
ELSEVIER Discrete

Long cycles and

Pranava K. Jbaa,*, Naveen Agnihotrib, Rajesh Kumarc

DISCRETE
APPLIED
MATHEMATICS

Qplied Mathematics 74 (1997) 101-121

long paths in the Kronecker product of a
cycle and a tree

“Depnrtm~nt of Computer Engineering, Delhi Institute of Technology. Delhi, Kashmere Gate,
Delhi 1 IO 006, India

bDepartment of Biological and Agricultural Engineering, University of Georgia, Athens,
GA 30605, USA

CCentre for Development of Telematics. 39 Main Pusa Road, New Delhi 110 005, India

Abstract

Let C, x 7’ denote the Kronecker product of a cycle C, and a tree T. If m is odd, then
C,,, x T is connected, otherwise this graph consists of two isomorphic components. This paper
presents a scheme which constructs a long cycle in each component of C, x T. If T satisfies
certain degree constraints, then the cycle thus traced is shown to be a dominating set, and in
some cases, a vertex cover of that component. The procedure builds on (i) results on longest
cycles in C,,, x P,, and (ii) a path factor of T. Additional results include characterizations for
the existence of a Hamiltonian cycle and for that of a Hamiltonian path in Cm x T.

Keywords: Kronecker product; Cycle; Tree; Path factor; Long cycle; Long path

1. Introduction

Let C,,, x T denote the Kronecker product of a cycle C, and a tree T. Prin-

cipal result of this paper consists of a procedure which constructs a long cycle in

C,,, x T. If T satisfies certain degree constraints, then the cycle thus traced is shown

to be a dominating set (and in some cases, a vertex cover). The scheme builds on

(i) a previous work by one of the authors [9] with respect to x-product of a cycle

and a path, and (ii) a path factor of T. Additional results include characterizations

for the existence of a Hamiltonian cycle and for that of a Hamiltonian path in

C,,, x T.

Batagelj and Pisanski [l] earlier presented a characterization for the existence of a

Hamiltonian cycle in the Cartesian product of a cycle and a tree. For the analogous

problem with respect to the strong product, Bermond et al. [2] reported certain sufficient

conditions.

* Corresponding author. E-mail: pkj@dit.emet.in.

0166-218x/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SO1 66-2 18X(96)00022-4

102 P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121

By a graph is meant a finite, simple and undirected graph. Unless indicated other-

wise, graphs are also connected and have at least two vertices. For graphs G =

(V,:E) and H = (W, F), the Kronecker product (or x-product) of G and H is de-

noted by G x H and is defined as follows: V(G x H) = V x W and E(G x H) =

{{(u,x),(u,y)} ({u,v}~ E and {x,y) E F}. This product is commutative and associa-

tive in an obvious way. Further, it is distributive with respect to edge-disjoint union

of graphs. Among various associative products studied by Imrich and Izbicki [8], the

Kronecker product has proved to be one of the most important. Several applications

have been listed by Jha et al. [lo].

For m > 3 and n 2 1, let C, and P,,, respectively, denote a cycle on m vertices and

a path on n vertices, where V(Ck) = V(Pk) = (0,. . , k - l}, and where adjacencies

are defined in the natural way. If k is even (resp. odd), then Pk is said to be an even

path (resp. odd path). A tree is a connected, acyclic graph. Note that if T is a tree

on n vertices, then]V(C, x T)l = rn. n and]E(C, x T)] = 2. rn. (n - 1).

If a graph G is obtainable from a graph H by a sequence of edge subdivisions, then

G is said to be homeomorphic from H. A vertex subset S of G is called a dominating

set if every vertex of G not in S is adjacent to some element of S. Further, S is called

a vertex cover if every edge of G has at least one end vertex in S.

For a graph G, let c(G) and Z(G), respectively, denote the length of a longest cycle

and the length of a longest path in G. The general problem of determining any of these

two invariants is NP-hard, and remains so even if the graph is known to be bipartite

[5]. The following definition is relevant to our study.

Definition 1 (Jung et al. [12]). A connected graph is said to be almost Hamiltonian if

it is biconnected and it contains a cycle which is a vertex cover. 0

For isomorphic graphs G and H, we write G g H. If G is a graph and v is a vertex

of G, then degc;(v) denotes the degree of v while A(G) denotes the largest degree of

G. If SC V(G), then (S) denotes the subgraph induced by S. The distance between

two vertices u, v of a graph G is denoted by distC(u,v). For a tree T, a vertex of

degree one is called an endpoint while a vertex adjacent to an endpoint is called a

support vertex. T is said to be l-contractable to a path if either T itself is a path or

T minus its endpoints is a path.

The following theorem states certain relevant characteristics of C, x T.

Theorem 1.1. 1. C, x T is a bipartite graph [7].

2. C, x T is connected t$- m is odd [151.

3. If m is even, then C,,, x T consists of two isomorphic components [lo].

4. Each component of C,,, x T is biconnected but not triconnected. 0

Whether C,,, x T is planar/outerplanar depends mainly on the structure of T. In

particular, if m = 4 or T is 1-contractable to a path, then C, x T is planar. On

the other hand, C,,, x T is outerplanar iff T g Kz. Characterizations for planarity and

P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121 103

Fig. 1. Graph Cs x Ph

21 23 25

Fig. 2. Graph C5 x P7

outerplanarity of x-product graphs have, respectively, been reported by Farzan and

Waller [4], and Jha and Slutzki [ll]. For any undefined terms, see Harary [6].

Graphs CS x P6 and C5 x PI appear in Figs. 1 and 2, respectively. For the sake of

clarity, vertex (i,j) has been shown as ij.

The following observations about the structure of the graph C,,, x P,, are instructive

[9]. First suppose that m is odd and n is even, and consider the partition of V(C,,, x P,)

into the following subsets: (0,. . . ,m - 1) x {2i, 2i+ l}, 0 < i f (n/2) - 1. Each of these

vertex subsets induces a cycle of length 2m. Based on this fact, the graph C,,, x P, may

be viewed as containing n/2 “concentric cycles”, each of length 2m. (See Fig. 1.) If

m and R are both odd, then V(C, x P,,) may be partitioned into the folllwing subsets:

{O,.. .,m - 1) x {2i,2i + l}, 0 < i d (n - 3)/2, and (0 ,..., m - 1) x {n - l}. In this

case, the first (n - 1)/2 subsets correspond to as many “concentric cycles”, each of

length 2m while vertices of the subset (0,. . . , m - l} x {n - 1) (which constitutes

an independent set) are “attached” to the “rest of the graph” as part of a cycle of

length 2m. (See Fig. 2.) Next suppose that m is even so that C,,, x P, consists of two

isomorphic components. In this case, there is an analogous partition of the vertex set

104 P. K. Jha et al. /Discrete Applied Mathematics 74 (1997) IOI-I21

of each component into certain “concentric cycles,” each of length m. The following

result is relevant.

Lemma 1.2 (Jha et al. [IO]). Zf m is even, m/2 is odd, and G is a bipartite graph,
then each component of C,,, x G is isomorphic to C,,+ x G. Q

An obvious upper bound on c(G) and Z(G) of a bipartite graph G appears below.

Lemma 1.3. Zf G = (VO U VI, E) is a biparite graph and (Vol d 1 VI 1, then each of
c(G) and Z(G) is at most 2. (V,(. 0

The following definition will be useful in the sequel.

Definition 2. If T is a tree, then sub (T) is the tree obtained from T as follows: For

each support vertex x of T, if the number k, of endpoints adjacent to x is greater than

one, then remove any k, - 1 endpoints adjacent to x. 0

For a tree T, sub(T) is a subtree of T, and is obtainable by suitably “trimming” the

“periphery” of T. It is clear that for a fixed tree T, sub(T) is unique up to isomorphism.

If T is a tree in which every support vertex has exactly one endpoint adjacent to it,

then sub(T) = T. In general, sub(sub(T)) = sub(T). Further, sub(Kl,,) = Kz, and if

T is a tree of diameter three, then sub(T) = Pa. This operation is useful in our study.

In particular, it turns out that contribution to the length of a longest cycle in C, x T
due to several endpoints “bunched” at one support vertex x is no greater than that due

to a single endpoint “hanging” from x.

Lemma 1.4. (1) c(C, x T) = c(C, x sub(T)).

(2) Z(C, x sub(T)) < I(& x T) < 1 + Z(C,,, x sub(T)).

Proof. Let T be a tree, and let v be a support vertex of T. Suppose that xi,. . . ,xk

are the endpoints adjacent to v. For a vertex i of C,, the vertices (&xl), . . . , (i,xk) of

the graph C, x T are such that at most one of them may be included in a cycle of

length greater than four. This is because each of (i,xl), . . . , (i,Xk) is of degree two, and

has the same set of neighbors, viz, {(i - 1, v), (i + 1, u)}. Thus, from the viewpoint of

tracing a longest cycle in C, x T, it suffices to retain exactly one vertex from among

(&xl),..., (i,xk). Note further that the graph obtained from C, x T by retaining exactly

one vertex from among (&xl), . . . , (i, Xk) corresponding to every support vertex v of T
is isomorphic to C, x sub(T).

For (2), let P be a longest path in C, x T, and let (i,Xj) be a vertex of C,,, x T,
where Xj is an endpoint of T. If at most one terminal vertex of P is of the form (i,xj),

then P must be of length Z(C, x sub(T)). On the other hand, if both terminal vertices

of P are of the form (i,Xj), then P will be of length at most 1 + Z(C,,, x sub(T)). This

follows by an argument similar to that above. 0

P.K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121 105

It follows that c(C,,, x T) is sensitive to the form of T. (See also Lemma 1.5.)

Definition 3. Let G and H be graphs. A subgraph H’ of H is said to participate in a

cycle C of G x H if at least one vertex of C is of the form (u,x), where x E V(H’),

otherwise H’ is said not to participate in C. cl

Lemma 1.5. Let T be a tree.

1. Let m be odd 2 3. If v is a vertex of T whose neighbors are x1,. . . ,xk, where

k > m, then at most m of the vertices x1,. ,Xk may participate in any cycle of C, x T.

2. Let m be even > 4. If v is a vertex of T whose neighbors are x1,. . . ,Xk, where

k > m/2, then at most m/2 of the vertices x1 ,. . , ,xk may participate in any cycle of

a connected component of C,,, x T.

Proof. Let m be odd > 3, and let T, v, and x 1,. . . ,Xk be as stated in (1), where k > m.

For 1 d i < k, let TX, be the largest subtree which includes xi and excludes v. It is easy

to see that xi participates in a cycle of C,,, x T if and only if TX, does. The subgraph of

T induced by {v,xi,. . . ,xk} is isomorphic to Kl,k where v is the “center” of the star.

Clearly, C, x Kl,k is an induced subgraph of C,,, x T.

In order for a subtree TX, to participate in a cycle of C, x T, exactly two edges

of the following form must appear on that cycle: {(Y,v),(Y’,x~)} and {(s,v),(s’,~~)},

where {r, Y’} and {s,s’} are edges of C,,,. Consequently, if p subtrees from among

T X,, . . . , TX, participate in a cycle of C,,, x T, then 2p edges of the foregoing form must

appear on that cycle. Since each such edge includes a vertex of the form (r, v) and

there are exactly m such vertices, it follows that out of TX,, . . . , TX,, a maximum of m

subtrees may participate in any cycle of C,,, x T.

For the case when m is even, recall Lemma 1.2 and the remarks preceding it. 0

By Lemma 1.5, c(C,,, x T) = max{c(C, x T,) ,..., c(C, x T,)}, where {Tl,. . ., T,}

is the set of subtrees of T such that A(Ti) < m if m is odd, and A(Ti) f m/2 if m is

even, 1 < i d r.

Section 2 states results on edge decompositions of C, x P, into long cycles and

long paths, respectively. In particular, exact values are presented for c(C, x P,) and

I(& x P,). Section 3 deals with a path factor of a tree. The purpose is to prepare

ground for the development of a scheme for a long cycle in C,,, x T, where T satisfies

certain degree constraints. The scheme itself appears in Section 4 and constitutes our

main result. Section 5 consists of certain concluding remarks.

2. Preliminary results

Important results of this section include (i) characterizations for the existence of

a Hamiltonian cycle and for that of a Hamiltonian path in C, x T, and (ii) edge

decompositions of each component of C,,, x P,, into long cycles and long paths.

106 P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121

Theorem 2.1. Let T be a tree having n vertices and p endpoints.
1. C,,, x T is Hamiltonian ifs m is odd and T =” K2.
2. If m is odd and n 2 3, then c(C,,, x T) < mn - p, if mn - p is even, and

c(C, x T) < mn - p - 1, otherwise.
3. If m is even and n > 3, then c(C,,, x T) 6 (mn/2) - p, if (mn/2) - p is even, and

c(C,,, x T) < (mn/2) - p - 1 otherwise.

Proof. Let m, n, T be as stated. First note that (i) if m is odd, then C,,, x K2 Z C2,,

and (ii) if m is even, then C,,, x T is disconnected. Next, let m be odd, and let 1,. . . , p
be the endpoints of T, where n > 3. Consider the following vertex subsets of C,,, x T:
5 = {(i, j) (0 d i < m - 1 }, 1 < j < p. Clearly, VI,. . . , VP are mutually disjoint and

every vertex in each of these sets is of degree two. Further, for each Vi, there is exactly

one simple cycle in C, x T, which includes all m vertices of Vj and that cycle is of

length 2m. (See Figs. 1 and 2, where m = 5.) Thus, any simple cycle in C,,, x T which

is of length greater than 2m must exclude at least one vertex from each Vj, 1 < j < p.
Consequently, c(C,,, x T) d mn - p. If mn - p is odd, then c(C, x T) < mn - p - 1.
This is because C,,, x T is a bipartite graph. Statements (1) and (2) follow. For (3),

recall Lemma 1.2 and the remarks preceding it. 0

We next show that the result of Theorem 2.1 is sharp.

Theorem 2.2. Let m,n 2 3.

1. If m is odd and n is even, then c(C,,, x P,) = mn - 2, and C,,, x P,, is edge
decomposable into two cycles, one of which is longest.

2. If m and n are both odd, then c(C,,, x P,,) = m(n - I), and C,,, x P,, is edge

decomposable into two longest cycles.
3.If m and n are both even, then c(C,,, x P,,) = (mn/2) - 2, and each component of

C,,, x P,, is edge decomposable into two cycles, one of which is longest.
4. If m is even and n is odd, then c(C,,, x P,,) = m(n - 1)/2, and each component

of C,,, x P,, is edge decomposable into two longest cycles.

Proof. By Lemma 1.3, it follows that (i) if m and n are both odd, then c(C, x

P,,) < m(n - l), and (ii) if m is even and n is odd, then c(C,,, x P,) < m(n - 1)/2.

Everything else appears in [9]. q

Proof of Theorem 2.2 (l-2) is illustrated by cycle decompositions of CS xP6 and Cs x

P7, which, respectively, appear in Figs. 3 and 4. In each case, the first cycle is a longest

cycle of that graph, and it may be viewed as a sequence u = (io, jo), . . . , (ik__l, jk__l)
of vertices, where (io,jo) = (O,O), (ik-_l,jk__l) = (m - 1, l), and k = mn - 2 (resp.

k = mn - m) if n is even (resp. odd). Because of symmetry, it is easy to see that

the sequence (io + a, jo), . . . , (ik-_l + a,jk-_l) will also correspond to a cycle of the

same size, where 1 < a < m - 1. To this end, Figs. 5 and 6, respectively, consist of

alternative cycle decompositions of C’s x P6 and Cs x P7, which are based on this

P.K. Jha et al. /Discrete Applied Mathematics 74 (1997) 101-121 107

First Cycle _ Second Cycle

Fig. 3. Cycle decomposition of Cs X pfj.

4l6 . .

i6’

First Cycle _ Second Cycle

Fig. 4. Cycle decomposition of C5 x PT.

observation. Again, the first cycle is a longest cycle and corresponds to the sequence

0’ = (i0 + m - l,jo), . . . ,(&_I + m - l,j,+_i).

If m is odd 2 3, and n 3 1, then c(C, x f,) satisfies the following recurrence:

f
0 ifn = 1,

2m
c(C, XP,) =

if n = 2,3,

c(C, x P,._i) + 2m - 2 if n is even 2 4,

c(C, x P,-1) + 2 if n is odd 2 5.

Section 4 makes use of this recurrence. For the case when m is even, a recurrence for

c(C, x P,) is obtainable from the foregoing by replacing “2m" by “m” on the right

108 P.K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121

First Cycle _ Second Cycle

Fig. 5. Alternative cycle decomposition of Cs X P6

46.

First Cycle _ Second Cycle

Fig. 6. Alternative cycle decomposition of C5 x P7.

side. By Lemma 1.4 and Theorem 2.2, if T is a tree such that sub(T) is a path, then

we have an exact value for c(C,,, x T).
The next result deals with decomposition of C, x P,, into long paths.

Theorem 2.3. Let m,n > 3.

1. If m is odd and n is even, then l(C,,, x P,) = mn - 1, and C, x P,, is edge
decomposable into two paths, one of which is a Hamiltonian path.

2. If m and n are both odd, then I(& x P,,) = m(n - l), and C,,, x P,, is edge
decomposable into two longest paths.

3. If m and n are both even, then l(C,,, x P,,) = (mn/2) - 1, and each component
of C, x P,, is edge decomposable into two paths, one of which is a Hamiltonain path
of that component.

P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121 109

4. If m is even and n is odd, then I(& x P,) = m(n - 1)/2, and each component

of C,,, x P,, is edge decomposable into two longest paths.

Proof. By Lemma 1.3, it follows that (i) if m and n are both odd, then Z(C,,, x

P,,) d m(n - l), and (ii) if m is even and n is odd, then I(C, x P,,) d m(n - 1)/2.

Everything else appears in [9]. q

The following recurrence is analogous to that for c(C, x P,) presented earlier:

I” ifn= 1

2m - 1 ifn =2
I(& x P,) =

I(& x P,-I) + 1 if n is odd > 3

Z(C, x P,_I)+2m- 1 if n is even 3 4.

For the case when m is even, a recurrence for l(C,,, x P,,) is obtainable from the

foregoing by replacing “2m” by “m” on the right side. The next result is analogous to

Theorem 2.1.

Theorem 2.4. Let T be a tree having n vertices and p endpoints.

1. C, x T contains a HarniItonian path ifs m is odd and T is an even path.

2. If m is odd and T is not a path, then l(C,,, x T) < mn - p + 1.

3. ff m is even and T is not a path, then l(C,,, x T) < (mn/2) - p + 1.

Proof. First note that (i) if m is even, then C, x T is disconnected, and (ii) C,,, x T

contains a Hamiltonian path precisely when f(C, x T) = mn - 1. By Theorem 2.3, (i)

if m is odd and n is even, then l(C, x P,,) = mn - 1, and (ii) if m and n are both

odd, then I(& x P,) = m(n - 1). Next observe that if m is odd and 7’ is not a path

(in which case, p 3 3), then Z(C, x T) < mn - p + 1. This follows by an argument

as in the proof of Theorem 2.1(2). By a similar reasoning, if m is even and T is not

a path, then I(& x T) 6 (mn/2) - p + 1. tl

3. Path factor of a tree

By a path factor of a graph is meant a spanning subgraph which has at least one

edge, and each of whose connected components is a path (possibly Kr).

Definition 4. Let T be a tree having p endpoints. T is said to admit of a path factor

consisting of a sequence P,,, , . . , P,,_, of paths if

1. p,,,...,p,,_, constitute a vertex decomposition of T,

2. P,, is such that both of its terminal vertices are endpoints of T, and

3. for 2 < i < p - 1, P,,, is a path (possibly K,) exactly one terminal vertex of which

is an endpoint of T. 0

110 P.K. Jha et al. I Discrete Applied Mathematics 74 (19913 IOf-I21

The foregoing statement is easily seen to be well-defined. Path factor of a tree need

not be unique, but every factor (based on our definition) will consist of exactly p - 1

paths, where p is the number of endpoints in the tree. This topic has been an object of

study for long; see [131 and [141. However, there is no unanimity on the definition. In

any event, every formulation may be viewed as a solution to the problem of moving

along edges in order to visit each vertex exactly once.

The present discussion is going to be useful in the next section, where we view a

tree as a collection of vertex-disjoint paths and employ results of the previous section

to obtain a long cycle in each component of C,,, x T. The following procedure is

relevant.

procedure PathFactor(input T: tree; output S: sequence of oriented paths);

(* This procedure builds a sequence of oriented paths forming a path factor of T *)

begin

let P,, = a0 - al - . . - a,,_~ be a path of T, where degr(ao) =

degT(an,-l) = 1;
S := {P,,,}, where P,, is the oriented path a0 + al + ... + a,,_~;

T’:=P,,,; i:= 1;

while T’ # T do begin

let u be a vertex of T’ such that degr,(u) = 2 and degT(u) = Y > 3;

let Pnz+, , . . . ,P,,+,_, be vertex-disjoint paths from (T \ T’) such that each

P,,, is of the form b. - . . ’ - b,,_l, where {u,bo}EE(T) and

degr(b,,- 1) = 1;

let Pnl+, , . . . , Pn,+r_z be the corresponding oriented paths, that is,

Pnk is of the form b. + . . . + bnk_l, where degT(b,,_,) = 1;

s := s u {Pn,,, 3.. .Y pt+_, >;
T’ := (T’ u Pnz+, u . . . u P,,+,_,);

i:=i+r-2

end; (* while *)

end; (* PathFactor *)

Clearly, procedure PathFactor runs in linear time and builds a path factor of T in

the sense of Definition 4. A tree T and a path factor of T appear in Fig. 7. Note that

each path is being oriented towards that terminal vertex which is an endpoint of T.

Purpose is to evolve a deterministic algorithm.

Procedure PathFactor may easily be changed so that the (first) path P,,, in the re-

sulting collection is a longest path of the tree.

4. Main result

We first present a procedure LCycle which constructs a long cycle of C,,, x T, where

IPI is odd and T is homeomorphic from KI,,, 3 < Y SZ m. The cycle thus constructed is

P. K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121 111

i i

i /’ i i
‘1 i /’ .‘\ i 7

‘\i/
l 0 l

D-D-D-D-o-D-0-m •+o4D~*--we+o~o~o

a0 al a2 a3 a4 a5 a6 a7

T A path factor of T

Fig. 7. A tree T and a path factor of T.

shown to be a vertex cover and of length

(%jG x Pd) -2.(s- 1),

where {P,,, , . . , P,,_, } is a path factor of T and s is the number of paths in the factor

which are different from Kl. We will subsequently present a general scheme which

builds on procedure LCycle.

The scheme may intuitively be described as follows. Assuming that T is homeomor-

phic from Kl,, (whence T has Y endpoints), let P,, , . . , P,,_, be a sequence of oriented

paths of T obtainable by means of procedure PathFactor. First let C be the (longest)

cycle of C,,, x P,,, which is similar to the first cycle from Fig. 3/Fig. 4. For k 2 2,

suppose that P,, is different from Kl. The algorithm constructs a longest cycle C’ of

C, x P,,,, and then builds a cycle D from C and C’ by appropriately removing two

consecutive edges from each of C and C’, and by introducing two new edges between

the resulting “horseshoes.” D is subsequently reassigned to C, and if k < r - 2, then

the procedure continues with the next iteration.

procedure LCycle(input C,,,: odd cycle, T: tree; output C: cycle);

(* T is homeomorphic from KI,~, 3 d Y < m *)

(* The procedure constructs a long cycle C of C,,, x T *)

begin

(1) let P,,,...,PRF_, be a sequence of oriented paths of T obtainable

by means of procedure PathFactor;

(* P,, , . . , P,,_, are the corresponding unoriented paths *)

(* T has Y endpoints, hence there are r - 1 paths in the factor *)

(2) let P,, = a0 + al 4 .. + q-1; (* degr(ao) = dw(a,,-l) = 1, nl 2 3 *)
(3) let C be the cycle of C,,, x P,,, prescribed below:

(3a) if nl = 3, then C is the cycle induced by {O,...,m - 1) x {ao,al};

(3b) if nl 2 4, then C is the cycle similar to the first cycle from Fig. 3/Fig. 4;

(* If nl is even, then use the first cycle of Fig. 3 as the template,

112 P.K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121

otherwise use the first cycle of Fig. 4 *)

(* A vertex of the form (s, t) in Fig. 3/Fig. 4 will appear as (~,a,) here *)

(* Note that C is a longest cycle of C, x P,, *)

(4) let ai be the vertex of T such that degr(ai) = r; (* 1 < i < nl - 2 *)

(* ai must appear on P,, , and is actually the center of T *)

(*For2<k<r-1, Pnk=bo+... + b,,_l is such that {q,bo} GE(T) *)

(5a) if ai is such that i is even, then C := CYC-A(C, ai, ai+t, P,,, . . . , P,,_,);

(5b) if ai is such that i is odd, then C := CYC-B(C,ai,ai_t, P,,, . . . , P,,_,);

end; (* LCycle *)

(
***)

function

CYC-A(C: cycle; ui, ai+l : tree vertex; Pi,, . . . , Pjs: oriented path): cycle;

(* Global variables: m, T *) (* i is even *)

begin

(1) p:=o;

q := m - 1;

(2) for k := 1 to s do

(3) if jk 3 2 then begin

(4) let Pjfi = bo t . . ’ -+ bjk_1;

(* _ik 3 2, degT(bo) = 2, degT(bj,-1) = 1 and {ai,bo} EE(T) *)

(5) let C’ be the cycle of C,,, x Pjk specified below:

(5a) if jk = 2, 3, then C’ is the cycle induced by (0,. . . ,m - 1) x {bo, bl};

(5b) if jk > 4, then C’ is the cycle similar to the first cycle from Fig. S/Fig. 6;

(* A vertex of the form (c, d) in Fig. S/Fig. 6 will appear as (c, bd) here *)

(6) construct a cycle D from C and C’ as follows:

(6a) drop the edges (p,ai) - (p + l,ui+t) - (p + 2,ui) from C;

(6b) drop the edges (q, bo) - (q + 1, bl) - (q + 2, bo) from C’;

(6~) introduce the edges (p,ai) - (q, bo) and (p + 2,~) - (q + 2, bo);

(* Vertices (p + 1, uj+t) and (q + 1, bl) are being bypassed by D *)

(* IDI = ICI + JC’(- 2, where ICI denotes the length of C *)

(7) C:=D;

(8) p := p + 2; q := q + 2; (* addition modulo m *)

end; (* if jk > 2 *)

(9) CYC-A:=C

end; (* CYC-A *)

(**~****************)
function

CYC-B(C: cycle; ai, ai- : tree vertex; Pi,, . . . , Pj$: oriented path): cycle;

(* Global variables: m, T *) (* i is odd *)

begin

(1) if i E 1 (mod 4), then p := 1 else p := m - 1;

q := 0;

(2) for k := 1 to s do

P.K. Jha et al. IDiscrete Applied Mathematics 74 (I997/ 101-121 113

(3) if jk > 2 then begin

(4) let Pji = bo -+ ... + bj,_,;

(* jk B 2, degr(bo) = 2, degr(bjk-1) = 1 and {Ui, bo} EE(T) *)

(5) let C’ be the cycle of C,,, x Pjk specified below:

(5a if jk = 2, 3, then C’ is the cycle induced by (0,. . ,m - l} x {bo, bl};

(5b) if jk 3 4, then C’ is the cycle similar to the first cycle from Fig. 3/Fig. 4;

(* A vertex of the form (c,d) in Fig. 3/Fig. 4 will appear as (c, bd) here *)

(6) construct a cycle D from C and C’ as follows:

(ha) drop the edges (p,ni) - (p+ l,ai-t) - (p + 2,~) from C;

(6b) drop the edges (q,bo) - (q + 1,bl) - (q + 2,bo) from C’;

(6~) introduce the edges (p,aj) - (q,bo) and (p + 2,~~) - (q + 2,ba);

(* Vertices (p + 1, q-1) and (q + 1, bl) are being bypassed by D *)

(* IDI = ICI + IC’I - 2, where (Cl denotes the length of C *)

(7) C := D;

(8) p := p + 2; q := q + 2; (* addition modulo m *)

end; (* if jk 3 2 *)

(9) CYC-B:=C

end; (* CYC-B *)

The following technical lemma is based on Theorem 2.2, and will be useful in the

proof of correctness of procedure LCycle.

Lemma 4.1. Let m >, 3, n 2 4, where m is odd, and let C (resp. D) be the longest

cycle of C, x P, illustrated by the first cycle appearing in Fig. 3/Fig. 4 (resp.

Fig. S/Fig. 6).

(a) Cycle C contains [n/2] vertex-disjoint paths, each isomorphic to P~,,,_z, induced

by the sets VO, . . , VL,,,~~ -, , where

vk =

{

({OS..., m-1}x{2k,2k+I})\{(m-2,2k),(m-1,2k+1)},keven

((0 ,..., m - l} x {2k,2k + 1)) \ {(m - 2,2k),(m - 3,2k + l)}, k odd.

(b) Cycle D contains [n/2] vertex-disjoint paths, each isomorphic to Pz,,_-~, induced

by the sets WO, . . . , W,,,,,1_,, where

wk = (IO,..., m - l} x {2k,2k + 1)) \ {(m - 3,2k),(m - 2,2k + l)}, k even

((O,...,m- l} x {2k,2k+l})\{(m-3,2k),(m-4,2k+ l)}, kodd.

For odd m 2 3, the cycle in the graph C, x PlIC,,, x P3 corresponding to { 0,. . . , m -

1) x (0, 1) also contains a path on 2m - 2 vertices as indicated above.

Proposition 4.2. Procedure LCycle correctly constructs a cycle C of C’, x T, where

m is odd and T is a tree which is homeomorphic from K,,,, 1 < r < m.

Proof. Termination being obvious, we establish correctness. Step (1) invokes procedure

PathFactor and obtains a sequence P,, , . . . , P,_, of oriented paths corresponding to a

114 P. X Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121

path factor of T. Path P,,, (mentioned at Step 2) is different from all else in that it

has at least three vertices (including the center of T) and each of its terminal vertices

is an endpoint of T. By results of Section 2, statements at Step (3) are sound. C is a

longest cycle of C, x P,,. Its form is depicted by the first cycle of Fig. 3/Fig. 4. T
has exactly one vertex of degree 1. Step (4) lets ai be that vertex. It is clear that ai

must appear on P,, , 1 < i d 121 - 2.

By Lemma 4.1(a), the following path (g P2,,-3) appears as a part of cycle C:

(O,~i)-(l,~i+l>-(2,Ui)-“’ -(me l,Ui)-(O,Ui+~)-(l,Ui)-“‘-(m-4,Ui),
if i is even,

(l,Ui)-(2,Ui_1)-(3,Ui)-“’ -(O,Ui)-(l,Ui+~)-(2,Ui)-.“-(m-3,Ui),
if i E 1 (mod 4),

(m~1,U~)~(O,U~_~)~(l,Uj)~~~~~(m~l~U~-~)~(O~U~)~(l~U~-~)~~~~~(m~5,U~),
if i s 3 (mod 4).

For the purpose of this discussion, the oriented paths Pj,, . . . , Pjs appearing in the
body of function CYC-AICYC-B may, respectively, be referred to us oriented paths

P PtI-,, @,“‘, which appear in the culling procedure.
Depending on the parity of index i of ai, exactly one of the functions CYC-A

and CYC-B is invoked at Step (5). First suppose that i is even so that control transfers

to CYC-A.

Step (1) of CYC-A initializes two integer variables p and q. The “for” loop,

which runs from Step (2)-(8), consists of r - 2 iterations corresponding to the paths

p,,,...,p,,_,. At each iteration, a longest cycle of C, x P,, is appropriately coupled

with the existing cycle C to yield a longer cycle. If nk = 1, then Steps (4)-(8) are

skipped, since C, x PI (which is an edgeless graph) cannot contribute anything. As-

sume that n,+ Z 2. Step (5) constructs a longest cycle C’ of C, x Pnk. If nk B 4, then

C’ is similar to the first cycle from Fig. S/Fig. 6. This is in contrast to the form of

the cycle at Step (3) of the calling procedure. By Lemma 4.1(b), the following path

(g P2*_-3) appears as a part of cycle C’:

(m - 1,bo) - (0,bl) - (l,bo) - ... -(m- l,bl)-(O,bo)-(l,bl)-a..-

(m - 5, bo).

We now examine Step (6) of CYC-A. The reader may verify that at each iteration of

the “for” loop, the following holds: (i) the segment (p, ui) - (p + 1, ai+]) - (p + 2, ai)

appears in cycle C, (ii) the segment (q, bo) - (q + 1, bl) - (q + 2, bo) appears in cycle

C’, (iii) {p,q) E-&C,), and (iv) the edges (p,ai)-(q,bo) and (p+2,ai)-(q+2,bo)
appear in C,,, x T but not in C or C’. Consequently, Step (6) is sound. The cycle D
thus constructed is reassigned to C at Step (7). Subsequently, each of the two integer

variables p and q is incremented by two. This is done to ensure correct couplings of

cycles C and C’ across two different iterations.

Coupling of cycles is done along a path (having 2m - 3 vertices) of the cycle

constructed at Step (3) of the calling procedure. It is easy to check that at most m - 2

such couplings are possible. This is the reason why A(T) < m. Fig. 8 is a schematic

diagram for the case when m = 5 and T is homeomorphic from K1,3.

P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121 115

. . .
: . .

;

.

.

.

a

.

.

.

i .‘j
1 !
.
. . . .

1 .j
! .:
.

l ---_/...~

. l :

l <‘:-.”
. l :

.<::::::I’

. l :

l ,*’

Before After

Fig. 8. Cycle construction based on procedure LCycle.

If ai is such that i is odd, then control reaches function CYC-B, which is analogous

to CYC-A. The only important difference between the two functions is this: While the

cycle at Step (5b) of CYC-A is after the first cycle from Fig. S/Fig. 6, that at Step

(5b) of CYC-B is after the first cycle from Fig. 3/Fig. 4. Details are omitted. 0

A useful remark on procedure LCycle, and functions CYC-A and CYC-B is in

order. By systematically replacing “Fig. 3/Fig. 4” by “Fig. S/Fig. 6” and vice versa,

and by suitably changing initial values of the integer variables p and q at Step (1)

of CYC-AKYC-B, we can have a scheme which does exactly the same job. The

resulting procedure LCycle’, and functions CYC-A’ and CYC-B’ appear below.

procedure LCycle’(input Cm: odd cycle, T: tree; output C: cycle);

(* T is homeomorphic from KI,~, 3 d Y 6 m *)

(* The procedure constructs a long cycle C of C, x T *)

begin

(3b) if nl 2 4, then C is the cycle similar to the first cycle from Fig. S/Fig. 6;

(5a) if ai is such that i is even, then C := CYC-A’(C,U~,~+~,P,,,,. .., P,,_,);
(5b) if a, is such that i is odd, then C := CYC-B’(C,ai,ai-1, P,,,. ..,P,,_,);
(* All missing steps are identical to the corresponding steps of procedure LCycle *)

end; (* LCycle’ *)

(***~*********************)
function

116 P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121

CYC-A’(C: cycle; ai, ai+i : tree vertex; Pj, , . . . , Pjs : oriented path): cycle;

(* Global variables: m, T *) (* i is even *)

begin

(1) p:=m- 1;

q := 0;

(5b) if jk > 4, then C’ is the cycle similar to the first cycle from Fig. 3jFig. 4;

;4) CYC-A’:=C

(* All missing steps are identical to the corresponding steps of function CYC-A *)

end; (* CYC-A’ *)

(
~******************)

function

CYC-B’(C: cycle; ai, ai-1 : tree vertex; Pi,, . . . , Pj*: oriented path): cycle;

(* Global variables: m, T *) (* i is odd *)

begin

(1) if i= l(mod4), then p:=O else p:=m-2;

q := m - 1;

(5b) if jk 2 4, then C’ is the cycle similar to the first cycle from Fig. S/Fig. 6;

(9) CYC-B’:=C

(* All missing steps are identical to the corresponding steps of function CYC-B *)

end; (* CYC-B’ *) ’

The length of the cycle constructed by procedure LCycle/LCycle’ is easily seen to

be (CFl: c(C, x P,,)) - 2. (s - l), where {P,,, . . . , P,,_, } is a path factor of T and s

is the number of paths in the factor which are different from Ki. Clearly, cycle length

is dependent on path factor of T, which is far from unique. In any event, the cycle

traced is a vertex cover, since the vertices missed are mutually nonadjacent.

The following is a relevant remark with respect to procedure LCycle/LCycle’. Let

ai be the center of the tree T, as stated at Step (4). The vertices (0, ai), . . . , (m - 1, ai)

of $ x T are all of (maximum) degree 2r while remaining vertices are of degree

two’!or four. The reader may verify that all vertices of maximum degree appear on

the cycle constructed by procedure LCycle/LCycle’. See Broersma et al. [3] for useful

characteristics of a cycle which includes vertices of maximum degree.

Timing analysis of procedure LCycle/LCycle’ is in order. Important work consists

of obtaining oriented paths P,,, . . . , P,,_, corresponding to a path factor of T, and

constructing a longest cycle of each of C,,, x P,,,, . . . , C, x P,,_,. As stated in Sec-

tion 3, path factor is obtainable in time linear in the size of T. Further, a longest

cycle of C,,, x P,,, is constructible in time proportional to m . ni. (Precise sequences

P.K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121 117

appear in [o] with respect to a longest cycle in C,,, x Pk.) Thus, the running time is

bounded by a constant multiple of m . (nl + . . . + n,_l) = m . n, where n is the num-

ber of vertices in T. In other words, the procedure runs in time linear in the size of

C,,, x T.

We are now ready to present a general scheme which builds on procedures LCy-

cle and LCycle’, and constructs a long cycle in C,,, x T. T is viewed as a graph

consisting of subgraphs, each of which is homeomorphic from some KI,, where 2 d

r < m.

Definition 5. Let T be a tree having p endpoints, which admits of a factor into a se-

quence P,, , . . . , P+, of oriented paths (obtainable by means of procedure PathFactor)

such that the following conditions are satisfied:

1. If u, v are vertices of T of degree 3 3 and u, u appear on distinct oriented paths,

then distr(u,v) 3 3, and

2. If P& = bfJ + . . 4 b,,_l, then for 0 6 j d [ni/2J - 1, at most one of b, and

bzj+l is of degree 2 3 in T. 0

If T is a tree such that any two distinct vertices of T which are of degree > 3 are

at a distance of at least three, then T necessarily satisfies Definition 5.

procedure LongCycle(input Cm: odd cycle, T: tree; output C: cycle);

(* This procedure constructs a long cycle C of C,,, x T where A(T) < m and

T satisfies Definition 5 *)

begin

(1) let P,, =do - . . . - d,,_, be a path in T, where

degr(&) = degr(dn,-1) = 1, no b 3;
(la) let P,, = do -+ . . . * d,,_l be the oriented path corresponding to P,,, ;

(2) let C be the cycle of C,,, x P,, prescribed below:

(2a) if rz1 = 3, then C is the cycle induced by (0,. . . , m - 1) x {do, dl};

(2b) if nl > 4, then C is the cycle similar to the first cycle from Fig. 3/Fig. 4;

(* A vertex of the form (s, t) in Fig. 3/Fig. 4 will appear as (s,dt) here *)

(* Note that C is a longest cycle of C, x P,, *)

(3) let P,, be colored blue;

(4) T’ := P,,; S := {P,,};

(* T’ is a subtree of T which grows at every iteration of the algorithm *)

(* S is a set of vertex-disjoint oriented paths of T’ *)

(* At end, T’ will equal T while S will correspond to a vertex

decomposition of T *)

(5) while T’ # T do begin

(6) let u be a vertex of T’ such that degr/(u) = 2 and degr(u) = r 2 3;

(7) let P, = a0 -+ . . . -+ a,,_ 1 be the oriented path which contains u;

(* The oriented path P,, must appear in the set S *)

Va) let U = ai, 1 < i < nj - 2;

118 P.K. Jha et al. /Discrete Applied Mathematics 74 (1997) 101-121

(8) let Pk,,..., Pkr_2 be the vertex-disjoint oriented paths from (T\T’) such that each

Pk, is of the form bo ---f * . . + bk,_l, where {ui,bo} GE(T) and

de&-(&,-l) = 1;
(9) systematically couple a longest cycle of each of C, x Pk,, . . . , Cm x Pkr_-2

to the cycle C as follows:

(9a) if P, is colored blue and i is even, then C := CYC-A(C, ai, ai+i , Pk, , , . . , Pk,_2);

Pb) if P,,, is colored blue and i is odd, then C := CYC-B(C, ai, @i-t, Pk,, . . . , Pk,_*);

(9c) if P, is colored black and i is even, then C := CYC-A’(C, ai, ai+i, Pk,, . . . , Pkr_-2);

(94 if P, is colored black and i is odd, then C := CYC-B’(C, ai, ai- 1, Pkl,. . . , Pk,_*);

(10) color each of Pk,, . . . , P,&_-2 as follows:

(10a) if i is even, then the color assigned is different from that of P,;

(* There are just two colors: blue and black *)

(lob) if i is odd, then the color assigned is same as that of P,;

(* All Of Pk,,..., Pk,_* are colored alike *)

(11) T’:= (T’UPk, u...uP&); S:=Su{Pk,,...,Pkr_-l}
end; (* while *)

end; (* LongCycle *)

Proposition 4.3. Procedure LongCycle correctly constructs a cycle C of C,,, x T, where

m is odd and T is a tree such that A(T) < m and T sutisjies Dejinition 5.

Proof. We present an inductive argument for correctness of the algorithm. Important

book-keeping consists of maintaining a subtree T’ of T and a set S of vertex-disjoint

oriented paths of T’. Each oriented path that appears in S is colored either blue or

black. Both T’ and S grow at every iteration of the algorithm. Inductive assertion

consists of the following:

l C is a cycle of C, x T’.
l S consists of oriented paths which constitute a vertex decomposition of T’.
l Each oriented path a0 4 . . . + a,_1 in S is such that a0 - . . . - a,_1 is a path

in T, where degT(u,_1) = 1.

l Suppose that P, = uo -+ . . . + ui -+ . . . -+ a,.-~ is an oriented path in the set S

such that degp(ui) = 2 and degT(ai) 2 3. If P,. is colored blue (resp. black), then

cycle C contains a path P on 2m - 2 vertices similar to that mentioned in Lemma

4.1(a) (resp. Lemma 4.1(b)), where vertices on P are of the form (j,~)/(j,~+i),

if i is even and (j,ui_,)/(j, ai), if i is odd.

Step (1) of the algorithm lets P,,, be the path in a factor of T, where each terminal

vertex of P,, is an endpoint of T. Let P,, be the corresponding oriented path. At Step

(2), a longest cycle C of C, x P,,, is constructed, and at the next step, P,, is colored

blue. Step (4) consists of initializations to (sub)tree T’ and set S. It is easy to see that

induction basis holds.

Let us examine a typical iteration of the “while” loop. Step (6) selects a vertex u

of T’ such that degp(u) = 2 and degr(u) = I 2 3. It is clear that such a vertex exists

in T’. Step (7) lets P, = a0 -+ . . . + a,,_~ be the (unique) oriented path that appears

P.K. Jha er al. IDiscrete Applied Mathematics 74 (1997) 101~121 119

in S and contains u, where nj 2 3. Suppose that u = ai, 1 d i 6 nj - 2. Vertex ai has

Y neighbors in T. Two of them, viz ai- and ai+l, appear on P,,, and hence in T’.
Each of the remaining r - 2 neighbors of ai appears as the first vertex on an oriented

path Pkt, 1 d t d r - 2. This is what is stated at Step (8).

Most of the work is done at Step (9). Depending on the color of P,, and parity of i,

exactly one of (9a)-(9d) is executed, and a longest cycle of each of C,,, x Pk,, . . , C,,, x
Pk,_> is coupled with the existing cycle C leading to a longer cycle, which is again

being called C. Soundness of this step follows from induction hypothesis and from

correctness of procedure LCycle/LCycle’ presented earlier.

At Step (lo), the oriented paths P kl,. , Pkr_z are colored alike. If i is even (resp.

odd), then the color assigned is different from (resp. same as) that of P,,. The pur-

pose of coloring an oriented path is to remember whether function CYC-A/CYC-B

or function CYC-A’/CYC-B’ was used in conjunction with that path. At Step (1 1),

(sub)tree T’ and set S are appropriately updated.

What remains to be shown is that there is no interference between couplings of

cycles at Step (9) across two different iterations of the algorithm. Here is where the

two conditions on the structure of T, stated in Definition 5, come to the fore. Note that

a total of Y - 2 cycles are coupled to the existing cycle at Step (9), where 3 < Y d m.

Let ai be the vertex of degree Y of the oriented path P,,, as stated at Step (7). If i is

even (resp. odd), then vertices ai, ai+i (resp. ai, ai_*) of this oriented path participate

in the coupling during this iteration. Condition (2) of Definition 5 ensures that these

two vertices are not relevant during any other iteration.

Further, if an oriented path Pk, = bs + . + bk,-1 is one of the r - 2 paths

mentioned at Step (9), then the vertices of Pk, which take part in the coupling at that

point are bo and 61. By condition (1) of Definition 5, both bo and bl are of degree at

most two, and it is straightforward to see that these two vertices will not participate

in any other coupling of cycles. For example, if b2 (or b3) is of degree > 3, then the

vertices of Pk, participating during that iteration will be b2 and b3.
To conclude, note that the cycle C, (sub)tree T’ and set S obtained at the end of

the “while” loop conform to the inductive assertion. 0

It is straightforward to see that the cycle of C,,, x T constructed by procedure Long-

Cycle is of length

@~ xl%*)) -2.(s- l),

where p is the number of endpoints in T, {P,,,, . . . , P,,_, } is a path factor of T and

s is the number of paths in the factor which are different from KI. Further, the cycle

traced is a dominating set, since every missed vertex is adjacent to some vertex on

the cycle. In fact, in many cases, the cycle will be a vertex cover. The cycle thus

constructed has the additional characteristic that it includes all vertices of maximum

degree. Note also that cycle length is dependent on the path factor.

120 P. K. Jha et al. I Discrete Applied Mathematics 74 (1997) 101-121

As stated in Section 3, procedure PathFactor could be slightly modified so that it

would always include a longest path in the collection it builds. In this process, diameter

of T will appear in the lower bound on c(C, x T).
Timing analysis of procedure LongCycle is similar to that of LCycle/LCycle’ pre-

sented earlier. The amount of work is governed by construction of a longest cycle of

each of C, x P,,,, . . . , C,,, x P,,,_, , where {P,,,, . . . ,P,,_,} is a path factor of the tree.

Since a longest cycle of C,,, x P,,, is obtainable in time proportional to rn.ni (see [9]), it

follows that the running time of the procedure is O(mn), where n = 111 + . . . + np_l =

number of vertices in T. In other words, the algorithm runs in time linear in the size

of C, x T. This is the best that a sequential algorithm can accomplish with respect to

a nontrivial graph problem.

By Theorem 1.1(3), if m is even, then C, x T consists of two isomorphic components.

We have the following result.

Theorem 4.4. Let m be even > 4. If T is a tree such that A(T) 6 m/2 and T admits

of a path factor (P,,, . . . ,P,,_,) in the sense of Defmition 5, then each component of

C,,, x T contains a cycle whose length is (CL;’ c(C,,, x P,,,)) - 2. (s - l), where p is
the number of endpoints in T and s is the number of paths in the factor which are
difSerent from K1. [7

A proof of Theorem 4.4 consists of appropriately adapting procedures LCycle,

LCycle’ and LongCycle. Details are being omitted.

At this point, suppose that T is a tree which does not conform to Definition 5. In

order to trace a long cycle in C,,, x T, we may first “trim” T to obtain a subtree T’
which is as large as possible and which satisfies that definition. Procedure LongCycle

may subsequently act on C, and T’ and return a long cycle C of C,,, x T’. Clearly, C

will be a cycle in C,,, x T as well.

5. Concluding remarks

Tracing a longest cycle or a longest path in a graph is one of the classical combi-

natorial problems, with potential applications. This paper addresses this question with

respect to C, x T, which is a bipartite graph.

It is demonstrated in Section 1 that the length of a longest cycle/longest path in

C,,, x T critically depends on the structure of T. Section 2 recapitulates and illustrates

important results from [9] on edge decompositions of C,,, x P,, into long cycles and

long paths, respectively. Further, characterizations are established for the existence of

a Hamiltonian cycle and for that of a Hamiltonian path in C,,, x T.
Towards developing an algorithm for a long cycle in C, x T, we view a tree having

p endpoints as a collection of p - 1 paths, which constitute a vertex decomposition of

T. The resulting path factor apppears in Section 3.

P.K. Jha et al. IDiscrete Applied Mathematics 74 (1997) 101-121 121

Main result of this paper consists of a scheme LongCycle in Section 4, which traces

a long cycle in C,,, x T, where m is odd and T is a tree that satisfies certain degree

constraints. The algorithm carefully employs results of the preceding sections. The

scheme thus obtained is easily adaptable for the case when m is even.

Certain questions arise: (1) Several results on c(C, x T) are stated as inequalities;

are there examples where equality fails?, (2) Is it possible to devise an improvement

upon procedure LongCycle so that the algorithm traces a long cycle of C, x T, where

(a) conditions on the input tree T, as stated in Definition 5, are weakened, and (b) the

cycle thus traced is still a vertex cover/dominating set?

Acknowledgement

We are grateful to the referee whose detailed commentary on the earlier draft led to

a substantial improvement in the presentation of the paper.

References

111

PI

[31

[41

151

161
171

181
[91

1101

IllI
1121

[I31

[I41

[I51

V. Batagelj and T. Pisanski, Hamiltonian circuits in the Cartesian product of a tree and a cycle,

Discrete Math. 38 (1982) 311-312.

J.-C. Bermond, A. Germa and M.C. Heydemann, Hamiltonian cycles in strong products of graphs,

Canad. Math. Bull. 22 (1979) 305-309.

H.J. Broersma, J. van den Heuvel, H.A. Jung and H.J. Veldman, Cycles containing all vertices of

maximum degree, J. Graph Theory 17 (1993) 373-385.

M. Farzan and D. Waller, Kronecker products and local joins of graphs, Canad. J. Math. 29 (1977)

255-269.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness (W.H. Freeman and Co, San Francisco, CA, 1979).

F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

S.T. Hedetniemi, Homomorphisms of graphs and automata, Tech. Report 03105-44-T, Univ. of

Michigan, Ann Arbor, MI, 1966.

W. lmrich and H. Izbicki, Associative products of graphs, Montas Math. 80 (1975) 277-281.

P.K. Jha, Decompositions of the Kronecker product of a cycle and a path into long cycles and long

paths, Indian J. Pure Appl. Math. 23 (1992) 585602.

P.K. Jha, S. Klaviar and B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs,

submitted for publication, 1994.

P.K. Jha and G. Slutzki, A note on outerplanarity of product graphs, Zastos Math. 21 (1993) 537-544.

H.A Jung, S. Kyaw and B. Wei, Almost-Hamiltonian graphs, in: R. Bodendiek, ed., Contemporary

Methods in Graph Theory (Bibliographisches Institut, Mannheim, 1990) 409427.

P.J Slater, Path coverings of the vertices of a tree, Discrete Math. 25 (1979) 65-74.

Z. Skupien and W. Zygmunt, Generating all maximum path-factors of a tree, in: Colloq. Math. Sot

Janos Bolyai 42, Algebra, Combinatorics and Logic in Computer Science (North-Holland, Amsterdam,

1986) 711-717.

P.M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Sot. 13 (1962) 47-52.

