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Exercise 1.

1.) Show that the Euler equations of motion in spherical coordinates for the
r and θ velocities are
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r sin θ∂φ

Exercise 2.

2.) “Flying fish” can attain a velocity of about 15 m per sec as they leave
the water, and can move through the air over distances of about 10 m. Adult
flying fish have a mean size (characteristic dimension) L of 30 cm. The object
of this execise is to see how much we may deduce from simple scaling law
arguments, assuming that all fish lengths scale with L.

2a.) Show that in both water and air, the Reynolds number Re associated
with these dimensions is large.

2b.) For large Re flow, motion at a velocity U creates an adverse pressure
proportional to ρU2. Under the assumption that the power required to over-
come this pressure resistance (and dissipation) is proportional to the mass
of the fish, show that U ∝ L1/3, that the velocity required to move the fish
is proportional to the one-third power of its characteristic length.

2c.) In the air, are the fish “flying” (meaning that only a small fraction of
the maximum possible lift force will support the fish), moving ballistically
(maximum lift force always negligible), or gliding (maximum lift force could
be significant)? Assume that a fish has a density equal to that of water, 1 g
cm−3.
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Exercise 3.

3.) In a glass of water, the liquid surface can actually be a little higher than
the highest part of the glass. A glass is usually circular, but to make the
mathematics simple, our glass is shaped like a “U”, as shown on page 6. The
edges are at x = ±L, the glass in infinite in the y direction, and we wish to
find the height η(x) above the surface z = 0, in a static equilibrium.

3a.) Show that η satisfies an equation of the form

Aη − B
d2η

dx2
= C (1)

where A, B, and C are constants. Evaluate A and B in terms of the surface
tension γ, density ρ, and gravitational acceleration g. Show that the pressure
P does not depend upon x and prove that C = P at η = 0. Hence C is not
known in advance.

3b.) Show that the solution to the differential equation, subject to the bound-
ary condition η(±L) = 0 is

η(x) = h

[

cosh(αL) − cosh(αx)

cosh(αL) − 1

]

(2)

where
α2 = ρg/γ (3)

and h is the maximum height of the water. Evaluate the “capillary length”
1/α. Plot η(x) for the case αL >> 1. (Your plot need not be exact, but it
should show important qualitative features.)

Exercise 4.

4.) A viscous flow is present in a region R > a, where R and φ are cylindrical
coordinates. There is a cylinder at R = a rotating at angular velocity Ω,
which induces a rotation velocity vφ(R) in the fluid. It also provides a uniform
suction (“aspiration,” en français) that induces an inward radial velocity
vR(R). vR = −U at R = a. Therefore, the flow passes directly through the
cylinder in the radial direction, but satisfies the no-slip boundary condition
vφ(a) = aΩ.

4a.) Prove that vR(R) = −Ua/R.
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4b.) Prove that (be careful with ∇2!):

R2
d2vφ

dR2
+ (Q + 1)R

dvφ

dR
+ (Q− 1)vφ = 0 (4)

where Q = Ua/ν is the Reynolds number at the cylinder.

4c.) Solve this equation exactly together with the boundary condition at
R = a. Show that if Q < 2, there is a unique solution with finite circulation
2πRvφ as R → ∞, but that if Q > 2 the solution is not unique! The Navier-
Stokes solution does not necessarily have a unique solution for a given set of
boundary conditions.

Exercise 5.

5. Describe the phenomenon of “boundary layer separation.” What causes
it? Why is it dangerous for aircraft?
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USEFUL RESULTS.

Spherical unit vectors:

er = (sin θ cos φ, sin θ sin φ, cos θ)

eθ = (cos θ cos φ, cos θ sin φ,− sin θ)

eφ = (− sin φ, cosφ, 0)

Nonvanishing derivatives of spherical unit vectors:

∂er

∂θ
= eθ

∂er

∂φ
= sin θeφ

∂eθ

∂θ
= −er

∂eθ

∂φ
= cos θeφ

∂eφ

∂φ
= −(sin θer + cos θeθ) = −eR

Surface tension of water ≃ 0.07 J m−2. η(gas) ≃ 2 × 10−5 kg m−1 s−1.
ρ(air) = 1.2 kg m−3. ν(water)= 10−6 m2 s−1. η(water)= 10−3kg m−1 s−1.

ω = −
2Ω sin θ

r

ky

k2
, dx = rdθ, dy = r sin θ dφ
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)

ρ
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R

)
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∇
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2
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−

vφ

R2

)

1

R

∂(RvR)

∂R
+

1

R

∂vφ

∂φ
+

∂vz

∂z
= 0
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