
Lecture 9 Evolution after the main sequence 

As a star evolves, gravitational contraction makes it hotter and denser. Until 
now, our analysis was limited by working with a simplest possible version of 
the equation of state that of an ideal gas composed of classical particles 
(Lecture 3). We now need to introduce some generalizations of this simple 
description.

9.1. Relativistic and quantum effects in the equation of state.

Physically, the gas pressure is a measure of momentum exchange inside the 
gas. A general expression for the gas pressure, applicable for classical and 
relativistic particles, is

                                (9.1)

where n(p)dp is the number density of particles with momentum between p
and p+dp, and v is velocity. This equation can be derived in a way which is 
very similar to our derivation of the equation (3.11) in Lecture 3.

---------------------------------------------------------

Exercise 9.1. Derive equation (9.1). 

Solution to Exercise 9.1.

Consider a gas of particles contained in a rectangular box

When a single particle hits the wall of the box labeled with area S=bc, it 

changes its momentum by an amount 2px. The time interval between two 

consecutive hits is 2a/vx, and hence the average force on area S, produced 



by a single particle, is vxpxa, and the average pressure is 

vxpx/(abc)=vxpx/V, where V is box volume. Energy equipartition between 

three degrees of freedom gives the average value <vxpx>=vp/3, and hence 

the pressure produced by a single particle is vp/3V. If we have N particles 

with momentum p, the pressure is vpN/3V=vpn/3, where n=N/V is 

number density of particles with momentum p. When we have many particles 

described by a continuous distribution in momentum p, we replace n by 

n(p)dp and integrate to obtain

---------------------------------------------------------

For an ideal gas of classical (i.e. non-relativistic) particles, the energy of a 

single particle is E=mv2/2=vp/2, and hence the internal energy density of 
the gas is

(nonrelativistic particles) (9.2)

In the limiting case of extremely relativistic (ultrarelativistic) particles, we have 

E=cp, where c is speed of light, and hence



(ultrarelativistic particles) (9.3)

One example of purely relativistic particles is photons. With radiation energy 

density uR=aT4, where a is Stefan radiation constant (equation 7.14 of 
Lecture 7), we get immediately the radiation pressure, i.e. the pressure from 
the photons:

                                                (9.4)

At low temperature and high density, quantum-mechanical effects must be 
taken into account in the description of the gas. According to Pauli’s exclusion 
principle, at most two fermions (i.e., electrons or nucleons), with different 
spin, can occupy a given energy state. Each particular state occupies volume 

h3 in the 6-dimentional space of spatial coordinates and momentum 

components, where h is Planck’s constant. Thus, if p is the length of the 3-
dimentional momentum vector, the number density of particles with 

momentum in the interval between p and p+dp is

                      (9.5)

where F(p) is the occupation probability number for the Fermi gas.

Here we only consider a gas of electrons in the limit of zero temperature (limit 
of complete degeneracy). In this limit, all the quantum states ore occupied up 

to some maximum momentum pF, known as Fermi momentum, but no states 

with higher p are occupied:



     (9.6)

Integrating over all possible momenta, the electron number density is

                      (9.7)

Using equation (9.6), the energy density of the degenerate electrons is



                                            (nonrelativistic)  (9.8)

                                           (ultra-relativistic)  (9.9)

and the pressure of the degenerate electrons is

(nonrelativistic) (9.10)

(ultra-relativistic) (9.11)



When chemical composition is described by the mass fractions of hydrogen X, 

helium Y and heavy elements Z=1-X-Y, the electron number density is 
approximately

        (9.12)

Using equation (9.7), we obtain



                                             (nonrelativistic) (9.13)

                                           (ultra-relativistic) (9.14)

-----------------------------------------------------------

Exercise 9.2. Verify equations (9.13, 9.14).

------------------------------------------------------------

The equations (9.13, 9.14) represent a particularly simple form of the equation 
of state, since they are independent of the temperature. This is a consequence 
of applying the low-temperature limit (equation 9.6) in the derivations. One 
may wonder why the low-temperature limit is relevant for describing stellar 
interiors, which are very hot in our everyday standards. The answer is that it is 
essentially the high-density requirement, which can also be viewed as a low-
temperature requirement. 



The low-temperature limit is applicable when the Fermi momentum pF is much 
bigger than the classical momentum of the electron provided by its thermal 

motion, which is mev=(2meE)1/2=(3mekT)1/2, i.e. when

                                          (9.15)

Thus, a quantum gas is a cold gas, but the standard of “coldness” is set by the 
density of the gas; a temperature of a billion degrees can be cold in a very 
dense gas.

The following diagram illustrates when the different pressures matter:

Different stars occupy different portions of the plane: 

Solar-type stars ideal gas throughout;
Massive stars significant contribution of radiation pressure;
White dwarfs nonrelativistic degeneracy pressure.

Relativistic degeneracy implies an unstable equation of state, and hence there 
is no stable stars in that part of the plane. Indeed, according to equation 
(4.18) of Lecture 4, the gravitational binding energy of the star is



and for an extremely relativistic gas with internal energy density u=3p
(equation 9.3) we obtain 

where U is internal energy, and hence the total energy E is

This result shows that an extremely relativistic system is marginally stable: it 
may expand or contract indefinitely without any change in the total energy. 
Hence a small change to the system may me sufficient to push it into 
instability. In addition to the ultra-relativistic degeneracy, another example of 
extremely relativistic systems is a star dominated by radiation pressure; such 
stars are also unstable.

9.2. Red giants. 

When hydrogen is exhausted near the centre, the star is left with a core 
consisting of helium and a small amount of heavy elements. Initially the 
temperature of the core is far below the 108 K required for helium ignition, and 
hence there is no nuclear energy generation in the core. Although there may 
still be some release of energy due to gravitational contraction, the luminosity 
in the core is generally very low, and the core is almost isothermal.

Surrounding the core is a region containing hydrogen where the temperature is 
still high enough for hydrogen burning to proceed. This region, which is known 
as a hydrogen shell source, provides the energy from which the luminosity of 
the star is derived. As the hydrogen is converted into helium in the shell 
source, the mass of the inert helium core increases. This leads to contraction of 
the core. As usual the contraction releases gravitational potential energy, part 
of which goes towards increasing the thermal energy of the core. As long as 
the core is not degenerate, the increase in thermal energy leads to an increase 
in temperature, up to the point where the temperature of the core is 
sufficiently high for helium burning to begin. Very roughly the process is then 
repeated: the star burns helium in the core (while still maintaining a hydrogen 
shell source) until helium is exhausted; the star then has a contracting core 
consisting of 12C and 16O, surrounded by a helium shell source and a hydrogen 
shell source; the contraction of the core may proceed up to the point where 
the temperature is high enough for carbon ignition; and so on. 

This rough sketch ignores a large amount of fascinating detail. Particularly 
important is the response of the observable properties of the star to the 



changes in the core: when the region inside a burning shell contracts, the 
region outside the shell expands. This response is behind the dominant 
observational signature of the post-main-sequence evolution, which is rapid 
expansion of the envelope to form a red giant star. 

This phenomenon is undoubtedly confirmed by computations, but, despite of 
many efforts, has no simple and fully accepted explanation in simple physical 
terms. One good plausibility argument is the following. Suppose the core 
contraction at the end of hydrogen burning occurs on a time scale shorter than 
the Kelvin-Helmholtz time scale of the whole star. From energy conservation, 

we have the sum of gravitational and internal energy Ω+U=const during 
the core-contraction phase (very small energy loss to the outer space). From 

the virial theorem, we have Ω+2U=const  (equation 4.19 of Lecture 4). 

But this is only possible when Ω and U are conserved separately. The 

contraction of the stellar core makes the gravitational binding energy Ω more 
negative; this change has to be compensated by the expansion of the 
envelope. 

The subsequent evolution of the star depends crucially on its mass, as 
illustrated by the following diagram:

9.3. White dwarfs

For a star with contracting core consisting of 12C and 16O, surrounded by a 
helium and hydrogen shell source, one may now expect a repetition of the 
story, the core contraction leading to sufficiently high temperatures for carbon 

burning to set in. However, stars of mass smaller than about 8M   never get 
that far. The carbon-oxygen core becomes degenerate, and the pressure of the 
degenerate electrons prevents the core from further contraction before the 
temperature reaches the values required for carbon ignition.



The subsequent evolution is complex, and not fully understood. Numerical 
computations indicate that a thermal instability develops in the helium shell 
source, causing thermal pulses where the star alternates between having a 
hydrogen and a helium shell source. At the same time the luminosity of the 
star increases greatly, as does its radius. Possibly as a result of the increase in 
radius and luminosity, the thermal pulses, or instabilities in the outer layers of 
the star, the star begins to loose mass at a fairly rapid rate. This process has 
been called a “superwind” (however, the fact that it has been given a name 
does not mean that the underlying physical mechanism is understood). The 
result appears to be that the star eventually looses essentially all the material 
outside the degenerate carbon-oxygen core. The core is initially extremely hot 
and quite luminous, despite its small size. It illuminates the material which has 
been lost, and which for a few thousand years forms a fairly-well defined shell 
around the star, and causes it to shine as a planetary nebulae.

Subsequently the material is dispersed in the interstellar medium; the 
degenerate core continues to shine through loss of its thermal energy. It cools 
gradually, reaching an effective temperature of about 4000 K in about 1010

years. These objects are called white dwarfs. Their masses are typically 

between 0.5M and 1.4M .

As a white dwarf cools, the pressure generated by the thermal motion of the 
ions will become less important, and eventually a pressure due to degenerate 
electrons will provide the bulk of the pressure needed to support the star.

We now assume for a while that the star is supported by the pressure of a gas 
of non-relativistic degenerate electrons (equation 9.13). The pressure and 

density profiles in such a star are described by a polytropic model (P=Kργ, 

equation 5.1 of Lecture 5) with γ=5/3 and polytropic index n=1/(γ-
1)=3/2 (equation 5.4). Using equation (5.14) of Lecture 5, we obtain 
immediately the mass-radius relation

                                                (9.16)



which tells us that more massive the white dwarf is, smaller its radius. The 
constant of proportionality in this relation depends on the composition; for a 

star with X=0,

                                    (9.17)

In many white dwarfs the electron gas is relativistic in the central part of the 
star, while it is non-relativistic further out. Indeed, the degenerate electrons 

become relativistic when Fermi momentum pF is large compared with mec, i.e. 
when the number density of the electrons (equation 9.7) is large compared 

with (mec/h)3.

If we now consider an opposite limit when the entire white dwarf is filled with 
extremely relativistic degenerate electrons, the equation of state (9.13) shall 

be replaced with (9.14), which corresponds to a polytrope with γ=4/3,
n=3. For polytropic index 3, the equation (5.14) predicts a unique value of 

mass M, which does not depend on radius R, being only governed by the 

constant K in the polytropic equation of state. This mass is known as 

Chandrasekhar mass MCh. The constant K in the equation of state depends 

upon the composition; for a white dwarf with X=0, we obtain

                                        (9.18)

According to our discussion earlier in this Lecture, an extremely relativistic 
system is marginally stable. It follows that the Chandrasekhar mass is the 

maximum mass possible for a white dwarf star. When the mass reaches MCh, 
the star collapses and new physics must be sought to explain what happens 
next. For the moment, the only firm conclusion we draw is that a degenerate 
electron gas cannot support a star with mass larger than the Chandrasekhar 
mass.                               

9.4. Supernova explosion.

Stars with initial mass greater than about 8M are expected to evolve through 
all the stages of nuclear burning. The process begins with hydrojen burning at 
about 2×107 K and proceeds at successfully high temperatures through helium, 



carbon, neon, oxygen and silicon burning. Silicon burning at about 3×109 K 
leads to a star with a central core of iron surrounded by concentric shells 
containing silicon, oxygen, neon, carbon, helium and hydrogen. Because 
energy cannot be released by the thermonuclear fusion of iron (in normal 
circumstances the most stable form of nuclear matter consists of nuclei near 
56Fe in the periodic table), the central core contracts. Initially, this contraction 
can be controlled by the pressure of the dense gas of degenerate electrons in 
the core. But as silicon burning in the surrounding shell deposits more iron 
onto the central core, the degenerate electrons in the core become increasingly 
relativistic. When the core mass reaches the Chandrasekhar limit of about 

1.4M , the electrons become ultra-relativistic and they are no longer able to 
support the core. At this stage the stellar core is on the brink of a catastrophe. 
What follows is an uncontrolled collapse of the stellar core.

To understand the onset of the collapse, we note that when a body contracts 
under gravity, gravitational energy is converted into internal energy. If this 
leads to the activation of exothermic nuclear fusion, the internal kinetic energy 
increases, the pressure rises and the contraction is opposed. The opposite 
happens if an energy-absorbing process is activated: kinetic energy is 
absorbed, the effectiveness of the pressure is diminished and gravitational 
contraction turns into gravitational collapse.

There are two energy-absorbing processes which could drive the iron core of a 
star into an uncontrollable collapse. They are the photodisintegration of atomic 
nuclei and the capture of electrons via inverse beta decay. During 
photodisintegration, in reactions like

kinetic energy is used to unbind atomic nuclei; and during inverse beta decay

or in reactions like

(the conversion of protons to neutrons is often called neutronization) kinetic 
energy of degenerate electrons is converted into the kinetic energy of electron 



neutrinos which escape from the core. These energy-absorbing processes are 
so effective that the collapse of the stellar core is almost unopposed. Indeed, 
the core can collapse almost freely under gravity, on a free-fall time scale 
(equation 1.3 of Lecture 1) which is remarkably short, of the order of 1 
millisecond.

The collapse is rapid and almost unopposed until a density comparable to the 
density of nuclear matter is reached. The nuclear forces (and neutron 
degeneracy) are expected to resist further compression and bring the collapse 
to a halt. The core is expected to rebound strongly and set up a shock wave 
that travels through the material that is falling towards the center. Theoretical 
calculations suggest that this shock wave may be able to reverse the inward 
fall of stellar material surrounding the core and produce an outward expulsion, 
a supernova.

Supernovae are very energetic explosions: the observed kinetic energy of the 
debris is typically 1044 J and the optical energy output, during the year 
following the explosion, is of the order of 1042 J. 

The mixture of products of thermonuclear reactions accumulated around the 
core is ejected into the interstellar medium and hence enriches is by heavy 
elements.

The collapse of the iron core of a massive star is the most likely cause of a so-
called Type II supernova (most of Type I supernovae are thought to arise from 
a thermonuclear detonation of a carbon-oxygen white dwarf which can 
increase its mass by drawing mass from a nearby companion star). The 
collapse is expected to leave a core residue, either a neutron star or an 
overweight neutron star that collapses to form a black hole.

9.5. Neutron stars.

A neutron star is born as a hot residue of the collapsed core of a massive star. 
The typical internal temperature is initially between 1011 K and 1012 K. It rapidly 



cools by neutrino emission and is expected to reach a temperature of the order 
of 109 K in a day and 108 K in a 100 years. These are high temperatures 
according to terrestrial and solar standards, but they are low when compared 
to the standards set by the high densities in the matter inside a neutron star. 
The electrons, photons and above all the neutrons, which appear to be the 
dominant constituent of neutron stars, are degenerate and occupy the lowest 
possible states consistent with the Pauli’s exclusion principle. The characteristic 
size of a neutron star is about 17 km, which is about 2000 times smaller than 
the typical size of a white dwarf given by equation (9.17).

Observationally, neutron stars have been detected in the form of the pulsars, 
which emit pulses at very regular intervals, with periods between a few 
milliseconds and a few seconds. These are most often observed in radio 
emission. The interpretation of the observations is that the pulses originate 
from a rotating neutron star, which is predominantly radiating in specific 
directions; a pulse is observed when the beam of radiation sweeps past the 
observer.

To a first approximation, neutrons play the same supporting role in a neutron 
star as electrons in a white dwarf. They can also fail to support in similar ways. 
Just as degenerate electrons are unable to support a white dwarf with a mass 
above a critical limit, the Chandrasekhar limit, degenerate neutrons are unable 
to support a neutron star with a mass above a certain value.

The physics underlying the Chandrasekhar limit is clear-cut. As the mass of the 
white dwarf approaches the limit, the central density increases and the 
degenerate electrons become increasingly relativistic. At the Chandrasekhar 
limit, the electrons are ultra-relativistic, the density approaches “infinity” and 
the star collapses. A similar phenomenon involving neutrons is expected in a 
neutron star, but there are a number of important differences. First, the 
interactions between neutrons are very important at the high densities found 
in a neutron star. Second, the gravitational fields are very strong and 
Einstein’s theory, not Newton’s, should be used to describe the equilibrium of a 
neutron star under gravity. However, these important differences do not alter 



the fundamental result that there is a maximum mass for a neutron star. Their 
main effect is to make the calculation of this maximum mass very difficult.

The first calculation of this kind was by Oppenheimer and Volkoff in 1939. They 
found that the maximum mass of a star composed of non-interacting neutrons 

is 0.7M . Modern estimates range from approximately 1.5M to 3M . 
The uncertainty in the value reflects the fact that the equations of state for 
extremely dense matter are not well-known.

9.6. Black holes.

In stars with initial mass bigger than about 20M , the collapsing core is too 
massive to end its life as a neutron star. As the collapse proceeds, the 
gravitational field becomes stronger and stronger, and the internal pressure
becomes larger and larger. But the source of the gravitational field in general 
relativity is the energy density and the pressure. Hence the increase in 
pressure accelerates the final stages of collapse. According to general 
relativity, the star enters a region of space-time called a black hole; it is more 
accurate to describe a black hole in terms of a distortion of the unified concept 
of space-time. In general relativity, gravity is not a force, but a distortion of 
the geometrical properties of space-time due to the presence of matter and 
radiation. The Sun only produces a slight “dent” in space-time, but a collapsed 
core of a massive star can produce a “hole”. Nothing can escape from this hole 
because there are no outward paths in this distorted region of space-time; 
every path is towards the center of the hole. It is a hole of no return.

The most important property of a black hole is the existence of an event 
horizon at radius

                                                (9.19)

Known as Schwarzchild radius. For a collapsed mass equal to 10M the 
Schwarzchild radius is 30 km. The Schwarzchild radius marks the boundary of 
the one-way surface of the black hole. This surface is not made of anything. It 
encloses an unobservable region of space in which all motion is towards the 
center. No matter, radiation, or information can propagate outwards through 
this surface. A black hole is formed when the radius of a collapsing star 
reaches the Schwarzchild radius.

Any method for detecting a black hole depends on observing the effects of its 
intense gravitational field. Observations of some compact X-ray sources 
indicate the presence of intense gravitational fields due to compact objects 
which are too massive to be neutron stars. These objects, by default, are 
thought to be black holes.



Gravity is the driving force for stellar evolution. It leads to the formation of a 
star and to temperatures which make thermonuclear fusion possible. The 
energy released by fusion only serves to delay the gravitational contraction of 
the matter inside the star. The endpoint may be a white dwarf or a neutron 
star, stars in which cold matter resists the force of gravity. An alternative 
endpoint is a black hole in which gravity is completely triumphant. The 
outcome is neat and tidy -- nothing is left of the collapsed matter apart from an 
intense gravitational field.


