
Lecture 1 Basic fluid equations  

The material in sections 1.1, 1.2 and 1.3 can be found in many texts on 
hydrodynamics or fluid mechanics. Good treatments can be found in 
references [1.1] and [1.2]. A different approach is followed by [1.3].  

1.1 The material derivative  

will denote the rate of change of some physical quantity with 
respect to time at a fixed position in space.  

(the material derivative) will denote the rate of change of some 
quantity with respect to time but travelling along with the fluid.  

Let be any quantity (e.g. temperature). Then  

 

where is the velocity of the fluid at position and time .  

 
Exercise 1.1 Convince yourself that if the temperature of the fluid varies 
with position, but that the temperature of any particular parcel of fluid does 
not change with time, then the rate of change of temperature with time as 

seen by an observer at a fixed point in space is , in agreement 

with equation (1.1) when . Conversely, convince yourself 
also that equation (1.1) gives the correct result for the change as seen by 

the fluid when . If you need help, press .  
 

1.2 The continuity equation  

Consider a volume , which is fixed in space. The total mass of fluid in 

is , where is the density of the fluid. The time derivative 

of the mass in is the mass flux into across its surface , i.e.  



 

where is the outward normal to the surface . Hence, using the 

divergence theorem , we obtain 

 

Since this holds for arbitrary , it follows that  

 

This is the continuity (or mass conservation) equation. Using equation (1.1) 
this can also be written as  

 

   

1.3 The momentum equation  

One can similarly derive a momentum equation, or equation of motion, for 
the fluid by considering the rate of change of the total momentum of the 

fluid inside a volume . It turns out to be easiest to consider a volume 
moving with the fluid, so that no fluid is flowing across its surface into or 

out of . The momentum of the fluid in is , and the rate 
of change of this momentum is equal to the net force acting on the fluid in 

volume . These are of two kinds. First there are body forces, such as 

gravity, which act on the particles inside : their net effect is a force  

 

where is the body force per unit mass. (Nb force per unit mass has 



dimensions of acceleration.) E.g., could be the gravitational acceleration 

. The second kind of forces acting are surface forces - forces exerted on 

the surface of by the surrounding fluid. In an inviscid fluid, such as 
we mostly generally be considering, the surface force acts normally to the 
surface and its net effect is  

 

being the pressure. Equating force to change of momentum we obtain  

 

Since , the mass of a fluid element, is invariant following the 
motion,  

 

and hence, applying the divergence theorem to the surface integral in 

equation (1.6) , we obtain  

 

Since this holds for arbitary material volume , it follows that  

 

This is the momentum equation for an inviscid fluid.  

Taking into account the viscous forces would add the right-hand side of the 

momentum equation with an additional term , 

where is dynamic viscosity - a result which we quote here without 



derivation. Note that the viscous forces can play a key role in some 
astrophysical applications which we will not consider in these lectures (in 
particular, accretion discs).  

1.4 Newtonian gravity  

A mass at position exerts on any other mass at position an 

attractive force ; the gravitational acceleration can be 

written as the gradient of a potential function, , where  

 

Let be a spherical surface of radius centered at . With 

, we have  

 

the result which does not depend on . It can also be verifyed 
directly that the gravitational potential of our point mass (equation 1.10) 

satisfyes (the Laplace equation) everywhere 

exept of just one point, . Using the divergence theorem, 

we observe that the surface in the equation (1.11) can in fact be any 

(not necessary spherical) surface surrounding .  

The gravitational field due to a fluid can be written as a potential, namely 
the sum of the potentials due to all the fluid elements. Summing over all 

the fluid elements inside , and applying the divergence theorem once 
more, we get  

 

where is volume inside . Since is arbitrary, this equation can be 
rewritten as a partial differential equation, Poisson's equation:  



 

1.5. The mechanical and thermal energy equations  

If one takes Newton's third law, and 

multiplies by velocity , one obtains that rate of work of the forces, , 

is equal to the rate of change of kinetic energy, .  

Similarly, taking the dot product of the equation of motion for a fluid, (1.9), 

with the fluid velocity yields  

 

Equation (1.14) says that the rate of change of the kinetic energy of a unit 
mass of fluid is equal to the rate at which work is done on the fluid by 
pressure and body forces. This is sometimes called the mechanical energy 
equation.  

 

Exercise 1.2. Prove equation (1.14).  

 

An equation for the total energy - kinetic and internal thermal energy - can 
be derived in the same manner as was the momentum equation in Section 

1.3. Let the internal energy per unit mass of fluid be . Then the rate of 
change of kinetic plus internal energy of a material volume (i.e. one 
moving with the fluid) must be equal to the rate of work done on the fluid 
by surface and body forces, plus the rate at which heat is added to the 
fluid. Heat can be added in two ways: one is by its being generated at a 

rate per unit mass within the fluid volume (e.g. by nuclear reactions), 

while the second is by the flux of heat into the volume from the 
surroundings (e.g. by radiation). Thus  



 

In the same way as for the momentum equation, one rewrites all the 
surface integrals in this equation as volume integrals, using the divergence 

theorem. The resulting equation holds for an arbitrary volume and so 
one deduces that  

 

One can derive an equation for the thermal energy alone by dividing (1.16) 
by the density and then subtracting the kinetic energy equation (1.14):  

 

Note that the divergence of has been replaced by 
using the continuity equation (1.5).  

Noting that the volume per unit mass is just the reciprocal of the density, 

i.e. , we recognise the thermal energy equation (1.17) as a 
statement of the first law of thermodynamics:  

 

that is, the change in the internal energy is equal to the work 

done (on the fluid) plus the heat added. Note that are properties 
of the fluid (in fact they are thermodynamic state variables) and we denote 

changes in them with the symbol . In contrast, there is no such property 
as the heat content and so we cannot speak of the change of heat content. 
Instead, we can only speak of the heat added, and we therefore use a 



different notation, i.e. . The second law of thermodynamics states that  

 

where is a thermodynamic state variable, the specific entropy (i.e. the 
entropy per unit mass). Combining this with the first law, equation (1.18), 
yields  

 

1.6. Adiabatic approximation. Ideal gases  

In practical applications, the thermal energy equation (1.17) can often be 
simplified. The most important simplification comes from the so-called 
adiabatic approximation. In the adiabatic approximation, we neglect any 
heat generation inside the fluid element and any heat exchange with the 

surroundings, which means setting (the 
entropy is conserved).  

For the adiabatic changes, pressure and density variations in a fluid 
element are related with each other through the so-called adiabatic 
exponent  

 

subscript designates that the partial derivative is taken at constant 
entropy. In terms of material derivatives, the thermal energy equation 
(1.17) is then equivalent to  

 

To evaluate the adiabatic exponent , we need to know the equation of 
state. The simplest (and often quite accurate) approximation here is the 
equation of state of an ideal gas,  

 

where is total number of particles (molecules or atoms) in volume , 



and is Boltzmann constant. In the ideal gas, interactions between 
particles are neglected, and the internal inergy is just the sum of the 
kinetic energies of all the free particles. For a single particle, the kinetic 

energy is times the number of degrees of freedom in its free 
motion. For a monoatomic gas (in which the particles can be considered as 
point masses) there are three degrees of freedom (three possible directions 
of translational motion), and we have  

 

This simple expression for the internal energy gives the adiabatic exponent 
of an ideal monoatomic gas as  

 

 

Exercise 1.3. Fill in the missing steps to derive equation (1.25).  
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Lecture 2 Simple models of astrophysical 
fluids and their motions  

In the previous lecture we established the momentum equation (1.9), the 
continuity equation (1.5), Poisson's equation(1.13) and the energy 
equation (1.17). Assuming that the only body forces are due to self-

gravity, so that in equation (1.9), these equations are:  



 

 

 

 

Note that these contain seven dependent variables, namely , the three 

components of , , and . The three components of (2.1), 
together with (2.2) - (2.4), provide six equations, and a seventh is the 
equation of state (e.g. that for an ideal gas) which provides a relation 
between any three thermodynamic state variables, so that (for example) 

the internal energy and temperature can be written in terms of and 

. ( and are assumed to be known functions of the other variables). 
Thus one might hope in principle to solve these equations, given suitable 
boundary conditions. In practice this set of equations is intractable to 
exact solution, and one must resort to numerical solutions. Even these can 
be extremely problematic so that, for example, understanding turbulent 
flows is still a very challenging research area. Moreover, an analytic 
solution to a somewhat idealized problem may teach one much more than 
a numerical solution. One useful idealization is where we assume that the 
fluid velocity and all time derivatives are zero. These are called 
equilibrium solutions and describe a steady state. Although a true steady 
state may be rare in reality, the time-scale over which an astrophysical 
system evolves may be very long, so that at any particular time the state 
of many astrophysical fluid bodies may be well represented by an 
equilibrium model. Even when the dynamical behaviour of the body is 
important, it can often be described in terms of small departures from an 
equilibrium state. Hence in this lecture we start by looking at some 
equilibrium models and then derive equations describing small 
perturbations about an equilibrium state.  

2.1 Hydrostatic equilibrium for a self-gravitating body  

If we suppose that everywhere, and that all quantities are 
independent of time, then equation (2.1) becomes  



 

the continuity equation becomes trivial; and equation (2.3) is unchanged. 
A fluid satisfying equation (2.5) is said to be in hydrostatic equilibrium. If 

it is self-gravitating (so that is determined by the density distribution 
within the fluid), then equation (2.3) must also be satisfied.  

Putting and in equation (2.4), we obtain that the 

heat sources given by must be exactly balanced by the heat flux term 

. If this holds, then the fluid is also said to be in thermal 
equilibrium. Since we have not yet considered what the heat sources 
might be, nor the details of the heat flux, we shall neglect considerations 
of thermal equilibrium at this point. Further reading material on the topics 
of this section may be found in [2.1], [2.2], [2.4] and [2.5].  

2.1.1 Spherically symmetric case  

Mass inside a sphere of radius , centred on the origin, is  

 

Gravitational potential is only a function of ; integrating the Poisson's 
equation (2.3) over the spherical volume gives  

 

being a unit vector in the radial direction - a result which could well be 

anticipated. (NB is minus the gravitational acceleration .) Also, by 
equation (2.5),  

 

The vector points towards the origin, so the pressure decreases as 
increases.  

One can only make further progress by assuming some relation between 
pressure and density. Suppose then that the fluid is an ideal gas, so  



 

where is the universal gas constant and is the molecular weight. is 
known as the isothermal sound speed. Suppose further that the 

temperature , as well as , are both constants throughout the fluid, so 

is also a constant. Then equation (2.8) becomes  

 

which implies that  

 

Seeking a solution of the form , where and are constants, 
gives  

 

This is the singular self-gravitating isothermal sphere solution. It is not 

physically realistic at , where and are singular, but 
nonetheless it is a useful analytical model solution. Of course, in a real 
nondegenerate star, for example, the interior is not isothermal: the 
temperature increases with depth, which in turn means that the pressure 
increases and the star is prevented from collapsing in upon itself without 
recourse to infinite pressure and density at the centre.  

 
Exercise 2.1. Verify that (2.11) is a solution of (2.10). Verify also that 

has dimensions of velocity squared.  
 

2.1.2 Plane-parallel layer under constant gravity  

In modelling the atmosphere and outer layers of a star, the spherical 
geometry can often be ignored, so that such a region can be 



approximated as a plane-parallel layer. Moreover, in the rarified outer 

layers of a star the gravitational acceleration may be approximated as a 

constant vector. Thus, in Cartesian coordinates , , we have a region 

in which everything is a function of alone and (taking pointing 

downwards), , where is constant. Hence (2.5) becomes  

 

Since self-gravity is being ignored, equation (2.3) is not used.  

In the isothermal case ( constant), equation (2.12) can be 
integrated to give  

 

where the constant is the density at . The density scale height 

is defined by  

 

Hence, in this case, and is constant. Thus 

.  

 

Exercise 2.2. Derive the solution (2.13).  
 

2.2 Small perturbations about equilibrium 

In many interesting instances, such as the oscillations of a Cepheid, the 
motion of a fluid body can be considered to be small disturbances about 
an equilibrium state. Suppose that in equilibrium the pressure, density 

and gravitational potential are given by 



(all possibly functions of position, but independent of time) and of course 

. Using equations (2.5) and (2.3), the equilibrium quantities 
satisfy 

 

Suppose now that the system undergoes small motions about the 
equilibrium state, so  

 

so for example is the difference 
between the actual pressure and its equilibrium value at position . 
Substituting these expressions into equations (2.1) - (2.3) yields 

 

We suppose that the perturbations (the primed quantities and the 
velocity) are small; hence we neglect the products of two or more small 
quantities, since these will be even smaller. This is known as linearizing, 
because we only retain equilibrium terms and terms that are linear in 
small quantities. This simplifies equations (2.17) to: 

 



Subtracting equations (2.15) leaves a set of equations all the terms of 
which are linear in small quantities (e.g. [2.3]): 

 

Equations (2.19) give 5 equations (counting the vector equation as three) 

for 6 unknowns ( ). We need another equation to close 
the system: that equation comes from energy considerations. 

In full generality, we should perturb the energy equation (2.4) in the 
same manner as equations (2.1) - (2.3). But there are two limiting cases 
which are sufficiently common to be very useful and are simpler than 
using the full perturbed equation (2.4) because they don't involve a 

detailed description of how and are perturbed. 

Adiabatic fluctuations 

Let the typical time scale and length scale on which the perturbations vary 

be and , respectively. If is much shorter than the timescale on 

which heat can be exchanged over a distance , then we can say that 
over a timescale the heat gained or lost by a fluid element is zero: 

. In the previos lecture we established the adiabatic relation 
between the material derivatives if pressure and density (equation 1.22): 

 

The linearized form of this equation is 

 



(In the last equation, the adiabatic exponent is also an equilibrium 
quantity because we have linearized, but for clarity the zero subscript has 
been omitted). 

Isothermal fluctuations  

The converse situation is where the timescale for heat exchange between 
neighbouring material is much shorter than the timescale of the 
perturbations. Since heat tends to flow from hotter regions to cooler ones, 
efficient heat exchange will eliminate any temperature fluctuations. 
Assuming an ideal gas, perturbing equation (2.9) gives 

 

For isothermal fluctuations, . Hence . In 
terms of material derivatives, 

 

Linearizing this gives an equation of the same form as equation (2.21) but 

without the factor . 

2.3 Lagrangian perturbations 

We have previously considered perturbations evaluated at a fixed point in 

space, so for example is the 
difference between the actual pressure and the value it would take in 
equilibrium at that same point in space. One can also evaluate 
perturbations as seen by a fluid element (cf. the material derivative). 

Such a perturbation will be denoted , for example. Now is the 
displacement of a fluid element from the position it would have been at in 
equilibrium. 

 



where is the equilibrium position of the fluid element; in the second 

equation, the first two terms of a Taylor expansion of have 

been taken: strictly we should have , but is correct 
up to terms linear in small quantities. Equation (2.24) can be written 

 

where the argument on the left is written (rather than ) and this is 
again correct in linear theory. Of course, equation (2.25) holds for any 
quantity, not just pressure. We note that, in linear theory, 

(where is any quantity); hence since the 
velocity of the fluid is just the rate of change of position as seen by a fluid 
element, 

 

  

Perturbations at a fixed point in space are called Eulerian; 

perturbations following the fluid are called Lagrangian. See for 
example [2.1]. 

2.4 Sound waves 

The linearized perturbed Poisson equation (2.19c) has formal solution 

 

the integration being over the whole volume of the fluid. What is under 

the itegral, is just the perturbation to induced by the mass perturbation 

in volume . In the integral on the right-hand side of (2.27) the 

positive and negative fluctuations in tend to cancel out, so that it is 

often a reasonable approximation to say that . Thus we will 



frequently drop in equation (2.19a). We shall do so in the remainder 
of this lecture, for example. The term is also absent in equation (2.19a) in 
problems where self-gravitation is ignored altogether. The term is very 
important, however, in Lecture 3 when we discuss the Jeans instability. 

Suppose now that we have a homogeneous medium, so that equilibrium 
quantities are independent of position (and hence in particular 

). Equations (2.19a) and (2.19b) can then be 
rewritten 

 

so taking the divergence of the first of these equations and substituting 

for from the second gives 

 

Suppose further that the perturbations are adiabatic. Now equation (2.21) 
for a homogeneous medium becomes 

 

where is a constant. Integrating with respect to time 
gives 

 

which can be used to eliminate from equation (2.29): 

 

This is a wave equation (cf. the 1-D analogue 

) and describes sound waves 



propagating with speed (see [2.2]). In fact, is called the adiabatic 
sound speed. (If we had instead assumed isothermal fluctuations, we 

would have obtained a wave equation with replaced by , the 
isothermal sound speed; cf. section 2.1.1). 

One can seek plane wave solutions of eq. (2.30): 

 

where the amplitude , frequency and wavenumber are constants. 
(Here and elsewhere, it is understood when writing complex quantities 
that the real part should be taken to get a physically meaningful solution.) 

Substituting equation (2.31) into (2.30), one finds that is a nontrivial 

solution ( ) provided 

 

This is known as the dispersion relation for the waves. It specifies the 
relation that must hold between the freqency and wavenumber for the 
wave to be a solution of the given wave equation. With a suitable choice 
of phase, one can deduce from (2.31) that 

 

Note that the adiabatic pressure and density fluctuations are in phase, 

while the displacement is out of phase. A sound wave is called 
longitudinal, because the fluid displacement is parallel to the wavenumber 

. 

 
Exercise 2.3. Derive the expressions (2.33). Explain physically the phase 
difference between the displacement and the other two quantities in a 

plane sound wave.  
 



2.5 Surface gravity waves 

As a second example of a simple wave solution of the linearized perturbed 

fluid equations, consider an incompressible fluid ( ) of 

constant density , occupying the region below the free surface 

(so is constant at the surface). Suppose also that gravity is 
uniform and points downwards, and that self-gravity is negligible. This is a 
reasonable model for ocean waves on deep water, for example. Equation 

(2.19b) implies that . Hence equation (2.19a) becomes 

 

and taking the divergence of this gives 

 

We seek a solution with sinusoidal horizontal variation in the direction: 

 

where is an as yet unknown function; and without loss of generality 

. Substituting this into (2.35) gives 

 

whence 

 

(see [2.2]). The fluid is infinitely deep, and the solution should not 

become infinite as ; hence . 



The boundary condition at the free surface is that the pressure at 

the edge of the fluid should be constant: hence at . 

Thus at  

 

Taking the dot product of (2.34) with and using (2.36) and (2.37) yields 

 

everywhere. Hence the boundary condition (2.38) can only be satisfied if 

and satisfy the dispersion relation 

 

It is clear that these are surface waves; for the perturbed quantities all 
decrease exponentially with depth. In reality, of course, the fluid cannot 

be infinitely deep, so is not identically zero. Instead, and will have 
to be chosen such that some boundary condition is satisfied at the bottom 
of the fluid layer. However, provided the depth of the layer is much 

greater than , it will generally be the case that has to be much less 

than . 
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Lecture 3 Jeans instability and star 
formation. Spherically symmetric accretion 
and stellar winds  

We believe that at least some star formation takes place in interstellar gas 
clouds. Three pieces of observational evidence are that (1) associations of 
young, bright massive stars are found in nebulae; (2) nebulosity is seen in 
young, open clusters; and (3) infrared observations reveal young stellar 
objects (YSOs) obscured by gas.  

3.1 Jeans instability 

The linearized equations for small perturbations are equations (2.19). We 
shall consider the simplest possible system, which is a homogeneous cloud, 

infinite in all directions, so and are independent of position, as too is 

by virtue of the hydrostatic equation. Thus equation (1.19a) becomes 

 

Taking the divergence of this equation, and using (2.19c) to eliminate 

gives 

 

In a uniform medium, for any quantity . Suppose that the gas 

is ideal and isothermal, so . Hence 

 

where is the isothermal sound speed. Also in a uniform 
medium (19.b) becomes 



 

Hence, using equations (3.3) and (3.4) to eliminate and from 
(3.2), we obtain 

 

This is a linear PDE for , with coefficients that are independent of 
position and time. Hence we seek solutions 

. In this case and 

. Hence, equation (3.5) implies 

 

where ; and so for a nontrivial solution ( ) we obtain the 
dispersion relation 

 

If and are real, this represents an oscillation. However, if the right-

hand side of (3.7) is negative, as it will be for sufficiently small , then 

will be negative and so the cloud will be unstable because there will be 

a solution where grows exponentially with time. Thus 

the cloud is unstable to fluctuations of wavenumber if 

 

i.e. if  



 

Now a real cloud is of finite size, so one cannot have arbitrarily large 

wavelengths , i.e. arbitrarily small wavenumbers. If the cloud is roughly 

sperical with radius , one must have . So such a cloud is 
unstable to density perturbations if 

 

If the density grows unstably, it is because mass is falling in to some region 
from surrounding regions. So put another way, the cloud collapses if its 
mass exceeds the critical Jeans mass 

 

Note the crucial role of the perturbation to the gravitational potential in this 
instability. If this had been neglected in equation (3.1), equation (3.7) 

would have reduced to , the dispersion relation for 
isothermal sound waves (cf equation (2.32)), which would give stable 
oscillatory solutions always. 

For a typical HI region, (the number of hydrogen 
atoms per cubic centimetre), so the density is about 

. The temperature is about 100K. Hence, using 

with mean molecular weight , one gets that 

(about 100 light years) and 

solar masses. But this is very much greater 
than the mass of the most massive known stars. Hence it cannot simply be 
that a cloud exceeding its Jeans mass collapses under its own self-gravity 
to form a single star [3.1]. 



If we suppose that the collapse continues isothermally (i.e. remains 

constant) then and similarly . Hence, as 
the cloud collapses and the density grows, the Jeans mass decreases. One 
can therefore envisage that subcondensations form in the cloud as smaller 
and smaller masses start to collapse in upon themselves. This picture is 
known as fragmentation. However, fragmentation must not continue 
indefinitely, as we wish eventually to form stars with observed stellar 
masses. Now in the later stages of collapse, the cloud presumably becomes 
too opaque for radiation to smooth out temperature fluctuations, so that 
isothermal collapse is no longer a good assumption. If we assume that we 
enter the opposite regime, of adiabatic collapse, then 

 

so . Instead of the isothermal sound speed we use the adiabatic 

sound speed , with . From (3.8) and (3.9) 

we then have and . E.g., for 

. Hence the Jeans mass is no longer 
decreasing with increasing cloud density, and fragmentation halts.  

The problem with the fragmentation picture as propounded above is that 

dispersion relation (3.7) implies that is most negative for the smallest 

values of . Thus, the cloud collapses fastest at the largest scales. 
Although the cloud becomes unstable on smaller scales as the density 
increases, these smaller-scale perturbations would get overwhelmed by the 
faster overall collapse of the cloud. 

 

Exercise 3.1 You should be at least a little concerned as to whether the 
infinite homogeneous cloud obeys the equilibrium equations (2.15). Think 
about this. 

 

Obviously, although the model of a homogenous cloud has led us to a 
useful criterion (the Jeans mass) for the collapse of a cloud under its own 
self-gravity, the model is too simplistic to explain in detail the formation of 



real stars. The Galaxy, and virtually everything within it, rotates. Unless it 
loses angular momentum by some mechanism, a rotating cloud will rotate 
faster as it collapses. Indeed, the centrifugal force will eventually balance 
self-gravity so that the cloud can no longer collapse perpendicularly to the 
rotation axis. (It can still collapse along the rotation axis.) Thus the cloud 
tends to flatten into a disk. This could lead ultimately to the formation of 
planetary systems such as our own solar system. 

3.2 Bernoulli's theorem 

The problem of how material falls radially onto a central object is 
sometimes called the Bondi problem, after [3.3] (see also [3.2]). 

As a preliminary, we prove a standard result in fluid dynamics, Bernoulli's 
theorem for steady inviscid flow. A standard identity from vector calculus 
gives 

 

where . Neglecting viscosity and setting time derivatives to zero, 
and using equation (3.10), the equation of motion becomes 

 

Suppose that the flow is baratropic - so the pressure is a known function of 

density, . (This is a common simplification in astrophysical fluid 
dynamics - by assuming a given relation between pressure and density, we 
can often avoid needing to give specific consideration to the energy 
equation). Define the enthalpy 

 

so . Then equation (3.11) becomes 



 

from which it follows by taking the dot product with that 

 

This result shows that is constant along a streamline, i.e. 

a line everywhere parallel to . For a simple physical derivation of the 

Bernoulli's theorem, press .  

An everyday application of Bernoulli's theorem (3.14) is to consider flow 

from a kitchen tap. In this case is essentially uniform, so . 
Bernoulli's theorem says that 

 

is constant along streamlines, being measured downwards. In particular, 

along a surface streamline the pressure is everywhere equal to the 
atmospheric pressure (constant). Therefore as the flow falls from the tap, 

(3.15) implies that increases. Now suppose that the stream from the tap 

has horizontal cross-sectional area . The direction of is essentially 
vertical, and the flow is incompressible. Thus mass conservation implies 

that , the mass flow per unit time 
through a horizontal plane, is independent of . Thus, as the water falls, 

increases and decreases. 

Note, however, that for sufficiently small , the surface tension cannot be 
ignored. Also the flow is not stable: a Kelvin-Helmholtz instability sets up 
an oscillatory disturbance on the surface.  

3.3 The de Laval nozzle 

We consider now how the picture of incompressible-type flow from a tap 
will be modified in a situation where the compressibility of the fluid is 



important. We still take the flow to be steady, baratropic and one-
dimensional. As an example, consider the flow from a jet engine. The 

spatial variation of the cross-section is given (by the walls of the 
combustion chamber), and we can neglect gravity. Bernoulli and mass 
conservation imply 

 

The spatial variation of induces variations in the other quantities. The 
first of equations (3.16) implies that 

 

where ( is thus the sound speed). This equation, 
relating changes in density and in velocity, can be rewritten 

 

where is the Mach number.  

Note that if , fractional changes in density are negligible 

compared with fractional changes in . Thus we can generally neglect 

compressibility if . On the other hand, supersonic flight past 
obstacles involves substantial compressions and expansions. Also, equation 
(3.18) and the second of equations (3.16) together give 

 

 

Exercise 3.2 Derive equation (3.19).  

 



We now consider equation (3.19) for three cases. If (subsonic 

flow), an increase in corresponds to a decrease in . This was the 
situation for the running tap. 

If (supersonic flow), an increase in requires an increase in the 
area of the nozzle! The explanation for this is that the density decreases 
faster than the velocity increases (equation 3.18); thus mass conservation 

requires an increase in . 

For , the sonic transition between subsonic and supersonic flow, 

for a smooth transition ( finite) equation (3.19) implies that must 
be zero at the transition point. This is important for jet design. The nozzle 

needs to converge ( decreasing) to provide the necessary acceleration 
from subsonic speeds, but should smoothly stop converging and start to 
diverge where the flow gets to supersonic speeds. In astrophysical 
situations, the same acceleration can be achieved by external body forces, 
such as gravity. 

3.4 The Bondi problem 

We consider the steady, spherically symmetric accretion of gas onto a 

gravitating point mass . We assume a baratropic flow, so . 
Also we neglect the self-gravity of the infalling gas, which is a good 
approximation if its total mass is much less than that of the central point 
mass. 

The velocity is wholly in the inward radial direction. Since the flow is 
steady, integrating the continuity equation over the region between 
concentric spherical surfaces and using the divergence theorem gives the 
mass conservation equation 

 

where is a positive constant. Bernoulli's theorem yields 

 

where 



 

being the density at infinity. Note that Bernoulli's theorem applies to a 
given radial streamline, and following a streamline out to infinity shows 
that the constant on the right-hand side of (3.21) is zero: for at infinity 

, and there by equation (3.22). Since every point in space 
is on some radial streamline, and the constant is zero on each one of them, 
equation (3.21) holds not just on a single streamline but everywhere in 
space. 

In the particular case of isothermal flow, where is a 
constant. Evaluating equation (3.22) gives 

 

A characteristic length is 

 

This is called the Bondi radius.  

We may define a dimensionless radial variable, speed and density by 

 

and a dimensionless accretion rate by measuring in units of a mass 

flux across an area : 

 

The governing equations (3.20), (3.21) can then be written in 



dimensionless form as 

 

and 

 

where for isothermal flow. Equations (3.27) and (3.28) 
imply that changes in the different dimensionless variables are related by 

 

 

and eliminating between these gives a relation between and : 

 

 

Exercise 3.3 Derive equations (3.27) - (3.31) for yourself.  

 

The sonic transition ( ) occurs when . At this point, 

equation (3.28) implies that and (3.27) gives 

. This implies that 



 

and so this is the rate at which mass will be accreted (steadily) onto a point 
mass, assuming spherical symmetry and isothermal flow.  

3.5 The Parker solar-wind solution 

Parker's model for a thermally-driven solar wind is closely related 
mathematically to the Bondi problem. It is discussed in detail in [3.4]. 
There are some differences since the material is now being accelerated 
from rest at the central object to a large velocity far away, and the 
conditions at infinity are no longer specified a priori. You are encouraged to 
look at Q. 3f of Problem Set 2 of [3.2]. For a review on the subject of the 
solar wind, see [3.5]. 
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Lecture 4 Theory of rotating bodies  

4.1 Equilibrium equations for a slowly rotating body  

In this lecture we shall be considering principally how to calculate the shape 
of a fluid body that is rotating slowly with a uniform rotation rate. We shall 
consider in particular the case of a slowly rotating star; but the equations 
apply equally well to, for example, a slowly rotation gaseous planet. It will 
be assumed that in the absence of rotation the body would be spherically 
symmetric, and that rotation induces a weak distortion of the shape from 
spherical symmetry. For slow rotation, the distorted body is axisymmetric 
about the rotation axis, as one would expect. Although we shall not consider 
it here, faster rotation can give rise to some surprises, notably the Jacobi 
ellipsoids which are triaxial figures of equilibrium. For a fuller exposition of 
the subject, see the classic texts [4.1] and [4.2].  



The momentum equation (1.9) is  

 

assuming that the only body forces are due to gravity. Since the rotation is 
axially symmetric, it is convenient to introduce cylindrical polar coordinates 

, being the rotation axis; is the distance from the rotation 

axis, and is the angular coordinate, so that the fluid velocity is directed 

along .  

For a steady rotation, we have , but differs from 
zero: the velocity of a given fluid element does not change with time in its 
absolute value, but changes in its direction. Simple geometrical 
considerations show that for an observer moving together with the fluid 
element,  

 

where is unit vector along and . Introducing the angular 

velocity of rotation , we have  

 

since . Indeed, the equation (4.2) gives nothing else but the 
centripetal acceleration of the circular motion.  

For a uniform rotation ( is constant in space), the right-hand side of the 
equation (4.3) can be written as a gradient of scalar function:  

 

and the momentum equation (4.1) reduces to  



 

where  

 

   

 

Exercise 4.1 Now, instead if the uniform rotation, consider a general 
rotaton law around the - axis. Show that the centripetal acceleration 

can be written as a gradient of a scalar function if and only if the 

rotation rate is independent of and , i.e. only.  

 

We can argue qualitatively from equation (4.4) what the effect of rotation 
on the equilibrium shape of the body will be. For an observer moving 
together with the fluid - in the corotating coordinate system, the fluid is at 
rest; instead of the centripetal force of the circular motion, in the corotating 
frame we have the fictitious centrifugal force (a body force), which has to be 
balanced by pressure and gravity. On the stellar surface, the centrifugal 
acceleration is zero, and it is radially outwards at the equator. It thus 
reduces the "effective gravitational acceleration'' at the equator, i.e. the 
centreward pull is not so strong there as at the poles and so instead of 
being spherical the body "bulges'' at the equator.  

The gradient vector of any scalar is perpendicular to surfaces of 

constant . Thus it follows from equation (4.5) that surfaces of constant 

are also surfaces of constant , and vice versa. Thus we can write 

, and so  

 

Substituting this into equation (4.5) yields  



 

so is also a function of : .  

Henceforward, for definiteness, we shall speak of the body as being a star, 
but it could equally be a gaseous planet, for example. The outer surface of 
the star is a surface of constant pressure (because the pressure outside is 

constant, say zero) and so on the surface, is constant.  

We consider the case where if the star were not rotating it would be 
spherically symmetric, and rotation induces a weak distortion from 

sphericity. We suppose that the star has mass and (in the nonrotating 

case) radius .  

Let us approximate the gravitational potential by what it would be in the 
nonrotating case:  

 

at the surface and outside the star.  

We suppose that the surface of the rotating star is described by  

 

where is a small function of the colatitude . Then, using 

, we have on the surface  

 

constant (i.e. independent of ). The rotation is slow and the distortion 

weak, so and are small and we neglect products of small quantities. 
Then (4.8) implies that  



 

is independent of , i.e.  

 

(possibly plus a constant). Note that is the equatorial acceleration 

due to centrifugal forces; and is the gravitational acceleration. 

So the dimensionless quantity is the ratio of centrifugal 
acceleration to gravitational acceleration.  

The radius at the pole and at the equator are obtained from equation (4.7) 

by putting and respectively. Thus the relative 
difference between equatorial and polar radii is  

 

The only thing wrong with this argument is the use of . In 
general, we should properly use the gravitational potential appropriate to 
the distorted star. The relevant generalization of our analysis is known as 
the Chandrasekhar-Milne expansion. A description of the procedure is given 
in [4.3].  

The distorsion of the gravitational field can indeed modify our result 
(equation 4.10) significantly. The magnitude of this effect depends on the 
mass distribution inside the star: the distorsion of the gravitational field is 
bigger when more mass is localized closer to the surface, where centrifugal 
forces are bigger. For a star with uniform density, the coefficient 1/2 in the 
right-hand side of (4.10) appears to be replaced with 5/4. The rotational 
distortion of the stellar configuration becomes bigger; it is indeed quite a 
general property of gravity to have a destabilizing effect. In the oposite 
limit, when almost all the mass is concentrated very near the stellar center, 
the equation (4.10) is adequate. For a real star, we can well expect the 
result to be in between the two limits.  



4.2 Binary stars  

Consider a binary system in which the two components are in circular orbits 

about their common centre of mass , and in which the two stars corotate 
so as to always show the same side to the other star. In this system there is 

a rotating frame in which the stars are completely stationary. If is the 

angular velocity of each star about , in an inertial frame, then of course 

is also the angular velocity of the rotating frame.  

Suppose that the separation distance between the two stars is , that their 

masses are , and that their respective distances from are 

and . Since is the centre of mass,  

 

Also the gravitational force on star 1 towards star 2 (and hence towards ) 

must be equal to , since is the radius of its circular orbit; 
hence it is straightforward to show that  

 

Now equations (4.5) and (4.6) hold for this system (in the rotating frame), 

where the gravitational potential is given by the sum of the potentials 
due to the two stars. Choosing Cartesian coordinates such that the angular 

velocity of the frame is in the - direction, with the stars at 

and , can be written from equation (4.6) as  

 

(the Roche potential). Here we have made the same approximation as in 



section 4.1, namely that we can use the undistorted gravitational potential 
of each star: this is reasonable for centrally condensed stars.  

The potential (4.13) is plotted schematically as a function of along the 

line below.The Lagrangian points and , where 

, are indicated.  

 

As in the case of a single star, the surface of each star in the binary system 

is a surface of constant . Now provided the surface potential of each star 

is less than the potential at the Lagrangian point, each star 
occupies a well in the Roche potential and the stars form a detached binary 
system (Fig. a):  

 

Suppose though that expands (perhaps attempting to become a red 

giant) until its surface potential is equal to (Fig. b). Any further 
expansion will cause matter to fall from star 2 to star 1, since it will fall to 
the lower potential. Algol is an example of such a binary. Finally, if the 

surface potentials of both stars are greater than , then we have a 
"common envelope binary'' or "contact binary'' (Fig. c). It is also instructive 

to plot contours of constant in the plane:  



 

The shaded region, called a Roche lobe, is the maximum region the star can 
occupy before it starts to lose mass to its companion.  

4.3 Dynamics of rotating stellar models  

We have not so far considered how energy is transported in the rotating 
star. A well-known result, which is discussed at length in [4.3] is that one 
cannot have a uniformly rotating star in strict radiative equilibrium. 
Assuming the contrary leads to what is known as "von Zeipel's paradox''. 
The same is true if the rotation rate is a function only of distance from the 
rotation axis. We conclude therefore that the rotation rate must have a 
more general form, depending on cylindrical polar coordinate as well as 
distance from the axis, or that strict radiative equilibrium does not hold.  

The von Zeipel paradox in effect says that the radiative flux cannot be 
balanced everywhere by the energy generation. Some regions have a net 
influx of heat: these will heat up and tend to rise under buoyancy. Others 
will cool and sink. This tends to set up motions in meridional planes: this is 
called meridional circulation.  
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Lecture 5 Radial oscillations of stars 

In this lecture we consider oscillations of a star about its spherically 
symmetric equilibrium state, with the oscillatory motion being purely 
radial.This is relevant to a number of classical variable stars, e.g. 
Cepheids. A readable account of the theory of radial stellar pulsations may 
be found in [5.1], while [5.2] provides a more mathematical treatment. 

5.1 Linear adiabatic wave equations for radial oscillations 

We shall assume that the amplitude of the oscillations is small, so that 
linear perturbation theory will suffice, and in the present section we shall 
suppose that the period of the oscillations is sufficiently short that no heat 
is exchanged between neighbouring fluid elements, i.e. the oscillations are 
adiabatic. Then the linearized equations for small perturbations are 
equations (2.19, 
2.21):

  

We now seek solutions with sinusoidal time dependence. Writing  

 

and , equations (5.1) become 



 

by using , 

and  , where is the adiabatic sound speed. 

Eliminating and in equations (5.3), we arrive to 

 

where is the so-called Brunt-V�is�l� frequency, 

 

   

 
Exercise 5.1. Convince yourself, using the divergence theorem, that  

 



for any spherically-symmetric vector field . Further, fill in 
the missing steps to derive equations (5.4). [Hint: from equations (5.3b,c) 

we have ].  

 

5.2 Boundary conditions 

Equations (5.4) represent a system of two ordinary differential equations 

for and . In order to solve this system, we require boundary 

conditions at the center of the star ( ) and at its surface ( 
). 

The boundary condition at the center is that the solution be regular, not 

divergent, at the origin. We are looking for the solutions in the 

vicinity of as a power series expansion 

 

The first term in the series specifies the leading-order behaviour of 

near the origin; we require and allow to be an unknown 

constant which has to be determined. With this expansion for , 

equation (5.4a) provides a corresponding expansion for : 

 

where and are the central values of the equilibrium density 
and the sound speed, and we limit our analysis by the leading-order term 
only. 

We now substitute the expansions (5.6, 5.7) into the second equation 
(5.4b): 

 



As before, dots designate terms of higher order, proportional to 

etc. From equation (5.8), we get or . The 

requirement that the solution be regular rules out ; hence we 

must have . The regularity condition thus selects one of the two 
linearly-independent solutions of the oscillation equations, which behaves 
as 

 

in the vicinity of . Constant is arbitrary, since the equations 
are homogeneous (solutions are only determined with an arbitrary scaling 
factor). 

At the surface, we require the Lagrangian pressure perturbation to be 

zero. With (equation 2.25 of Lecture 2), the 
outer boundary condition is 

 

In a realistic stellar model, we do not have any well-defined "surface", but 
rather a smooth transition to the low-density atmosphere. the boundary 

condition is still applicable, however, when the "stellar radius" is 
taken to be sufficiently high in the atmosphere. The physical reason is that 

the atmospheric layers above have essentially no dynamical 
influence on the global oscillations due to their very small mass. Also 

when is small, the boundary condition (5.10) can be replaced 

with . 

5.3 Eigenvalue nature of the problem 

The second-order system of differential equations (5.4) has two linearly-

independent solutions. Regularity condition at selects one of 
them; this solution does not, in general, satisfy the surface boundary 
condition (5.10). The second boundary condition can be satisfied for 

certain values of only: these values are called eigenvalues, and 

corresponding solutions for and are called eigenfunctions. 
The eigenvalues give the resonant frequencies (eigenfrequencies) at which 
the star can oscillate radially. 



5.4 Local dispersion relation and mode classification 

Let us suppose for a moment that we have some solutions and 

 to the differential equations (5.4) with a sinusoidal character, 
which oscillate rapidly with . We will see later in this section that this is 

indeed the case in the high-frequency limit (when is high). We write 
these solutions as 

 

with slowly-varying amplitude functions and , and rapidly-

varying exponent ( is high). Differentiation with respect to gives 

 

when is large (contribution of terms with derivatives of the amplitude 
functions can be neglected). We substitute (5.12) into the oscillation 
equations (5.4), getting 

 

Note that we were using the asymptotic limit of large once more, 

neglecting and compared with . 

Equations (5.13) are algebraic equations. This homogeneous system of 

two linear equations for and has a non-trivial solution if and only if 
the determinant of matrix of its coefficients iz zero, i.e. when 

 



We observe from this relation that is large when is large, so that 
our local analysis is indeed applicable in the asymptotic limit of high 
frequencies. 

What we also observe is that when is high, is approximately 

, which is nothing else but the dispersion relation for sound 
waves developed earlier in Lecture 2 (equation 2.32). We thus arrive to 
the simple physical interpretation of the radial oscillations: at least in the 
high-frequency limit, they are formed by the acoustic waves propagating 
along stellar radius. A wave travelling upwards is reflected back at the 
stellar surface, and the downward wave is reflected back at the stellar 
center. When added together, these waves can form a standing wave (a 
particular mode of stellar oscillations), which can only happen at 
frequencies of acoustic resonances (radial oscillation frequencies). 

When going to smaller frequencies, simple local analysis can loose its 

accuracy. Note also that it is always in trouble in the vicinity of : 

indeed, we were neglecting compared with . By doing that we 
have the effects of spherical geometry discarded: we are using a plane-
wave approximation to describe spherical waves. 

When gets higher, the acoustic wavelength becomes smaller, and 

radial displacement function acquires more and more modes in its 
variation with radius. Different modes of radial oscillations are classified 

according to the number of nodes in . The oscillation with no nodes, 
which has the lowest frequency, is called the fundamental radial mode. 

Higher in frequency is the first overtone, with one node in , and so 
on.

 

5.5 Non-adiabatic oscillations: physical discussion of driving and 
damping 

Consider a small fluid element of volume . Let it be small enough so 

that at any time, pressure can be considered as uniform everywhere 

inside . If increases by an ammount , the mechanical work done 



by the fluid element against the external pressure is . Integrating 
over one cycle of the oscillation, this work will be 

 

If this work is positive, it goes to the increase of the total mechanical 
energy of the surrounding fluid, i.e. to the increase of of the pulsational 
energy of the star; the fluid element acts as a driving source (Fig.a): 

 

In the driving case, at point of maximum compression ( minimum, 

), is still increasing, (Fig.a), which 
means that some heat is being added. What we have is assentially a small 
heat engine, which transfers thermal energy into mechanical energy. 

One way in which oscillations can be driven is by the so-called opacity 

mechanism, or - mechanism. It operates in the near-surface layers of 

partial ionization with anomalous behaviour of the opacity . If the 
opacity increases when the star is compressed, the heat is gained due to 
the blocking of the radiative flux coming from the stellar interior. Another 

driving mechanism is the so-called - mechanism. When the star is 
compressed, density and temperature increase, hence the nuclear energy 

generation rate increases and so more heat is generated. 

If the work integral is negative (Fig.b), the fluid element acts as an energy 
sink for the oscillation, absorbing the mechanical energy from the 
surrounding fluid and transfering it into heat. At maximum compression, 
the heat is being lost. This scenario is realized in the so-called radiative 
damping, when the compressed (and hence hotter) fluid element looses 
its heat to the surrounding. Note that in the adiabatic approximation, we 
neglect any heat exchange, and the work integral is zero (Fig.c). Further 
discussion of the various excitation mechanisms may be found in [5.2]. 
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Lecture 6 Linear adiabatic nonradial 
oscillations. Helioseismology 

6.1 Nonradial modes of oscillations of a star 

In the last lecture we considered stellar oscillations where the motion was 
wholly in the radial direction. In this lecture we shall consider more 
general motions. The equilibrium structure about which the oscillations 
take place is still presumed to be spherically symmetric, but the velocity 
will now have a horizontal as well as a radial component, and the velocity 

and other perturbations will depend not only on but also on and , 

where are spherical polar coordinates. 

A well-studied star in which nonradial oscillations are observed is the Sun. 
For this reason, we shall draw upon the example of the Sun frequently in 
this lecture. However, it should not be forgotten that other pulsating stars 
are known to exhibit nonradial oscillations (e.g. ZZ Cetis, Delta Scutis and 
Ap stars). 

As a preliminary, we list some few mathematical expressions which will be 

used later in this Lecture. In spherical coordinates , the 
gradient, divergence and Laplacian operators can be written as 



 

As we will see below, it will be possible to separate out the angular 
dependences and to reduce the oscillation equations to ordinary 

differential equations with one independent variable . For variable 
separation, we will use normalized spherical harmonics 

 

where are the associated Legendge polynomials 

 



The degree of the spherical harmonic takes any integer value 

; at each , the azimuthal order can take 

value, . Spherical harmonics satisfy the 
second-order partial differential equation 

 

6.2 Linear adiabatic wave equations in Cowling approximation 

As with radial oscillations, we assume that the oscillations are adiabatic, 
and start with the same equations for linear perturbations (2.19, 2.21). To 
simplify the analysis, we will neglect in this lecture the effects of gravity 
perturbations; in stellar pulsation theory this approximation is known as 
Cowling approximation. This approximation is not very restrictive and can 
in general be easily relaxed; we adopt it here with the only reason to 
make mathematical derivations more transparent. In Cowling 
approximation, our starting equations are 

 

We now seek the solutions of these equations with sinusoidal time 
dependence and with angular dependence specified by a particular 
spherical harmonic as 

 

with . The expressions (6.8) allow to 
separate the angular dependences in equations (6.7), reducing them to 
the system of ordinary differential equations 



 

using and 

. The first of the equations (6.9) comes from the 
radial component of the momentum equation (6.7a), the second - from its 

horizontal component. Eliminating and in equations (6.9), we arrive 
to 

 

where stands for the Brunt-V�is�l� frequency defined earlier by 
equation (5.5). 

 
Exercise 6.1 Fill in the missing steps to derive the oscillation equations 
(6.10), starting with variable separation in (6.7) by using equations(6.1-

6.6).  
 

6.3 Boundary conditions 

The boundary conditions are derived in a manner similar to radial 

equations. At , the second-order system of linear differential 



equations (6.10) has a regular singular point; one of the two linearly-
independent solutions is regular, another is singular. Near the origin, the 
physically relevant regular solution behaves as 

 

At the stellar surface, with Lagrangian pressure perturbation set to zero, 
the outer boundary condition is 

 

the same as for radial modes. 

6.4 Mode classification in degree . 

As with radial oscillations, the boundary-value problem specified by the 
differential equations (6.10) and boundary conditions (6.11, 6.12) has 

non-trivial solutions only for certain values of , called eigenvalues. 
The major difference is that we now have a separate set of 

eigenfrequencies for each particular value of degree . The spherical 

harmonic determines the angular dependence of the 
eigenfunctions, and hence the surface distribution of the oscillation 
amplitudes as seen by an observer. Radial oscillations is just a particular 

case with . Oscillations with are called dipole oscillations, 

- quadrupole, etc. The surface amplitudes of modes are 
shown schematically below. Dark and light areas correspond to 

positive and negative (e.g. when dark areas move upwards, 
light areas move downwards): 

 

 

The degree is the total number of the node lines on 

the solar surface. The azimuthal order is the number of the node lines 



going along a meridian; there are node lines parallel to the 

equator. Note that does not enter the oscillation equations (6.10), 

which means that modes of the same but with different have the 
same frequencies. This degeneracy comes from the spherical symmetry of 
the equilibrium solar configuration. 

6.5 Local dispersion relation. Mode classification in radial order . 

Assume that we have solutions of the wave equations (6.10) which 
oscillate rapidly in radial direction, 

 

with amplitudes and varying much slower than the 

exponents ( is large). The analysis similar to that of radial modes now 
leads to the dispersion relation 

 

We observe that when , there are now two possibilities of having 

large and positive: shall be either very large, when we have 
approximately 

 

or very small, when we have approximately 

 

The physics behind this result is that we now have two different types of 
waves which can propagate in the solar interior. The last relation (6.16) 
refers to internal gravity waves, with restoring forces provided by 
buoyancy. These waves are known in the oceans, and in the Earth's 
atmosphere. The gravity waves can be "trapped" to form the low-



frequency standing waves, called gravity 
modes, or g-modes. 

At high frequencies, we have (6.15) as a 
proper dispersion relation, which can be 
rewritten as 

 

Here can be interpreted as a horizontal wavenumber, i.e. the 

horizontal component of the total wavevector . We have nothing else 

but the dispersion relation of the sound waves . When 

, we have radial waves. A non-radial wave propagation and 
trapping of the acoustic wave in solar interior are shown schematically 
below. When travelling downwards,the acoustic wave suffers the refraction 
because of the larger temperature, and hence larger sound speed deeper 
in the Sun, reflects back after approaching the surface, and so on. If after 
a closed path the wave returns back in a proper phase, a standing wave is 
formed. This standing wave represents a particular mode of solar 
oscillations. These high-frequency modes are called acoustic modes, or p-

modes. At given degree , different p modes are classified according to 

the number of nodes in their radial displacement function ; the 

number of nodes is called the radial order . Mode p1 has one node in 

, mode p2 has two nodes, etc. 

The frequencies of p modes increase when the radial order increases; 
frequencies of g modes decrease when their radial order increases. 
Between the two frequency domains of the high-frequency p modes and 
the low-frequency g modes there is usually an extra mode, which physical 
nature is that of a surface gravity wave: this is the so-called fundamental, 
or f-mode. A more comprehensive discussion of the classification of 
nonradial oscillations can be found in [6.1]. 

6.6 Inversion of the sound speed in solar interior 

In solar seismology we have precise measurements of a large number of 

p-mode frequencies of different degree (from zero to few thousands) 

and of different radial order . These observational data allow to address 
the inverse problem of solar seismology - the reconstruction of the 
internal structure of the Sun from its oscillation frequencies. 



Using the local dispersion analysis of the previous section, the resonant 
frequencies must satisfy 

 

where is an inner turning point with . Equation (6.18) 
states that at frequencies of acoustic resonances, integer number of half-

waves in shall fit within the acoustic cavity ; this 

number is radial order . An additional phase shift , which we will not 
specify explicitly here, accounts for a proper boundary conditions at the 
top and at the bottom of the acoustic cavity. 

With radial wavenumber specified by equation (6.15), we have 

 

where 

 

The oscillation frequencies provide the right-hand side of the equation 

(6.19), and thus function is available from the observations. From 

its definition (6.20), is determined by the sound-speed profile 

only. The integral relation (6.20) between the two functions 

and can be inverted analytically. The result is 



 

where and . With expression (6.22), we 

obtain as a function of , and hence as a function of . 

 

Exercise 6.2 Prove the equation (6.22). [Hint: differentiate as 
given by (6.20), substitute the resulted integral into (6.22), and change 
the order of integration]. This exercise is an optional one: try it only if you 

feel yourself confident with double integrals.  
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EXERCISE 6.1 

With and 

and , the radial 
component of the momentum equation (6.7a) reduces to (6.9a), and its 
horizontal component - to (6.9b).  

With and 

 



the continuity equation (6.7b) gives (6.9c). With and 

, the adiabatic energy equation (6.7c) gives (6.9d).  

Now express in terms of and from the equation (6.9d):  

 

and from the equation (6.9b), and substitute into 

(6.9a,c) to eliminate and and to get (6.10b,a).  

 

EXERCISE 6.2 

We need to prove that the equation  

 

when considered as an integral equation with function specified, 
has a solution  

 

which allows to infer as function of , and hence as function of 
.  

 

 



Take the derivative of the both sides of (6.20) 

with respect to , considered as a parameter 
in the integral:  

 

and substitute the result into (6.22):  

 

where is such that  

.  

Now change the order of integration, using :  

   

   

 

To evaluate the inner integral, simplify it by using new variable (just 

linear rescaling of ) as  



 

so that  

 

We thus have  

 

With substitution , the inner integral is  

 

and we arrive to the identity  

 

 
 
 
 
 
 



THE DIVERGENCE THEOREM 

EXERCISE 1.1 

Let temperature varies in both space ( 

) and time ( ), but appears 
to be constant in time for an observer moving together 

with a fluid element ( ). In this 
situation, the contribution to the temperature variation in the element due 

to the variation of its position , this contribution being , is 

compensated by the contribution due to the time dependence of 

, this second contribution being . We have 

.  

When , the temperature field is stationary: at 

any point is space, remains constant in time. When the fluid is in 
motion, the temperature of a fluid element can change in time due to its 
displacement to hotter or cooler regions. The rate of change will be 

.  

THE DIVERGENCE THEOREM 

The divergence theorem (or Gauss theorem) states that for an arbitrary 

vector field  

 

for an arbitrary volume bounded by a closed surface . Here is unit 

vector normal to and directed to the outside of volume .  

Proof. In cartesian coordinates , consider a small rectangular 

element with dimensions . Let the element is small enough 

so that the divergence of the vector field , which is  

 



 

can be considered uniform inside the element. 
The vector flux across the surface surrounding 
the element is the sum of six fluxes. Consider 

the contribution of the vector fluxes crossing the two surfaces and 
, both orthogonal to . This contribution is provided by a small increment 

in due to the increment in ,  

 

times the area of and , which is . Adding similar 
contributions of the vector fluxes crossing the surfaces orthogonal to 

and , the total vector flux to the outside of the rectangular element is  

 

Now any finite volume can be considered as a sum of the small 

rectangular elements; summing , we get the volume integral 
in the divergence theorem. Summing the vector fluxes, the contributions 
coming from the rectangular areas separating any two neighbouring 
elements cancel out, and we are left with vector flux across the outer 

boundary of .  

--------------------------------------- 

Application of the divergence theorem here might look unusual, because 

is scalar and hence 

 



is vector, not a scalar. The procedure is nevertheless straightforward, if 

we consider the unit vector separately in tree components 

 

were hats denote unit vectors in cartesian coordinates . We 
then have 

 

We now apply the divergence theorem to the three integrals separately: 

 

and with  

 

the result is 

 

------------------------------------------------- 
 


