
Lecture 4

Hydrostatic equilibrium 

As argued in Lecture 1, the absence of changes in most stars over timescales 
of hours or days indicates that the forces acting on the matter in the stars are 
essentially perfectly balanced. Here we analyze this constraint in more detail.

4.1. Equation of hydrostatic support

Figure 4.1. Mass shell in a spherically symmetric star. In hydrostatic 
equilibrium, the pressure difference over the shell balances the gravitational 

force on dm due to the mass m(r) interior to r.

We consider a spherical shell in the star, between the distance r and the 

distance r+dr from the center of the star. To obtain the equation of motion 
for the cell, we must evaluate the forces acting on the shell. One force is 
gravity. It is well known that the gravitational force at the shell arises solely 

from the mass contained within the shell. Let this mass be m. Then the 

gravitational acceleration is -Gm/r2, where we count forces and accelerations 

positive in the direction of increasing r. The volume of the shell is 4πr2dr. 

Hence, if the density of matter in the shell is ρ, the mass in the shell is 

4πr2ρdr, and the gravitational force is

                               (4.1)



The second force arises from the pressure difference across the shell. Since 

pressure P is defined as force per unit area, this force is

(4.2)

by making a Taylor expansion of P. Hence, by balancing mass times 
acceleration with the combined force, the equation of motion of the shell is 
obtained as

                         (4.3)

or

      
                      (4.4)

If we demand that the star be in equilibrium, so that the acceleration vanishes, 
the pressure gradient must be determined by



                                        (4.5)

This is the first of the equations of stellar structure.

This equation must be supplemented by an equation relating m to the other 

properties of the star. It follows immediately from the definition of m, and the 

fact that the mass in the shell is 4πr2ρdr , that

                                     (4.6)

and hence

                                        (4.7)

This is our second equation.

4.2. Estimates of stellar internal pressure and temperature

From the equation of hydrostatic support (4.5), we may obtain an estimate of 

the central pressure Pc of a star with mass M and radius R. We make the 
following approximations:

-        Replace dP/dr by --Pc/R.

-        Replace m by M.

-        Replace r by R.

-        Replace ρ by the mean density, approximated as M/R3.



Then equation (4.5) gives

                                             (4.8)

or

                                              (4.9)

If we assume the ideal gas law, equation (3.13), we may estimate the central 
temperature as

                    (4.10)

where μc is the central mean molecular weight. In terms of solar values we 
obtain



  (4.11)

(4.12)

where the value of μc was obtained from equation (3.20), with X=0.35, 

Z=0.02.

The interpretation of these results is the usual: they are obviously not accurate 
estimates of the central pressure or temperature of a star, but they provide an 
order of magnitude. After all, without any prior knowledge it would be difficult 
to guess whether the central pressure of the Sun was 1010, 1020, or 1030 N m-2 ! 
In fact the estimates are reasonably (in the case of the temperature, 
fortuitously) accurate: realistic computations of solar models show that the 
solar central pressure is 2.4×1016 N m-2 and the solar central temperature is 
1.5×107 K. It should be noted also that the estimate for the pressure is 
obtained solely on the basis of Newtonian mechanics; the estimate of the 
temperature in addition required a minimal amount of thermodynamics. Surely 
a good example of the power of basic physics to provide knowledge about the 
internal properties of stars.

The second aspect of the simple estimates is that they indicate how the 
pressure and temperature scale with the stellar mass and radius. This 
dependence has a wider applicability. We shall later see several examples of 
how this scaling can be given a more precise meaning for particular types of 
simplified stellar models. And even for realistic stellar models, with detailed 
physics, one often find that the scaling provided by the simple estimates are 



surprisingly accurate when the stellar parameters are varied. Thus these 
estimates are very helpful for the interpretation of detailed numerical results.

4.3. Lower limit on the central pressure

It is of some interest that a strict limit can be obtained for the central pressure 
of a star, with no other assumptions beyond hydrostatic equilibrium. It is 
obtained by manipulating equation (4.5), using also equation (4.7):

(4.13)

and hence



               
(4.14)

This shows that the quantity Ψ(r)=P+Gm2/(8πr4) is a decreasing function 

of r. At the center P=Pc; also, equation (4.7) shows that m r3 for small r, 

so that the second term in Ψ  vanishes at r=0. Hence Ψ(0) = Pc . At the 

surface P is essentially zero. Thus, from the fact that Ψ is a decreasing 

function of r it follows that 

                
(4.15)

and this is the desired limit.

It is remarkable that this limit is a strict mathematical result, valid for any 
stellar model in hydrostatic equilibrium, regardless of its other properties, such 
as equation of state or energy transport and production. Also, it confirms that 

GM2/R4 is indeed a characteristic value for the internal pressure of stars. On 
the other hand, the limit is fairly weak, compared with the actual solar central 
pressure quoted above.

4.4. The virial theorem

From the equation of hydrostatic equilibrium we can derive an equation for the 
energetics of a star, which is of greatest importance for understanding stellar 
evolution. We begin by deriving an expression for the gravitational potential 

energy of the star. At the distance r from the centre the gravitational potential 

is --Gm/r, if we choose the arbitrary constant in the potential such that it is 
zero infinitely far from the star. Hence the total potential energy is



  (4.16)

This may be rewritten, by using the equation of hydrostatic support (4.5) and 
integrating by parts:



   (4.17)

Here the integrated terms vanishes, since P=0 at the surface r=R. Since 

4πr2dr is a volume element, we have

                                     (4.18)

where integration is performed over the volume V occupied by the star. But 

for the ideal gas, pressure P is related with internal energy per unit volume u
as u=3/2P (equation 3.21), and we finally obtain

                          
                  (4.19)

where U is the total thermal energy of the star. This relation is called the virial 
theorem. It follows then that the total energy of the star is

                       (4.20)

that the total energy is negative indicates that the star is stable: the thermal 
energy in the star is insufficient to cause it explode.



The last equation allows us to understand the evolution of stars where there 
are no sources of nuclear energy. The tendency for such a star is to contract 
under gravity. In this way the gravitational potential energy becomes more 
negative. The same is therefore true of the total energy of the star. However, 
since globally there has to be energy conservation, the energy lost by the star 
has to go somewhere else, and hence it is radiated from the star. Specifically, 
the luminosity of a contracting star is given by

              
(4.21)

where in the last approximate identity we used the estimate in equation (1.5) 
for the total gravitational potential energy. From equation (4.20) it follows also 

that the thermal energy U increases; so therefore does the average 
temperature in the gas. Of the gravitational potential energy that is released in 
the contraction, half is radiated away and the other half goes to heat up the 
gas. This demonstrates the paradoxical property of self-gravitating systems 
that they have a negative specific heat: as they loose energy, they become 
warmer.

It follows from equation (4.21) that 

                                     (4.22)

where tKH is the Kelvin-Helmholtz time defined in equation (1.6). This confirms 

that tKH is a characteristic time for the gravitational contraction of a star. It 

might be noted that the equality in equation (4.19) shows that tKH is also a 
characteristic time for the radiation of the thermal energy of the star. Hence 
changes that involve substantial losses or gains of energy can not take place 

on timescales shorter than tKH , at least as long as hydrostatic equilibrium is 
nearly maintained. Correspondingly, for changes that do occur on much 
shorter timescales the changes in energy must be very small; in other words, 
such changes are nearly adiabatic.



Similar effects occur in later stages of stellar evolution, as nuclear fuels are 
exhausted in the core of the star: again, the result is a gravitational 
contraction which releases energy and heats up the core, until the point is 
reached where further nuclear reactions set in. In this case, however, the 
situation may be complicated by the presence elsewhere in the star of nuclear 
burning shells; also, one often finds that the outer parts of the star expand 
(which require energy to work against gravity) as the core contracts. Thus the 
understanding of these evolutionary phases is less straightforward; but the 
virial theorem still plays a central role.

When the gas can not be regarded as ideal, or effects of ionization have to be 
taken into account, the simple equation (4.20) must be modified; but the 
general principles remain the same.

Exercises

Exercise 4.1. Assuming that the Sun has a constant density throughout its 
interior, what is the magnitude of the gravitational field (gravitational 

acceleration) half way in? 

Solution to Exercise 4.1.

We have

and hence



Exercise 4.2. Show that for a star composed of an ideal gas of uniform 
density, the central pressure is

and the central temperature is

Solution to Exercise 4.2.

We have



Integrating in radial coordinate, we get



From the equation of state of ideal gas,


