
Lecture 8 

Energy transport by convection  

It is possible to calculate stellar models assuming that energy transport takes place 
through radiation alone. Such models do not provide a realistic description of real stars, 
however, because in general they are unstable. 

Any theoretical model should be tested for possible instabilities, before it can be 
accepted as realistic. An instability manifests itself through the growth of any small 
disturbance with time, often exponentially. If the characteristic growth time is less than 
the evolutionary time scale for the star, the disturbance may in the end dominate the 
properties of the star. A particular type of instability is often found, namely the 
instability corresponding to having a layer of higher density on top of a layer with lower 
density. 

An extreme analogy to this instability would be a glass where a layer of mercury had 
been placed on top of a layer of water. This is evidently an unstable situation. 

In a star this type of instability can occur if the temperature decreases too rapidly with 

distance from the center. The decrease of pressure with r is determined by hydrostatic 
equilibrium, and is therefore largely given, and the only possibility for compensating for 
a rapid decrease in temperature  is therefore, according to the ideal gas law, that the 
density decreases slowly or even increases; this leads to the instability. From the 
equation for radiative transfer (7.18) it follows that that the temperature decreases 

rapidly with increasing r when the opacity is high or the luminosity is high. 

As a result of the instability hotter, relatively light elements of fluid rise and cooler, 
relatively heavy elements sink. When the motion gets sufficiently strong, the elements 
are dissolved and the gas is mixed. As a result, the rising elements deposit their excess 
heat to the surroundings, and this leads to a net transport of energy out through the 
star. This process is called convection, and the instability is called convective instability. 
Convection is well known from everyday life, for example when air raises over a heater. 
Besides contributing to the energy transport, convection also leads to mixing of the 
parts of the star where it occurs, which has a substantial effect on the evolution of some 
stars. 

8.1. The instability condition 

To determine the condition for instability we consider an element of gas (Figure 8.1) 

which is moved the distance Δr outwards. 



 

Figure 8.1. The motion of a convective element, from the initial position, indicated by 
“1”, to a later position, indicated by “2”. 

As indicated we denote the pressure and density outside (inside) the element before and 

after the motion by P1 , ρ1, (Pe1, ρe1), and  P2 , ρ2, (Pe2, ρe2). The element is initially 

identical to its surroundings, so that Pe1=P1 and ρe1=ρ1. Its motion is determined by 
buoyancy, which in turn is given by the difference in density between the element and 
its surroundings (think of a cork pushed down into water). The force per unit volume at 
the point 2 is 

               (8.1) 

where g=Gm/r2 is the gravitational acceleration. If fbuoy>0 the force on the element 
is directed outwards, and the motion is accelerated; hence this corresponds to 
instability. In the opposite case the force is directed downwards, the element has a 
tendency to return to its original position, and the situation is stable. 

To determine Δρ , and hence decide whether between stability and instability, we 
assume that 

(a)            the element is always in pressure balance with the surroundings; 

(b)            the motion is fast enough so that there is no heat exchange between the 
element and the surroundings. 

From assumption (a) we have P2e=P2. Assumption (b) expresses that the motion takes 
place adiabatically; from equation (3.33) it therefore follows that 



                              (8.2) 

where dρe and dPe are the changes in ρ and P inside the element. From Taylor 
expansion we therefore obtain 

 (8.3) 

where we introduced 



                                    (8.4) 

the density  gradient resulted from adiabatic motion in the given pressure gradient. 

The condition for instability is that Δρ<0 (see equation (8.1)), i.e. 

                                                 (8.5) 

Note that for a completely ionized ideal gas 1/γ=3/5 . 

The instability condition is normally expressed in terms of the gradient in temperature, 
rather than the gradient in density. We use the ideal gas law, written in the form 

                                               (8.6) 

It is normally assumed that the chemical composition is independent of position. If we 

further assume that the gas is fully ionized, μ is constant, and we obtain by 
differentiation 

                             (8.7) 

This leads to 



  (8.8) 

Hence the instability condition becomes 

                                          (8.9) 

where 

                              (8.10) 

is the adiabatic temperature gradient. In analogy with equation (8.5), equation (8.9) 
can also be written as 



                                          (8.11) 

This equation shows that there is instability if the temperature decreases too rapidly out 
through the star, in perfect agreement with our simple discussion. For a fully ionized 

ideal gas, (γ-1)/γ=2/5. 

  

8.2. Where does convection occur? 

To determine the circumstances under which one may expect convection, we consider a 
model where energy transport takes place through radiation and investigate its stability. 
Here (equation 7.18) 

                               (8.12) 

By using the equation for hydrostatic equilibrium (4.5) and the ideal gas law (8.6), we 
have 

           
(8.13) 

From equations (8.11) and (8.13) it is evident that, roughly speaking, one may expect 
convection if 

(a)            L(r)/m(r) is large. This condition expresses  that the average rate of energy 

generation per unit mass within the radius r is large. This is typically the case 
in the interiors of massive stars. The energy generation in such stars is a 
rapidly increasing function of temperature (cf. equation  (6.11)) and hence is 

strongly concentrated towards the center of the star. Therefore L/m is large, 
and the star has a convective core. 



(b)            κ is large. This is satisfied in the outer parts of relatively light stars on the 
main sequence, or more generally in stars with low surface temperatures, 
where the temperature in the outer parts of the star is low, and the opacity 
consequently high (cf. equation (7.19)). A further contribution to the high 
opacities in these regions comes from the ionization of hydrogen. 

(c)             ρ/T3 is large. This is also typically satisfied in the outer parts of relatively cool 
stars.  

(d)            (γ-1)/γ , i.e. the adiabatic temperature gradient, is small. This is satisfied in 
the ionization zone of hydrogen, i.e. again in the outer parts of cool stars. 

Thus condition (a) predicts convection in the core of massive stars, whereas the 
remaining conditions indicate a tendency for convection in the outer parts of cool 
stars, i.e. in relatively light stars on the main sequence, and in the so-called red 
giants. These locations of convection zones are summarized in Figure 8.2. 

  

Figure 8.2. The typical occurrence of convection zones in main-sequence stars. In 
relatively massive stars there is a convective core, whereas in relatively light stars on 
the main sequence, and in general in stars with low effective temperature, there is an 
outer convection zone.  

  

8.3. Energy transport by convection. 

The motion of a convective element after the onset of instability is extremely difficult 
to describe. As a result, there is no definitive method for calculating the motion or 
the convective energy transport. Presumably the velocity of the element increases up 
to the point where new hydrodynamical instabilities set in, making the motion 
turbulent and dissolving the element. In this way the excess heat in the element is 
deposited in the surroundings, hence leading to energy transport. The description of 
such turbulent process is, and has for a long time been, the subject of intensive 
investigations. A satisfactory understanding, or sufficiently efficient methods for 
numerical computation, has not been achieved so far. We are still very far from 
incorporating a complete numerical description of convection into computations of 
stellar models. 

Fortunately a less complete description is adequate for such computations, at least as 
far as the overall properties of the stars are concerned. This only requires a relation 
for the temperature gradient required to transport the luminosity by convection, to 
replace equation (8.12) for radiative transport. It is possible to make a very rough 
estimate of the relationship between the temperature gradient and the luminosity. 



This is carried out in the remainder of this section. The result is that in most of the 
star the temperature gradient is only slightly steeper than the adiabatic gradient 
determined by equation (8.10). 

As usual in these estimates, we neglect factors of order unity, and make rough 
approximations of the physics involved. We assume that a given convective element 

moves a distance Δr, before being destroyed. In the destruction, the surroundings 

receive the energy Δu ρcPΔT per unit volume, where 

                    (8.14) 

is the temperature difference between the element and the surroundings. If the 

mean speed of the element is v, the convective energy flux can thus be estimated as 

                                   (8.15) 

To obtain an estimate of v we equate the kinetic energy ρv2 of the element 

per unit volume to the work of buoyancy over the distance Δr. From equations (8.1), 

(8.3) and (8.8) we obtain (neglecting the factor ) 



 (8.16) 

To simplify the notation, we introduce the dimensionless measure 

                         (8.17) 

of the departure of the temperature gradient from its adiabatic value. Then we finally 
obtain 

   
   (8.18) 

and hence the convective luminosity 



 (8.19) 

In the interior of the star we can estimate Lcon as 

                  (8.20) 

where we used that tdyn (R/g)1/2 (equation 1.3), and U ρcPTR3 is the 
total internal energy of the star. This equation has a simple physical interpretation. If 

we neglect the factor (Δr/R)2 we have that Lcon (Uδ)(δ1/2/tdyn). Here Uδ 

is a measure of the internal energy that is transported; the factor δ reduces the 
energy transport, since it is only the excess internal energy which contributes to the 

energy transport. Correspondingly tdyn /δ1/2 
is the convective timescale tcon , which 

can be defined as 



 (8.21) 

which determines the time taken to transport the energy; tcon is a dynamical 
timescale, but the effective gravitational acceleration is reduced, since it is only the 
difference in density which provides the force. Therefore the timescale is increased by 

the factor δ-1/2 
. 

In the case of radiative transport the temperature gradient was determined as being 
sufficiently large to transport the energy by radiation. Correspondingly, in the case of 

convection, δ must be sufficiently large that the energy can be transported by 

convection. If we assume that L=Lcon we obtain 

                (8.22) 

using tKH U/L (cf equation (1.6) and discussion which follows it). In the interior 

of a star we may assume, roughly, that Δr R . Using the values tdyn  and tKH  
for the Sun, we obtain 



                                        (8.23) 

Although these estimates are very uncertain, it is obvious that even an extremely 
small superadiabatic gradient is sufficient to transport the entire energy by 
convection. This simplifies the treatment of convection tremendously: at a given 
point in the star one determines, by means of equation (8.11), whether the layer is 

unstable; if this is the case, energy transport occurs through convection, and δ 
0, and hence 

               (8.24) 

At such a point equation (8.24) replaces the usual equation (8.12) for the 
temperature gradient. 

From equations (8.21, 8.22) we can estimate tcon as 



 

                                                              (8.25) 

Assuming again that Δr R, we  find in the case of the Sun that tcon 
1year. This is much shorter than the characteristic evolutionary time scale. Over a 

time scale not much longer than tcon matter in a convection zone must be completely 
mixed. Hence, we can assume that convection zones are chemically homogeneous 
with the same chemical composition everywhere. 

  

8.4. Numerical calculation of stellar structure. 

One almost always considers the evolution of a star of a given mass. Hence it is 

convenient to rewrite the equations of stellar structure with the mass m=m(r) as 

the independent variable. This may be done by noting that for any quantity  



             (8.26) 

by using equation (4.7). 

By transforming equations (4.7), (4.5), (6.1), (8.12) and (8.24) in this manner, we 
obtain the following set of equations: 

                                     (8.27a) 

                                     (8.27b) 

                           
                  (8.27c) 



 

                                                            (8.27d) 

These equations must be supplemented by expressions for ρ , γ , κ and ε , as 

functions of P , T and the chemical composition. As we have seen, these expressions 
are obtained from thermodynamics, atomic physics and nuclear physics. 

The differential equations (8.27) must be supplemented by suitable boundary 
conditions. At the stellar center, we have obviously 

                               (8.28) 

For the surface of the model, we can choose the point where T=Teff . What we need 
as the outer boundary condition, is the value of pressure at this temperature. 

In the stellar atmosphere the photons are radiated directly to space, without being 
substantially absorbed, and hence the transport of energy does not require a big 
temperature gradient, and the energy can be transported by radiation. The optical 
properties of the atmosphere are usually described in terms of the so-called optical 
depth, defined as 

                                          (8.29) 



Since 

,where λph is the mean free path of the photon  (equation 7.2 of Lecture 7), a photon 
can be radiated directly to space from layers which have an optical depth of about 1 
(or smaller). 

Rewriting equation (7.16) for the diffusive flux of radiative energy F as 

                   (8.30) 

we have 

  
                          (8.31) 

since the thin atmosphere can be considered as a plane-parallel layer with 

dF/dr=0.  

Of coarse, the equation (7.16), and hence equation (8.31), become invalid when one 
approaches optically thin layers high in the atmosphere. Because of the increasing 
density, the mean free path of the photons will there become comparable with (and 
finally larger than) the distance which is left for the photons to reach the free space; 
hence the whole diffusion approximation breaks down, and one has to solve the far 
more complicated full set of transport equations for radiation in the stellar 
atmosphere. 

We can employ equation (8.31) in lower atmosphere, where the diffusion 
approximation becomes relevant, but we need the value of the constant of 
integration which appears in this equation. The theory of stellar atmospheres 
suggests the value of 2/3 as a simple approximation for this constant, and we obtain 

                                 (8.32) 



Using the definition of the effective temperature Teff (equation 2.13 of Lecture 2), we 
also have 

                              (8.33) 

and hence equation (8.32) can be rewritten as 

                            (8.34) 

which shows that T=Teff when 
. This level in the atmosphere is known as photosphere; it is the level from where the 
bulk of the radiation is emitted to space. 

To evaluate the photospheric value of pressure, we define a mean opacity 

 , averaged over the stellar atmosphere above the photospheric radius 

Rph, by the relation  

                         (8.35) 

We now approximate the gravitational acceleration in the atmosphere by a constant 

value GM/Rph
2, and obtain 



          (8.36) 

Together with L=4πR2σT4, this is the required surface boundary condition, applied 

at T=Teff. 

More accurate surface boundary conditions, which are implemented in modern 
numerical computations, can be formulated as follows: the inner solution shall fit 
smoothly to a solution of the stellar-atmosphere problem. 

                            

Figure 8.3. Hertzsprung-Russel diagram of the zero-age main sequence computed for 
the composition X=0.685, Y=0.294. The location of several models with masses 
between 0.1 and 22 solar masses are indicated below the sequence (from 
Kippenhahn and Weigert 1990, Stellar Structure and Evolution, Springer-Verlag). 

As an example of the numerical results, Figure 8.3 shows the location of the main-
sequence stars of uniform chemical composition (the so-called zero-age main 
sequence) on the theoretical H-R diagram (cf Figure 2.4). 

 


