
Lecture 5 Polytropic models 

The equation of hydrostatic equilibrium, discussed in the previous lecture, can 

be solved in the case where density ρ is a known function of pressure P. A 
particular example of this is a relation of the form

                                                   (5.1)

where K and γ are constants; this is called a polytropic relation, and the 
resulting models are called polytropic models.

Models of this nature have played a very important role in the development of 
the subject; they are still very useful as simple examples which are, 
nevertheless, not too dissimilar from realistic models. More importantly, there 
are cases where the polytropic relation (5.1) is a very good approximation to 
reality. An example is where pressure and density are related adiabatically, as 
in equation (3.34).

To obtain the equation satisfied by polytropic models, we note that from 
equations (4.5) and (4.7) we have

         (5.2)

Hence, using equation (5.1), we obtain

               (5.3)



It is convenient to replace γ by the polytropic index n, defined by 

                       (5.4)

Furthermore, we introduce a dimentionless measure θ of density ρ by

                                                (5.5)

where ρc is central density. Then equation (5.3) becomes

or



     (5.6)

To simplify the equation further, we introduce a new measure ξ for the 
distance to the centre by

(5.7)

Then the equation finally becomes

                               (5.8)

This equation is called the Lane-Emden equation, and the solution θ=θ(ξ) is 

called the Lane-Emden function. From equation (5.5) it follows that θ must 
satisfy the boundary condition

                            (5.9)



The surface of the model is defined by the point ξ=ξ1, where θ(ξ1)=0.

Given the solution θ(ξ), we can obtain relations between the various 
quantities characterizing the model. It follows immediately from equation (5.7) 
that the surface radius of the model is

     (5.10)

The mass m(ξ) interior to ξ may be obtained by integrating equation (4.7), 
using equations (5.5, 5.7, 5.8) as



(5.11)



Using the expression (5.7) for α, we finally obtain

(5.12)

In particular, the total mass is given by

(5.13)

From equations (5.10) and (5.13), by eliminating ρc, we may find a relation 

between M, R and K. The result is



(5.14)

There are two different interpretations of this relation. If the constant K in 
equation (5.1) is given in terms of basic physical constants and hence is 
known, equation (5.14) defines a relation between the mass and the radius of 
the star. If, on the other hand, equation (5.1) just expresses proportionality, 

the constant K being essentially arbitrary, then equation (5.14) may be used 

to determine K for a star with a given mass and radius; as shown below one 
may then determine other quantities for the star. In the former case, 
therefore, there is a unique polytropic model for a given mass, whereas in the 

latter case a model can be constructed for any value of M and R.

-------------------------

Exercise 5.1. Verify equation (5.14).

Solution to Exercise 5.1.

Solving equation (5.10) for ρc , we get



Doing the same with equation (5.13), we get

Eliminating ρc between these two equations, we have



This relation reduces to

and we finally get



-------------------------

From the last of equations (5.11) we find that the mean density of the star is

             (5.15)

and hence the central density is determined by the mass and radius as



(5.16)

where the last equation defines constant an which depends on the polytropic 

index n only. Finally, using that from equation (5.1)

                                       (5.17)

and using equations (5.14) and (5.16), we find that

(5.18)                    

where cn depends on the polytropic index n only. The pressure throughout the 
model is then determined by

                                              (5.19)

---------------------------------



Exercise 5.2. Fill in the missing details in the derivation of equations (5.15), 

(5.16), and (5.18).

Solution to Exercise 5.2.

Derivation of (5.15, 5.16) is obvious; equation (5.18) is derived from (5.17) by 

using K as given by equation (5.14) and ρc given by equation (5.16).

---------------------------------

In the case where the temperature is related to pressure and density through 
the ideal gas law (3.13), it may be determined from equations (5.5) and (5.19) 
as

                                                  (5.20)

where



(5.21)

where bn depends on the polytropic index n only. In the case when the star is 

composed of an ideal gas, therefore, θ is a measure of the temperature.

To determine the structure of a polytropic star completely, we only need to 
find the solution to the Lane-Emden equation (5.8). Unfortunately, in general 

no analytical solution is possible. The only exceptions are n=0, 1 and 5
where the solutions are

(5.22)

          (5.23)



(5.24)

---------------------------------

Exercise 5.3. Verify that these solutions satisfy the Lane-Emden equation 

(5.8) and the boundary condition (5.9). 

Solution to Exercise 5.3.

Substitute these solutions into the Lane-Emden equation (5.8). For n=0 we 
have

For n=1 we have



For n=5 we have





---------------------------------

The solution for n=5 is evidently peculiar, in that it has infinite radius. On the 
other hand, since

          (5.25)

is finite, so is the mass of the model. It may be shown that only for n<5 does 
the Lane-Emden equation have solutions corresponding to finite radius.

For values of n other than 0 and 1 , the Lane-Emden equation must be solved 
numerically. Extensive tables of the solution exist; in any case, with modern 



computational facilities the solution of the equation is a simple numerical 
problem. Table 5.1 lists a number of useful quantities, which enter into the 
expressions given above, for a selection of polytropic models.

n ξ1 an bn cn

0 2.449 1.00 0.5 0.12
1 3.142 3.29 0.5 0.39
1.5 3.654 5.99 0.54 0.77
2 4.353 11.40 0.60 1.64
3 6.897 54.18 0.85 11.05
4 14.97 662.4 1.67 247.6

Table 5.1. Properties of polytropic models. Constants an, bn and cn specify the 
central density, central temperature and central pressure as given by 
equations (5.16), (5.18) and (5.21).

The next table, Table 5.2, presents the solution for two particular cases 

n=1.5 and n=3, at selected values of ξ.       

ξ θ dθ/dξ ξ θ dθ/dξ
0 1 0 0 1 0
0.5 0.96 -0.16 0.5 0.96 -0.16
1.0 0.85 -0.29 1.0 0.86 -0.25
1.5 0.68 -0.36 1.5 0.72 -0.28
2.0 0.50 -0.37 2.0 0.58 -0.26
2.5 0.32 -0.34 3.0 0.36 -0.18
3.0 0.16 -0.28 4.0 0.21 -0.12
3.5 0.03 -0.22 6.0 0.04 -0.06



3.654 0 -0.22 6.897 0 -0.04

Table 5.2. Properties of polytropes of indices n=1.5 and n=3.

From Table 5.1 it follows that the properties of polytropic models vary widely 

with n. This is true in particular of the degree of central condensation, as 

measured by an, the ratio between central and mean density. For n=0 it is 

obvious from equation (5.5) that density ρ is constant, and hence a1=1 , 

whereas the value of an tends to infinity as n→5. For stars on the main 
sequence the central condensation is typically around 102, corresponding to a 
polytrope of index around 3.3.

It should be noticed also that equation (5.18) for the central pressure and, in 
the ideal gas case, equation (5.21) for the central temperature, confirm the 
simple scaling derived in the previous Lecture (section 4.2). Now, however, the 

polytropic relations contain the additional numerical constants bn and cn . It is 

obvious from Table 5.1 that that cn varies strongly with n; hence the estimate 
in equation (4.9) of the central pressure is at most a rough approximation. On 

the other hand, the range of variation of bn is much more modest, except 

when n is very close to the critical case n=5 . Thus equation (4.10) gives a 
reasonable estimate for the central temperature for a wide range of models.

---------------------------------

Exercise 5.4. Find ρc , Pc and Tc in a polytrope of index 3 with solar mass 

(2.00×1030kg) and radius (6.96×108m) and chemical composition X=0.7 , 

Z=0.02 , where the ideal gas equation of state is assumed to be valid. Find 

also ρ , P and T at the point where r=R/2. (Use the data in Tables 5.1 and 

5.2). 

Solution to Exercise 5.4.

We have



using mean molecular weight given by equation (3.20) as

At the point where r=R/2 ,



---------------------------------


