 2(j + 1)(mj � 1)]modn =
[N�2(i+1)�2(j+1)]modn, since each ofmi andmj is a multiple
of n. Now,n is odd and2 � i+ j + 2 � n� 3, hencef(u) 6= f(w).

Subcase 2.4: (ui = 0, wi = mi � 1) and (uj = mj � 1, wj =
0): Heref(u) may be written as[N + 2(j + 1)(mj � 1)]modn =
[N�2(j+1)]modn, andf(w)may be written as[N+2(i+1)(mi�
1)]modn= [N �2(i+1)]modn. Sincei 6= j and each ofi+1 and
j + 1 is between 1 and(n� 3)=2, it follows thatf(u) 6= f(w).

Example: Forn = 7, theL(2; 1)-labeling ofC14 C7 based on the
proof of Theorem 2.1 is illustrated in Fig. 2 by means of the labeling
of P14 P7. (Recall the statement preceding Lemma 1.1.)

Corollary 2.2: If a vertexv of Cm � � � Cm receives label
j in the proof of Theorem 2.1, then those adjacent tov receive labels
from f0; � � � ; n�1gnfj�1; j+1g, wherej�1 andj+1 are each
modulon.

Proof: It suffices to prove that if a vertex is labeled 0, then none of
its neighbors is labeledn � 1. Let v = (v0; � � � ; vk�1) be one such
vertex in which case labels of the neighbors ofv are from

f[2(i+ 1)]modn: 0 � i � k � 1g

[ f[�2(i+ 1)]modn: 0 � i � k � 1g

= f2j: 1 � j � (n�3)=2g [ f2j+1: 1 � i � (n�3)=2g

= f2; � � � ; n� 2g:

Corollary 2.3: For0 � j � n� 1, letVj denote the set of vertices
ofCm � � � Cm that receive labelj in the proof of Theorem 2.1.

1) V0; � � � ; Vn�1 form a vertex partition of the graph into
equal-size independent sets.

2) EachVj dominates a total of(n� 2=n) � jV j vertices (including
those inVj itself) whereV denotes the vertex set of the graph.

The setsV0; � � � ; Vn�1 in Corollary 2.3 are such that 1) elements
of eachVj correspond to as many vertex-disjointK1; n�3’s, and 2) for
0 � i � (n� 3)=2, elements of each(V2i [ V2i+1) correspond to as
many edge-disjointK1; n�3’s.

III. I NDEPENDENTDOMINATION IN PRODUCTS OFCYCLES

Klavžar and Seifter [9] proved that ifn is odd� 3, p = (n �
1)=2, andm0; � � � ; mp�1 are each a multiple ofn, then a smallest
dominating set ofCm � � � Cm is of cardinality(1=n)jV jwhere
V is the vertex set of the graph. It turns out that a minor change in the
statement and proof of Theorem 2.1 leads to the foregoing result in a
much simpler way. In fact, there is a vertex partition of the graph into
n such sets.

Theorem 3.1:Let n be odd� 3, and let p = (n � 1)=2.
If m0; � � � ; mp�1 are each a multiple ofn, then the graph
Cm � � � Cm admits of a vertex partition into smallest (inde-
pendent) dominating sets.

Fig. 3. Labeling ofP P toward that ofC C (cf. Theorem 3.1).

Proof: Let G denoteCm � � � Cm , and note thatG is
a regular graph of degree2p = n � 1. Therefore, an (independent)
dominating set ofG must include at least(1=n)th of the vertices,
so it suffices to present a vertex partition ofG into equal-size sets
V0; � � � ; Vn�1 such that the distance between any two distinct
elements of eachVj is at least three. The claim is trivially true for
n = 3. In what follows, letn be odd� 5.

Let a vertexv = (v0; � � � ; vp�1) of G be assigned the integer

�(v) =

p�1

i=0

2(i+ 1) � vi modn:

The reader may check to see that the argument in the proof of Theorem
2.1 [with “k = (n�3)=2” replaced by “p = (n�1)=2”] works toward
the following: Ifu andw are vertices such that1 � d(u; w) � 2, then
�(u) 6= �(w).

LetVj be the set of vertices ofG that receive labelj, where0 � j �
n � 1. The resultingV0; � � � ; Vn�1 constitute a vertex partition ofG
into smallest (independent) dominating sets.

Example: For n = 5, a vertex partition ofC15 C5 based on the
proof of Theorem 3.1 is illustrated in Fig. 3 by means of the labeling
of P15 P5.

IV. RELATED PARAMETERS

It is shown here that the products of cycles (mentioned in the pre-
vious sections) admit optimal labelings, with respect to certain other
distance-two parameters, also.

• An L(1; 1)-labeling of a graphG is an assignment of nonneg-
ative integers such that verticesu; v receive different labels if
1 � d(u; v) � 2. The least span of anL(1; 1)-labeling ofG is
denoted by�0(G) [7].

• A consecutive (no-hole)L(2; 1)-labeling of a graphG is an
L(2; 1)-labeling such that the labels used are consecutive. The
least span of such a labeling (if one exists) is denoted by�c(G)
[11].

• A circular distance-two labeling of a graphG is an assignment
g of integers0; � � � ; k� 1 (for somek) to the vertices ofG such
that

jg(u)� g(v)jk �
2; if d(u; v) = 1

1; if d(u; v) = 2

where jxjk := minfjxj; k � jxjg is the circular difference
modulok. The leastk for whichG has a circular distance-two
labeling is denoted by�(G) [12].

Each of the foregoing parameters is meaningful in its own way. It is
not difficult to see that�0(G) � �(G) � 2�0(G) and�(G) + 1 �
�(G) � �(G) + 2 [7].

Theorem 4.1: Letn be odd,k = (n�3)=2, andm0; � � � ; mk each
a multiple ofn.

1) �0(Cm � � � Cm Cm ) = n � 1, wheren � 3.
2) �c(Cm � � � Cm ) = n � 1, wheren � 5.
3) �(Cm � � � Cm ) = n, wheren � 5.
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Proof: For 1), recall the assignment� in the proof of
Theorem 3.1. For 2), recall that the labels used in the optimal labeling
of Cm � � � Cm in the proof of Theorem 2.1 are consecutive.
For 3), recall the statement and proof of Corollary 2.2.
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On Stability of Relaxive Systems Described by Polynomials
with Time-Variant Coefficients

Danilo P. Mandic and Jonathon A. Chambers

Abstract—The problem of global asymptotic stability (GAS) of a time-
variant -th order difference equation

( ) = ( ) ( 1) = 1( ) ( 1) +

+ ( ) ( )

for ( ) 1 was addressed in [1], whereas the case ( ) = 1
has been left as an open question. Here, we impose the condition of con-
vexity on the set of the initial values ( ) = [ ( 1) (

)] IR and on the set IR of all allowable values of ( ) =
[ ( ) ( )] , and derive the results from [1] for 0 =
1 , as a pure consequence of convexity of the sets and . Based
upon convexity and the fixed-point iteration (FPI) technique, further GAS
results for both ( ) 1, and ( ) = 1 are derived. The
issues of convergence in norm, and geometric convergence are tackled.

Index Terms—Contraction mapping, convergence, fixed-point iteration,
global asymptotic stability, linear systems, relaxation.

I. INTRODUCTION

The issue of global asymptotic stability (GAS) of

yyy(n) =aaa
T (n)yyy(n� 1) = a1(n)y(n� 1) + � � �

+ am(n)y(n�m) (1)

is important in the theory of linear systems [2]–[4]. Equation (1) rep-
resents an autonomous system, which under certain conditions con-
verges. Actually, it is a relaxation equation, which stems from a general
linear system

YYY (n+ 1) = AAA(n)YYY (n) +BBB(n)uuu(n) (2)

for the zero exogenous input vectoruuu(n) = 000; 8n [2], [4]. Equation
(1) can be further written in the state-space form as

y(n+ 1)

y(n)
...

y(n�m+ 1)

=

a1(n) a2(n) � � � am(n)

1 0 � � � 0
...

...
. . .

...
0 � � � 1 0

�

y(n)

y(n� 1)
...

y(n�m)

(3)

with y(n+1) = [1 0 � � � 0]YYY (n+1). MatrixAAA, where the index “n”
is dropped for convenience, is a Frobenius matrix, which is a special
form of the companion matrix of the characteristic polynomial [5], [6].
Namely, let us denote the characteristic equation of a general matrixMMM

by (�1)n[�n�pn�
n�1

�� � ��p0] = 0, then, the characteristic equa-
tion ofAAA (3) is identical to the characteristic equation ofMMM , and the
matrixAAA is called the companion matrix of the characteristic polyno-
mial ofMMM . SinceMMM andAAA have the same characteristic polynomial, it
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