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Lecture 6  

Nuclear energy generation  

 

Figure 6.1. The p-p chain. 

During most of their lifetimes, stars derive the energy which they radiate from 
nuclear reactions. The gradual change in chemical composition as the reactions 
proceed determine the evolution of the stars. Hence, to follow the life history 
of a star, it is important to understand the properties of the nuclear reactions. 

The first goal is to compute the rate ε of energy generation per unit mass, 

which determines the stellar luminosity L as 
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      (6.1) 

An additional consequence of the nuclear processes is a gradual change of the 
chemical composition, which controls the evolution of the star. Hence we must 
also determine the rate of change of the abundances. The computation can be 
separated into three parts: the cross section for a reaction between a pair of 
nuclei, which is determined predominantly by the properties of the nuclei; the 
amount of energy generated per reaction, which again is a property of the 
nuclei; and the total reaction rate which, besides the cross section, also 
depends on the statistics of the motion of the nuclei. 

In this Lecture, we will not go into details of these computations, which 
constitute an extensive and ongoing research effort. We will only describe 
qualitatively the most important thermonuclear reactions in stars, and consider 

some simple  estimates for the energy generation rate ε which result from 
these computations. 

  

6.1. Barrier penetration 

The reaction between nuclei is caused by the strong force acting between 
nucleons (protons and neutrons). The range of the strong force is essentially 
limited to the extent of the nucleus; hence, for a reaction to occur the nuclei 
must be brought so close together that they essentially tauch, and this 
requires that the Coulomb repulsion between them must be overcome. Hence 
the potential for a reaction is as indicated in Figure 6.2. 
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Figure 6.2. Schematic potential energy between two nuclei. For r<r0 the 

attractive nuclear forces dominate; for  r>r0  Coulomb repulsion dominates. 

The magnitude of the difficulty in achieving a reaction may be appreciated by 
noting that the height of the Coulomb barrier at the surface of the nucleus, 

corresponding to a typical radius of r0  10-13 cm, is 

                       (6.2) 

where Z1 and Z2 are the atomic numbers of the nuclei taking part in the 

reaction, and e is the electron charge. This is consistent with the fact that 
typical nuclear energies are in the MeV range (1 eV = 1.60×10-19 J). In 
contrast, the average kinetic energy of the nuclei is 

               (6.3) 

(cf equation 3.3). Since typical temperatures in the cores of hydrogen-burning 
stars are 1-2×107K, the average kinetic energy is roughly three orders of 
magnitude smaller than the energy required to overcome the potential barrier. 
Even taking into account the distribution of energies, essentially no reactions 
would be possible within the framework of classical mechanics. 

What makes reactions, and hence ultimately our existence, possible is that 
according to quantum mechanics, there is a finite probability that the nuclei 
may tunnel through the barrier and react. Even so, the extent of the barrier 
means that the probability that the nuclei penetrate the potential barrier is 
small. Thus, in fact the nuclear burning in stellar interiors is generally a very 
slow process. 
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The energy produced in the reactions is released as kinetic energy of the 

particles which result, as well as in some cases in the form of γ photons. This 
energy is redistributed among the other constituents of the gas through 
collisions, and through absorption of the photons. As a result of the 
assumption of thermodynamic equilibrium in the gas, the details of this 
redistribution process is irrelevant; all that matters is the total amount of heat 
that is added to the gas. An exception to this general statement results in the 
cases where neutrinos are emitted in the reaction. Because of their extremely 
small interaction cross section, in almost all cases these do not react with 
other particles in the gas but escape directly from the star. 

The total energy generation rate is obviously the sum over all possible 
reactions. Similarly, to evaluate the total rate of change of the abundance of a 
given element, we must take into account both the reactions that destroy and 

the reactions that create the element. Thus the computation of ε and the 
evolution of the chemical composition require careful consideration of the 
possible reaction network. 

  

6.2. Hydrogen burning 

During most of their life, stars derive their energy from the fusion of hydrogen 
into helium. This reaction may be written schematically as 

                         (6.4) 

The release of the two positrons is required to maintain charge balance, and 
results from the conversion of two protons into neutrons. Due to the 
requirement of lepton number conservation, the emission of two anti-leptons 
(the positrons) must be balanced by the emission of two leptons, the two 
electron neutrinos. 

It is obvious that the reaction does not take place as indicated in equation 
(6.4): the probability that four protons come together and react at one point is 
entirely negligible. Instead the reaction may proceed through a number of 
different paths, which we discuss in more detail below. Regardless of these 
details, we can determine the total amount of energy liberated in the reaction 
(6.4), using the equivalence between mass and energy, from the difference in 
mass between the particles entering on the two sides of the reaction. The 
result is 
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 (6.5) 

In calculating accurately the energy generation rate ε , we must subtract the 
neutrino energy, since neutrinos escape directly from the star. This correction, 
however, depends on the detailed reactions in which the neutrinos are 
produced. 

In principle, all possible reactions between the constituents of the gas must be 
considered, to determine which reactions dominate. The outcome is that there 
are two basically different ways (each with some variations) in which the 
overall reaction (6.4) may be accomplished: one (the PP-chains) which directly 
involves fusion of protons, the second (the CNO-cycle) in which the fusion 
occurs through a sequence of reactions involving C, N and O, which effectively 
act as catalysts.  

The PP-chains 
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Figure 6.3.  The PP-chain. The relative frequencies of the three branches refer 
to the recent Sun. 

The first reaction in the PP-chain (reactions numbered by 1 and 2 in Figure 
6.3) is the collision of two protons, which leads to the formation of 2H 
(deuterium). Despite having the lowest possible Coulomb barrier, this reaction 
is by far the slowest in the PP-chain. The reason is that this reaction involves 
the conversion of a proton into a neutron through the effect of weak 
interaction; this leads to an extremely small cross-section factor. Hence the 
combined rate of energy generation is controlled by this reaction. The 
remaining reactions are in equilibrium, in the sense that equal amounts of 2H 
and 3He are produced and destroyed. 

After formation of 3He, the PP-chain can proceed in three separate branches 
(Figures 6.1 and 6.3). The branching ratios between the different parts of the 
PP-chain depend on the balance between the competing reactions, and hence 
on the temperature. Under the conditions in the solar core the PP-I chain 
dominates, and the PP-III chain makes a very small contribution to the energy 
generation. On the other hand, the PP-III chain is very important for attempts 
to detect solar neutrinos: due to their high energies, the neutrinos from this 
chain dominate the measurements in the 37Cl detector, and only the PP-III 
neutrinos can be seen by the detector based on neutrino scattering in water. 
Since the electron capture in 7B depends weakly on temperature, the branching 
ratio between the PP-II and the PP-III chains, and hence the flux of PP-III 
neutrinos, in principle provide a very sensitive measurement of the 
temperature in the solar core. 

As for the PP-I chain, the subsequent reactions in the PP-II and PP-III chains 
may be assumed to be in equilibrium; hence the reaction rates in these chains 
are determined by the rate of production of 3He, and therefore again by the 
very first reaction in the PP-chain. The combined energy generation rate from 
the PP chains depends somewhat on the branching between the different 
chains, but as a first approximation these complications may be neglected. 
Calculation of the reaction rates then lead to a simple estimate of the energy 
generation rate in the PP chain, appropriate for typical stellar conditions, as 

        (6.6) 

where X is hydrogen mass fraction. A more general expression is 
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              (6.7) 

with some constant value of ε0 . 

Using equations (6.1) and (6.7), and assuming hydrogen abundance X uniform 
in stellar interior, the total luminosity then estimates as 

                           (6.8) 

When the star is approximated by a polytrope of index n , we have ρ=ρcθn
 

(equation 5.5), T=Tcθ (equation 5.20), r=(R/ξ1)ξ (equations 5.7, 5.10), 
and hence 

   (6.9) 
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With Tc  Mµ/R specified by equation (5.21), and ρc  M/R3 specified by 
equation (5.16), we obtain a simple scaling relation 

                                  (6.10) 

where µ is mean molecular weight, and An depends on the polytropic index n 
only. 

--------------------------------- 

Exercise 6.1. Fill in the missing steps in deriving equation (6.10). 

---------------------------------- 

  

CNO cycle 

 



 10

Figure 6.4. The CNO cycle. 

A second sequence of reactions is possible in stars that contain C, N and O. 
This is shown in Figure 6.4. The reactions start with 12C and proceed through a 
sequence of proton captures, interrupted by positron decay (with emission of 
neutrinos) to convert protons into neutrons; 12C is produced at the end of the 
sequence of reactions, and therefore acts as a catalyst. 

The conversion of 14N to 15O has the smallest probability amongst the reactions 
in the cycle; hence, once the cycle operates in equilibrium, this reaction 
determines the overall reaction rate. Calculation leads to an estimate of the 
energy generation rate in the CNO cycle, appropriate for typical stellar 
conditions, as 

   (6.11) 

Here we assumed that the total abundance of CNO elements is a fixed fraction 

of the total heavy element abundance Z . A more general expression is 

          (6.12) 

We see that the energy-generation rate from the CNO cycle is much more 
temperature-dependent than the energy-generation rate for the PP-chains. 
Hence the PP-chains dominate at relatively low temperature, whereas the CNO 
cycle dominates at relatively high temperature. From the estimate of the 
stellar internal temperature in section 4.2, we therefore expect the CNO cycle 
to be important in massive stars. 

  

6.3. Later reactions 
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After the exhaustion of hydrogen, the next reactions that may take place 
involve 4He. Indeed, given that the 3He + 4He reaction plays a role in the PP-
chains, one might have expected that the 4He + 4He reaction could also have 
set in during hydrogen burning. That this is not the case is due to the fact that 
there are no stable nuclei with atomic weight eight. Thus 4He-burning has to 
take place through the so-called triple-alpha process: 

                                     (6.13) 

In practice the probability that three 4He should come together at precisely the 
same time is negligible, and hence the reaction actually occur through the 
generation of 8Be. But since 8Be is unstable, with a mean lifetime of 
approximately   10-14 seconds, the complete reaction requires that the third 4He 
arrives within a very short time after the initial reaction. Thus the reaction is 
effectively a three-body process. Typical temperatures where it takes place is 
1-2×108K.  

The triple-alpha reaction is followed by successive α-captures by 12C, 16O, and 
so on.  

When helium is exhausted, the next element to react is 12C. This takes place at 
temperatures around 5-10×108K. Following the 12C exhaustion, the next lowest 
Coulomb barrier is in the reaction between two 16O. This reaction occurs at 
temperatures exceeding 109K. 

A detailed discussion of these reactions, as well as of the reactions involved in 
the helium burning, was given by Clayton (Clayton D. D., 1968, Principles of 
Stellar Evolution and Nucleosynthesis, McGraw-Hill, Ney York). 

Further exercises 

Exercise 6.2. For a star in which X=0.74 and Z=0.02, calculate the 
temperature at which the rate of energy generation from the PP-chain is the 
same as from the CNO cycle. 

In a second star, X=0.7 and Z=0.001. What percentage of the energy 
generation in this star now comes from the CNO cycle, assuming the 

temperature to be the same as in the first star.   

Solution to Exercise 6.2. 

We have the energy generation rate from the pp-chain (equation 6.6) the 
same as from the CNO cycle (equation 6.11): 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution6_2.htm


 12

 

hence 

 

For the second star, 
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Hence 

 

 

Exercise 6.3. In a given star of polytropic structure, due to nuclear burning in 

the PP chain, X changes in time from 0.8 to 0.4. Assuming n , M and R 
have not changed, determine the percentage change in the luminosity.  

 

Solution to Exercise 6.3. 

Using equation (6.10), 

 

hence 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution6_3.htm
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and with  , we have 

 

 

Exercise 6.4. In a set of polytropic stars of the same polytropic index and of 

the same chemical composition, ρcTc
4.5 is the same for all of them. Show that if 

the energy generation is through the PP chain only, then, for these stars, 

luminosity L is proportional to mass M.   

Solution to Exercise 6.4. 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution6_4.htm
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From equation (6.9), for polytropic stars of the same polytropic index and of 
the same chemical composition, 

 

With  and 

, we have 

 

and with  

 (see equation 5.16), we have 

 

 

 


