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3) The coefficients in the model are determined in one pass through
the data set: no iterative calculation is needed. The scheme is a
highly parallel structure leading to efficient numerical compuOptimal L(2, 1)-Labeling of Cartesian Products of Cycles,
tations. It is a fast learning algorithm that converges to the op-  with an Application to Independent Domination
timal predicting surface as the number of samples becomes large
enough. In our approach, usual ~ 30 data pairs are enough Pranava K. Jha
for prediction. On the contrary, many existing standard fuzzy

models discussed require very long training time in general, and ) ) )
d ylong g 9 Abstract—The L(2, 1)-labeling of a graph is an abstraction of the

Qﬁen CONvVerges tc_) a local minimum instead of the global m"E)'robIem of assigning (integer) frequencies to radio transmitters, such that
imum on the tracking error surface. transmitters that are “close”, receive different frequencies, and those that

4) It reduces a complex problem to a least-squares estimationa@ “very close” receive frequencies that are further apart. The least span
only a small number of constant parameters. The estimate cofifrequencies in such a labeling is referred to as thex-number of the
verges to the conditional mean predicting surface as more a@{@Ph-Letnbeodd>5,k = (n—3)/2andletmg, - -+, me_y, ms

] . ch be a multiple ofnn. It is shown that A(C,,,0---0C,,,_,) is
more sample_s .are Ob.tamed and used. It also yields a very r§ ual to the theoretical minimum ofn — 1, where %Z’T denotes akq}cle of
sonable prediction using only a few samples.

: | ) - ] ~length » and “00" denotes the Cartesian product of graphs. The scheme
5) Itis particularly suitable for sparse data in a real-time enviromvorks for a vertex partition of C,.,0 -+ - DC,,, _, OC,,, into smallest
ment, because the predicting surface is instantly defined evefipdependent) dominating sets.
where, even with just one available sample. Index Terms—Cartesian product, cycle, frequency assignment, graph
6) The structure of the entire system is simple, so a simulation praeory, independent dominating set.L(2, 1)-labeling.
gram is easy to write and use.
7) The control signals are generally quite small due to the fast con-
vergence of the tracking process. . INTRODUCTION

The main disadvantage of this proposed fuzzy predictive modelingConsider the problem of assigning frequencies to the radio trans-
technique, without clustering, is that it requires substantial amount@ftters at various nodes in a region. The transmitters that are close
computations (although in parallel) to evaluate new points. There argist receive frequencies that are sufficiently apart, for otherwise they
several ways to overcome this disadvantage; one is to use the clusteizg be at the risk of interfering with each other. This problem was
method [13], and another is to take advantage of the inherent parafigit placed on a graph-theoretical footing by Hale [1] in 1980. Subse-
structure of this fuzzy model (two in combination will provide bothguently, Roberts [2] proposed a variation, in which distinction is made
high throughput and rapid adaptation). between transmitters that are “close,” and those that are “very close.”
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03—13—23—33—43 the graphs Cpy0---0Cm,_, and CpyO---OCh,_,OCk,
| I | | | admit optimal labeling with respect to certain other distance-two
02—12—22—32—42 parameters also.
| | | ‘ | Remark: Formg, -+ -, me—1 > 3, the graphC'y,, O+ - - OCm,_,
01—11—21—31—41 is edge-decomposable inte Hamiltonian cycles [10], and hence
| | | | l it has high fault tolerance with respect to node failure and edge
00—10—20—30—40 failure. Also, the shortest distance between vertiegs - - -, ur—1)

and (wo, - -+, wi_1) Of this graph is given by the simple formula

Fig. 1. GraphP;DIP;. of S¥=" d(u;, w;), whered(u;, w;) denotes the shortest distance
betweenu; andw; in Cy,,, 0 < ¢ < k — 1. Accordingly, this graph

This enabled Griggs and Yeh [3] to formulate the2, 1)-labeling of is amenable to application as an interconnection network in computer
graphs, that has since been an object of extensive research [4]-[7].science and telecommunication engineering. In particular, the toroidal

Formally, anL(2, 1)-labeling of a graphG is an assignmenf of network used in multiprocessor architecture is representable as the

nonnegative integers to the vertices(osuch that Cartesian product of two cycles.
2, ifd(u,v)=1
— f(v)| > . !
|f(u) = F(v)| > {17 it d(u, v) = 2. Il. MAIN RESULT
The difference between the largest label and the smallest label assi eT_ eorem 2.1:Let n be odd > 5, and Ie.tk = (n -
g:?) If mg, -+, mp_; are each a multiple ofn, then

by 7 is called the span qf, and the minimum span over dl( 2, 1)-la-
belings ofG is called thex-numberof G, denoted by\(G). The gen-

eral problem of determining(G) is NP-hard [4]. Indeed, if the graph 0 _
is known to be a tree, then there is an efficient solution [6]. regular graph of degredk = » — 3. By Lemma 1.IA(G) > n

By “graph”, it is meant a finite, simple, undirected, and connecte(lsj so it suffices to present ab(2, 1)-labeling of & using the labels

graph. TheCartesian producGH of graphsG = (V, E)andH = | .° "~ L. . .

(W, F) is defined as followsV (GOH) = V x W andE(GOH) =  -etavertexs = (vo, -+, vx) of G be assigned the integer
{{(u, x), (v, y)}: eitheru = v and{z, y} € Foraz = y and -
{u, v} € E}. This product (that is commutative and associative in flv) = [Z 2 +1) - w} mod n,

a natural way) is one of the most important graph products, with po-

tential applications. For example, thecube@,, is easily seen to be the

O-product ofn copies ofK». It is known that 1)GJH is connected where0 < v; < m; — 1. The assignment is clearly well-defined. Also,
iff G andH are connected, and ZJUIH is bipartite iff G and H are it corresponds to a desirdd 2, 1)-labeling for the case when = 5.

)\(CHLOD ct Dcmkfl‘) =n-1.
Proof: Let G denoteC,,0--- OC, _,, and note thatr is a

1=0

bipartite. In what follows, letn. be odd> 7, and letu = (uq, - -+, ux—1) and
A vertex subsef5 of a graph( is said to be anndependent sef  w = (wq, - -+, wi_1) be two distinct vertices of.

elements o5 are mutually nonadjacent @. If everyz notin S is ad- Case 1ld(u, w) = 1: There exists somesuch that 1)u; — w;| =

jacent to at least one element$fthensS is said to be @ominatingset 1 orm; — 1, and 2)u; = wj, j # i. If [u; — w;| = 1, then the label

An independent dominating skeas an obvious definition. The generalassigned to one af andw is of the formN mod n, and that to the other
problem of obtaining an (independent) dominating set of smallest siseof the form[V + 2(i + 1)] mod n, whereN is some nonnegative
is NP-hard [8]. integer. Sinc&(i + 1) is between 2 and — 3, | f(u) — f(w)] is equal
There is a clear connection between independent sets-amon- to2(i + 1) orn — 2(i + 1), each of which is between 2 and— 2.
bering of a graph. In particular, X(G) = n, then there is a partition  If |u; — w;| = m; — 1, then assume without loss of generality that

of V(&) into at most: + 1 independent sets. u; = 0 andw; = m; —1 = pn — 1 (say). Heref («) may be written as
Form > 3 andn > 2, let C,, denote thecycleon m vertices, N mod n while f(w) may be writtenafV+2(i+1)-(pn—1)] mod n
and letP, denote thepathon n vertices, wherd” (Ci) = V(Pi) = =[N —2(i+1)] modn. Again,|f(u)— f(w)|is between 2 and —2.
{0, ---, k — 1} and where adjacencies are defined in the natural way.Case 2:d(u, w) = 2: Here thek-tuple representations of and
The graphPs [P, appears in Fig. 1. For simplicity, a vertéx, ¢) has w will differ by precisely 2 in one position, or by precisely 1 in two
been shown agy. Itis easy to see that the graph,[IC,, is obtainable positions. If the former condition holds, then [k); — w;| = 2 or
from P,,,.0P, by introducing the edgeg0, j), (m—1, j)},0<j < m;—2,and 2)u; = wj,j # i.In casgu; —w;| = 2, one of f(v) and
n — 1, and the edge§(i, 0), (i, n — 1)},0 < i <m — 1. f(w) will be of the form N mod n while the other will be of the form

Lemma 1.1: (Griggs and Yeh [3]) Let G be a graph with maximum[V 4+ 4(: 4+ 1)] mod n. Sincen isodd> 7andl < i+1 < (n—3)/2,
degreeA > 2. If G contains three vertices of degréesuch that one itis easy to see that(«) # f(w). A similar conclusion is reached for
of them is adjacent to the other two, the(G) > A + 2. m the case wheh;, — w;| = m; — 2 = pn — 2 (say).

The lower bound of Lemma 1.1 is achievable in certain cases. This isNext examine the case whenandw differ in precisely two posi-
particularly so with respect t&,,,0- - - 0P, _,, where eachr; >  tions, say: andj, such that 1y;, w; are adjacent it , 2) u;, w;
3, and either 1)n; > 5 for someyj, or 2)m, = m, = 4 forsomep, ¢ are adjacenti,,, wherei # j, and 3yu; = wy, 1 # i, j. It suffices
wherep # ¢ [5]. to consider the following four subcases.

Let » be odd> 5, k = (n — 3)/2 and letmao, - -, me—_1, mi Subcase 2.1w; = u; + 1 andw; = u; + 1: Heref(u) may
each be a multiple ofn. The central result of this paper isbe written asV modn, andf(w) may be written agV + 2(: + 1) +
that A\(C,,,00---0C,.,_,) is equal to the theoretical minimum2(j + 1)Jmodn = [N + 2(: + j + 2)] mod n. Sincen is odd and
of n» — 1. The method of attack leads to a vertex partition o2 < i+ j+ 2 < n — 3, itfollows thatf(u) # f(w).
CmoO: - OCnm, _,0C,, into smallest (independent) dominating Subcase 2.2w; = u; + 1 andw; = u; — 1: Heref(u) may
sets. Among other things, the latter result constitutes a simple prdief written asV mod n, andf(w) may be written agV + 2(i + 1) —
of a theorem of Klavzar and Seifter [9] relating to the dominatio(j + 1)]modn = [N + 2(¢ — j)] mod n. Sincei # j and|i — j| <
number of C,,,0---0C,,, _,0C,,,. Finally, it is shown that max{i, j} < (n —5)/2, it follows thatf(u) # f(w).
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0 12 14 16 1 13 15 [0 (2 [4 6 {1 13 I5
) ) . Proof: Let G denoteC,,,00---0C,,,_,, and note that7 is
Fig. 2. L(2, 1)-labeling of P1,0IP; toward that oiC’,4 [IC'r. a regular graph of degrel»y = n — 1. Therefore, an (independent)
dominating set of¢ must include at leastl/n»)th of the vertices,
Subcase 2.3:; = 0, w; = m; — 1)and @; = 0, w; = so it suffices to present a vertex partition Gf into equal-size sets

m; — 1): Heref(u) may be written asV mod n, andf(w) may be
written as[N + 2(i + 1)(m; — 1) + 2(j + 1)(m,; — 1)]modn =
[N—=2(i+1)—2(j+1)]modn, since each of:; andm  is a multiple
of n. Now,n isodd an® < i+ j + 2 < n — 3, hencef(u) # f(w).
Subcase 2.4u; = 0, w; =m; —1)and w; = m; — 1, w; =
0): Heref(u) may be written agN + 2(j + 1)(m; — 1)} modn =
[N —2(j+1)|modn,andf(w) may be written afV +2(i+1)(m; —
1] modn =[N —2(i+ 1) mod n. Sincei # j and each of + 1 and
j + lis between 1 antn — 3)/2, it follows thatf(u) # f(w). N

Vo, +-+, Va1 such that the distance between any two distinct
elements of eacly; is at least three. The claim is trivially true for
n = 3. In what follows, let: be odd> 5.

Let a vertexv = (vo, - -+, vp—1) Of G be assigned the integer

p—1
o(v) = |:Z 2(i+1)- 'v,':| mod n.

=0

The reader may check to see that the argument in the proof of Theorem

Example: Forn = 7,theL(2, 1)-labeling ofC140C+ based onthe 2.1 [with*k = (n—3)/2"replaced by p = (n—1)/2"]works toward
proof of Theorem 2.1 is illustrated in Fig. 2 by means of the labelinge following: If u andw are vertices such that< d(u, w) < 2, then

of Pi400F;. (Recall the statement preceding Lemma 1.1.)

Corollary 2.2: If a vertexv of C,,,00---0OC,,, _, receives label _
j in the proof of Theorem 2.1, then those adjaceni teceive labels 7 — 1. The resultingy, - - -
,n—1}\{j—1, j+1}, wherej — 1 andj + 1 are each into smallest (independent) dominating sets. [ |

from {0, - -
modulon.

o(u) # o(w).

LetV; be the set of vertices @ that receive label, whered < j <
, Vn—1 constitute a vertex partition a¥

Example: Forn = 5, a vertex partition of”,5[0C5 based on the

Proof: It suffices to prove that if a vertex is labeled 0, then none d¥roof of Theorem 3.1 is illustrated in Fig. 3 by means of the labeling

its neighbors is labeled — 1. Letv = (v, - -
vertex in which case labels of the neighbors afre from

{[2

—~

i+ 1)modn:0<i<k—1}
U{[-2({+ 1D]modn: 0 <i <k -1}

2, -, n—2} ]

Corollary 2.3: For0 < j < n — 1, letV; denote the set of vertices
of Cr O+ - - OCh,, _, thatreceive label in the proof of Theorem 2.1.

, Vo1 form a vertex partition of the graph into

1 Vo, ---
equal-size independent sets.

2) EachV; dominates a total dfn — 2/n) - |V

vertices (including

those inV; itself) whereV” denotes the vertex set of the gramh.
, Va—1 in Corollary 2.3 are such that 1) elements

The setsly, - -
of eachV; correspond to as many vertex-disjoidt, ,.—3's, and 2) for

0 <i<(n-3)/2,elements of eacti2; U V2;11) correspond to as

many edge-disjoinf(; ,_3’s.

[Il. I NDEPENDENTDOMINATION IN PRODUCTS OFCYCLES

KlavZar and Seifter [9] proved that if is odd> 3, p =
1)/2, andmyg, - - -
dominating setof,,,, - - - OOC',,,_, is of cardinality(1/n)

(n —

V| where

, mp—y are each a multiple of, then a smallest

-, vx_1) be one such of PisUIPs.

IV. RELATED PARAMETERS

It is shown here that the products of cycles (mentioned in the pre-

vious sections) admit optimal labelings, with respect to certain other
distance-two parameters, also.

e An L(1, 1)-labeling of a graphG is an assignment of nonneg-
ative integers such that vertices v receive different labels if
1 < d(u, v) < 2. The least span of ah(1, 1)-labeling of G is
denoted by\o (G) [7].

« A consecutive (no-holef(2, 1)-labeling of a graphG is an

L(2, 1)-labeling such that the labels used are consecutive. The

least span of such a labeling (if one exists) is denoted J9¢)

[11].

A circular distance-two labeling of a grap&' is an assignment

g of integer9), -- -, k — 1 (for somek) to the vertices ofs such

that

’ 2, ifd(u,v)=1
lg(u) = gl 2 { 1, ifd(u,v)=2
where |z|, := min{|z|, ¥ — |#|} is the circular difference
modulok. The least: for which G has a circular distance-two
labeling is denoted by (G) [12].

V is the vertex set of the graph. It turns out that a minor change in theEach of the foregoing parameters is meaningful in its own way. Itis
statement and proof of Theorem 2.1 leads to the foregoing result i@ difficult to see thato (G) < A(G) < 2A0(G) andM(G) + 1 <
much simpler way. In fact, there is a vertex partition of the graph into(G) < A(G) + 2 [7].

n such sets.

Theorem 3.1:Let n be odd> 3, and letp =
If mq,---
Crnod---0OCm,_,
pendent) dominating sets.

(n — 1)/2.

, my—1 are each a multiple ofn, then the graph
admits of a vertex partition into smallest (inde-

Theorem 4.1: Letn be odd/x = (n—3)/2,andmy, - - -, mj each

a multiple ofn.

1) X (ChO---0OC,, _,0C,,, ) =n—1,wheren > 3.
2) \(CnyO---0OCh,_,) =n —1,wheren > 5.
3) o(Cn,Od---0OCh,_,) = n, wheren > 5.
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Proof: For 1), recall the assignmeny in the proof of On Stability of Relaxive Systems Described by Polynomials

Theorem 3.1. For 2), recall that the labels used in the optimal labeling with Time-Variant Coefficients

of C,,,,0---OC,,, _, in the proof of Theorem 2.1 are consecutive.

For 3), recall the statement and proof of Corollary 2.2. [ Danilo P. Mandic and Jonathon A. Chambers
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