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1 Introduction

Oscillations and waves are ubiquitous phenomena that are encountered in

many different areas of physics. An oscillation is a disturbance in a physical

system that is repetitive in time. A wave is a disturbance in an extended phys-

ical system that is both repetitive in time and periodic in space. In general,

an oscillation involves a continuous back and forth flow of energy between

two different energy types: e.g., kinetic and potential energy, in the case of a

pendulum. A wave involves similar repetitive energy flows to an oscillation,

but, in addition, is capable of transmitting energy and information from

place to place. Now, although sound waves and electromagnetic waves,

for example, rely on quite distinct physical mechanisms, they, nevertheless,

share many common properties. The same is true of different types of oscil-

lation. It turns out that the common factor linking various types of wave is

that they are all described by the same mathematical equations. Again, the

same is true of various types of oscillation.

The aim of this course is to develop a unified mathematical theory of

oscillations and waves in physical systems. Examples will be drawn from

the dynamics of discrete mechanical systems; continuous gases, fluids, and

elastic solids; electronic circuits; electromagnetic waves; and quantum me-

chanical systems.

This course assumes a basic familiarity with the laws of physics, such

as might be obtained from a two-semester introductory college-level survey

course. Students are also assumed to be familiar with standard mathemat-

ics, up to and including trigonometry, linear algebra, differential calculus,

integral calculus, ordinary differential equations, partial differential equa-

tions, and Fourier series.

The textbooks which were consulted most often during the development

of the course material are:

Waves, Berkeley Physics Course, Vol. 3, F.S. Crawford, Jr. (McGraw-Hill,

New York NY, 1968).

Vibrations and Waves, A.P. French (W.W. Norton & Co., New York NY,

1971).

Introduction to Wave Phenomena, A. Hirose, and K.E. Lonngren (John Wiley

& Sons, New York NY, 1985).
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The Physics of Vibrations and Waves, 5th Edition, H.J. Pain (John Wiley &

Sons, Chichester UK, 1999).
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2 Simple Harmonic Oscillation

2.1 Mass on a Spring

Consider a compact mass m which slides over a frictionless horizontal sur-

face. Suppose that the mass is attached to one end of a light horizontal

spring whose other end is anchored in an immovable wall. See Figure 2.1.

At time t, let x(t) be the extension of the spring: i.e., the difference be-

tween the spring’s actual length and its unstretched length. Obviously, x(t)

can also be used as a coordinate to determine the instantaneous horizontal

displacement of the mass.

The equilibrium state of the system corresponds to the situation in which

the mass is at rest, and the spring is unextended (i.e., x = ẋ = 0, where

˙≡ d/dt). In this state, zero horizontal force acts on the mass, and so there

is no reason for it to start to move. However, if the system is perturbed

from its equilibrium state (i.e., if the mass is displaced, so that the spring

becomes extended) then the mass experiences a horizontal restoring force

given by Hooke’s law:

f(x) = −k x. (2.1)

Here, k > 0 is the so-called force constant of the spring. The negative sign

indicates that f(x) is indeed a restoring force (i.e., if the displacement is

positive then the force is negative, and vice versa). Note that the magnitude

of the restoring force is directly proportional to the displacement of the mass

from its equilibrium position (i.e., |f| ∝ x). Of course, Hooke’s law only

holds for relatively small spring extensions. Hence, the displacement of the

mass cannot be made too large. Incidentally, the motion of this particular

dynamical system is representative of the motion of a wide variety of me-

chanical systems when they are slightly disturbed from a stable equilibrium

state (see Section 2.4).

Newton’s second law of motion gives following time evolution equation

for the system:

mẍ = −k x, (2.2)

where¨≡ d2/dt2. This differential equation is known as the simple harmonic

oscillator equation, and its solution has been known for centuries. In fact,

the solution is

x(t) = a cos(ωt− φ), (2.3)
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x = 0

x

m

Figure 2.1: Mass on a spring

where a > 0, ω > 0, and φ are constants. We can demonstrate that Equa-

tion (2.3) is indeed a solution of Equation (2.2) by direct substitution. Plug-

ging the right-hand side of (2.3) into Equation (2.2), and recalling from

standard calculus that d(cos θ)/dθ = − sin θ and d(sin θ)/dθ = cos θ, so

that ẋ = −ωa sin(ωt − φ) and ẍ = −ω2a cos(ωt − φ), where use has

been made of the chain rule, we obtain

−mω2a cos(ωt− φ) = −ka cos(ωt− φ). (2.4)

It follows that Equation (2.3) is the correct solution provided

ω =

√

k

m
. (2.5)

Figure 2.2 shows a graph of x versus t obtained from Equation (2.3).

The type of behavior shown here is called simple harmonic oscillation. It can

be seen that the displacement x oscillates between x = −a and x = +a.

Here, a is termed the amplitude of the oscillation. Moreover, the motion

is repetitive in time (i.e., it repeats exactly after a certain time period has

elapsed). In fact, the repetition period is

T =
2π

ω
. (2.6)

This result is easily obtained from Equation (2.3) by noting that cos θ is a

periodic function of θ with period 2π: i.e., cos(θ + 2π) ≡ cosθ. It follows

that the motion repeats every time ωt increases by 2π: i.e., every time t
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Figure 2.2: Simple harmonic oscillation.

increases by 2π/ω. The frequency of the motion (i.e., the number of oscilla-

tions completed per second) is

f =
1

T
=
ω

2π
. (2.7)

It can be seen that ω is the motion’s angular frequency; i.e., the frequency

f converted into radians per second. Of course, f is measured in Hertz—

otherwise known as cycles per second. Finally, the phase angle, φ, determines

the times at which the oscillation attains its maximum displacement, x = a.

In fact, since the maxima of cos θ occur at θ = n2π, where n is an arbitrary

integer, the times of maximum displacement are

tmax = T

(

n+
φ

2π

)

. (2.8)

Clearly, varying the phase angle simply shifts the pattern of oscillation back-

ward and forward in time. See Figure 2.3.

Table 2.1 lists the displacement, velocity, and acceleration of the mass

at various different phases of the simple harmonic oscillation cycle. The in-

formation contained in this table can easily be derived from Equation (2.3).

Note that all of the non-zero values shown in this table represent either the
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Figure 2.3: Simple harmonic oscillation. The solid, short-dashed, and long

dashed-curves correspond to φ = 0, +π/4, and −π/4, respectively.

maximum or the minimum value taken by the quantity in question during

the oscillation cycle.

We have seen that when a mass on a spring is disturbed it executes sim-

ple harmonic oscillation about its equilibrium position. In physical terms, if

the mass’s initial displacement is positive (x > 0) then the restoring force is

negative, and pulls the mass toward the equilibrium point (x = 0). How-

ever, when the mass reaches this point it is moving, and its inertia thus

carries it onward, so that it acquires a negative displacement (x < 0). The

restoring force then becomes positive, and again pulls the mass toward the

equilibrium point. However, inertia again carries it past this point, and the

mass acquires a positive displacement. The motion subsequently repeats it-

ωt− φ 0 π/2 π 3π/2

x +a 0 −a 0

ẋ 0 −ωa 0 +ωa

ẍ −ω2a 0 +ω2a 0

Table 2.1: Simple harmonic oscillation.
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self ad infinitum. The angular frequency of the oscillation is determined by

the spring stiffness, k, and the system inertia, m, via Equation (2.5). On the

other hand, the amplitude and phase angle of the oscillation are determined

by the initial conditions. To be more exact, suppose that the instantaneous

displacement and velocity of the mass at t = 0 are x0 and v0, respectively. It

follows from Equation (2.3) that

x0 = x(t = 0) = a cosφ, (2.9)

v0 = ẋ(t = 0) = aω sinφ. (2.10)

Here, use has been made of the trigonometric identities cos(−θ) ≡ cos θ

and sin(−θ) ≡ − sin θ. Hence, we deduce that

a =
√

x2
0 + (v0/ω)2, (2.11)

and

φ = tan−1

(

v0

ωx0

)

, (2.12)

since sin2θ+ cos2θ ≡ 1 and tanθ ≡ sin θ/ cos θ.

The kinetic energy of the system, which is the same as the kinetic energy

of the mass, is written

K =
1

2
m ẋ2 =

1

2
ma2ω2 sin2(ωt− φ). (2.13)

The potential energy of the system, which is the same as the potential energy

of the spring, takes the form

U =
1

2
k x2 =

1

2
ka2 cos2(ωt− φ). (2.14)

Hence, the total energy is

E = K+U =
1

2
ka2 =

1

2
mω2a2, (2.15)

since mω2 = k and sin2θ + cos2θ ≡ 1. Note that the total energy is a con-

stant of the motion. Moreover, the energy is proportional to the amplitude

squared of the oscillation. It is clear, from the above expressions, that the

simple harmonic oscillation of a mass on a spring is characterized by a con-

tinuous backward and forward flow of energy between kinetic and potential

components. The kinetic energy attains its maximum value, and the poten-

tial energy its minimum value, when the displacement is zero (i.e., when
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x = 0). Likewise, the potential energy attains its maximum value, and the

kinetic energy its minimum value, when the displacement is maximal (i.e.,

when x = ±a). Note that the minimum value of K is zero, since the system

is instantaneously at rest when the displacement is maximal.

2.2 Simple Harmonic Oscillator Equation

Suppose that a physical system possesing one degree of freedom—i.e., a sys-

tem whose instantaneous state at time t is fully described by a single depen-

dent variable, s(t)—obeys the following time evolution equation [cf., Equa-

tion (2.2)]:

s̈+ω2 s = 0, (2.16)

where ω > 0 is a constant. As we have seen, this differential equation is

called the simple harmonic oscillator equation, and has the following solution

s(t) = a cos(ωt− φ), (2.17)

where a > 0 and φ are constants. Moreover, the above equation describes a

type of oscillation characterized by a constant amplitude, a, and a constant

angular frequency, ω. The phase angle, φ, determines the times at which

the oscillation attains its maximum value. Finally, the frequency of the os-

cillation (in Hertz) is f = ω/2π, and the period is T = 2π/ω. Note that

the frequency and period of the oscillation are both determined by the con-

stant ω, which appears in the simple harmonic oscillator equation, whereas

the amplitude, a, and phase angle, φ, are both determined by the initial

conditions—see Equations (2.9)–(2.12). In fact, a and φ are the two con-

stants of integration of the second-order ordinary differential equation (2.16).

Recall, from standard differential equation theory, that the most general

solution of an nth-order ordinary differential equation (i.e., an equation in-

volving a single independent variable and a single dependent variable in

which the highest derivative of the dependent with respect to the indepen-

dent variable is nth-order, and the lowest zeroth-order) involves n arbitrary

constants of integration. (Essentially, this is because we have to integrate

the equation n times with respect to the independent variable in order to

reduce it to zeroth-order, and so obtain the solution, and each integration

introduces an arbitrary constant: e.g., the integral of ṡ = a, where a is a

known constant, is s = a t+ b, where b is an arbitrary constant.)

Multiplying Equation (2.16) by ṡ, we obtain

ṡ s̈+ω2 ṡ s = 0. (2.18)
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However, this can also be written in the form

d

dt

(

1

2
ṡ2

)

+
d

dt

(

1

2
ω2 s2

)

= 0, (2.19)

or
dE
dt

= 0, (2.20)

where

E =
1

2
ṡ2 +

1

2
ω2 s2. (2.21)

Clearly, E is a conserved quantity: i.e., it does not vary with time. In fact,

this quantity is generally proportional to the overall energy of the system.

For instance, E would be the energy divided by the mass in the mass-spring

system discussed in Section 2.1. Note that E is either zero or positive, since

neither of the terms on the right-hand side of Equation (2.21) can be neg-

ative. Let us search for an equilibrium state. Such a state is characterized

by s = constant, so that ṡ = s̈ = 0. It follows from (2.16) that s = 0,

and from (2.21) that E = 0. We conclude that the system can only remain

permanently at rest when E = 0. Conversely, the system can never perma-

nently come to rest when E > 0, and must, therefore, keep moving for ever.

Furthermore, since the equilibrium state is characterized by s = 0, it follows

that s represents a kind of “displacement” of the system from this state. It is

also apparent, from (2.21), that s attains it maximum value when ṡ = 0. In

fact,

smax =

√
2 E
ω

. (2.22)

This, of course, is the amplitude of the oscillation: i.e., smax = a. Likewise,

ṡ attains its maximum value when x = 0, and

ṡmax =
√
2 E . (2.23)

Note that the simple harmonic oscillation (2.17) can also be written in

the form

s(t) = A cos(ωt) + B sin(ωt), (2.24)

where A = a cosφ and B = a sinφ. Here, we have employed the trigono-

metric identity cos(x − y) ≡ cos x cosy + sin x siny. Alternatively, (2.17)

can be written

s(t) = a sin(ωt− φ ′), (2.25)

where φ ′ = φ − π/2, and use has been made of the trigonometric identity

cos θ ≡ sin(π/2+ θ). Clearly, there are many different ways of representing
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a simple harmonic oscillation, but they all involve linear combinations of

sine and cosine functions whose arguments take the form ωt + c, where

c is some constant. Note, however, that, whatever form it takes, a general

solution to the simple harmonic oscillator equation must always contain two

arbitrary constants: i.e., A and B in (2.24) or a and φ ′ in (2.25).

The simple harmonic oscillator equation, (2.16), is a linear differential

equation, which means that if s(t) is a solution then so is a s(t), where a

is an arbitrary constant. This can be verified by multiplying the equation

by a, and then making use of the fact that ad2s/dt2 = d2(a s)/dt2. Now,

linear differential equations have a very important and useful property: i.e.,

their solutions are superposable. This means that if s1(t) is a solution to

Equation (2.16), so that

s̈1 = −ω2 s1, (2.26)

and s2(t) is a different solution, so that

s̈2 = −ω2 s2, (2.27)

then s1(t) + s2(t) is also a solution. This can be verified by adding the pre-

vious two equations, and making use of the fact that d2s1/dt
2 +d2s2/dt

2 =

d2(s1 + s2)/dt
2. Furthermore, it is easily demonstrated that any linear com-

bination of s1 and s2, such as a s1 + b s2, where a and b are constants, is

a solution. It is very helpful to know this fact. For instance, the solution

to the simple harmonic oscillator equation (2.16) with the initial conditions

s(0) = 1 and ṡ(0) = 0 is easily shown to be

s1(t) = cos(ωt). (2.28)

Likewise, the solution with the initial conditions s(0) = 0 and ṡ(0) = 1 is

clearly

s2(t) = ω−1 sin(ωt). (2.29)

Thus, since the solutions to the simple harmonic oscillator equation are su-

perposable, the solution with the initial conditions s(0) = s0 and ṡ(0) = ṡ0
is s(t) = s0 s1(t) + ṡ0 s2(t), or

s(t) = s0 cos(ωt) +
ṡ0

ω
sin(ωt). (2.30)

2.3 LC Circuit

Consider an electrical circuit consisting of an inductor, of inductance L, con-

nected in series with a capacitor, of capacitance C. See Figure 2.4. Such
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a circuit is known as an LC circuit, for obvious reasons. Suppose that I(t)

is the instantaneous current flowing around the circuit. According to stan-

dard electrical circuit theory, the potential difference across the inductor is

L İ. Again, from standard electrical circuit theory, the potential difference

across the capacitor is V = Q/C, where Q is the charge stored on the capac-

itor’s positive plate. However, since electric charge is conserved, the current

flowing around the circuit is equal to the rate at which charge accumulates

on the capacitor’s positive plate: i.e., I = Q̇. Now, according to Kichhoff ’s

second circuital law, the sum of the potential differences across the various

components of a closed circuit loop is equal to zero. In other words,

L İ+Q/C = 0. (2.31)

Dividing by L, and differentiating with respect to t, we obtain

Ï+ω2 I = 0, (2.32)

where

ω =
1√
LC

. (2.33)

Comparison with Equation (2.16) reveals that (2.32) is a simple harmonic

oscillator equation with the associated angular oscillation frequency ω. We

conclude that the current in an LC circuit executes simple harmonic oscilla-

tions of the form

I(t) = I0 cos(ωt− φ), (2.34)

where I0 > 0 and φ are constants. Now, according to Equation (2.31), the

potential difference, V = Q/C, across the capacitor is minus that across the

inductor, so that V = −L İ, giving

V(t) =

√

L

C
I0 sin(ωt− φ) =

√

L

C
I0 cos(ωt− φ− π/2). (2.35)

Here, use has been made of the trigonometric identity sinθ ≡ cos(θ− π/2).

It follows that the voltage in an LC circuit oscillates at the same frequency

as the current, but with a phase shift of π/2. In other words, the voltage is

maximal when the current is zero, and vice versa. The amplitude of the volt-

age oscillation is that of the current oscillation multiplied by
√

L/C. Thus,

we can also write

V(t) =

√

L

C
I(t−ω−1π/2). (2.36)
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.

L

C

I

Figure 2.4: An LC circuit.

Comparing with Equation (2.21), it is clear that

E =
1

2
İ2 +

1

2
ω2 I2 (2.37)

is a conserved quantity. However, ω2 = 1/LC, and İ = −V/L. Thus, multi-

plying the above expression by CL2, we obtain

E =
1

2
CV2 +

1

2
L I2. (2.38)

The first and second terms on the right-hand side of the above expression

can be recognized as the instantaneous energies stored in the capacitor and

the inductor, respectively. The former energy is stored in the electric field

generated when the capacitor is charged, whereas the latter is stored in

the magnetic field induced when current flows through the inductor. It fol-

lows that (2.38) is the total energy of the circuit, and that this energy is a

conserved quantity. Clearly, the oscillations of an LC circuit can be under-

stood as a cyclic interchange between electric energy stored in the capacitor

and magnetic energy stored in the inductor, much as the oscillations of the

mass-spring system studied in Section 2.1 can be understood as a cyclic in-

terchange between kinetic energy stored by the mass and potential energy

stored by the spring.

Suppose that at t = 0 the capacitor is charged to a voltage V0, and there

is no current flowing through the inductor. In other words, the initial state
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is one in which all of the circuit energy resides in the capacitor. The initial

conditions are V(0) = −L İ(0) = V0 and I(0) = 0. It is easily demonstrated

that the current evolves in time as

I(t) = −
V0

√

L/C
sin(ωt). (2.39)

Suppose that at t = 0 the capacitor is fully discharged, and there is a current

I0 flowing through the inductor. In other words, the initial state is one in

which all of the circuit energy resides in the inductor. The initial conditions

are V(0) = −L İ(0) = 0 and I(0) = I0. It is easily demonstrated that the

current evolves in time as

I(t) = I0 cos(ωt). (2.40)

Suppose, finally, that at t = 0 the capacitor is charged to a voltage V0, and

the current flowing through the inductor is I0. Since the solutions of the

simple harmonic oscillator equation are superposable, it is clear that the

current evolves in time as

I(t) = −
V0

√

L/C
sin(ωt) + I0 cos(ωt). (2.41)

Furthermore, it follows from Equation (2.36) that the voltage evolves in

time as

V(t) = −V0 sin(ωt− π/2) +

√

L

C
I0 cos(ωt− π/2), (2.42)

or

V(t) = V0 cos(ωt) +

√

L

C
I0 sin(ωt). (2.43)

Here, use has been made of the trigonometric identities sin(θ − π/2) ≡
− cos θ and cos(θ− π/2) ≡ sin θ.

The instantaneous electrical power absorption by the capacitor, which

can easily be shown to be minus the instantaneous power absorption by the

inductor, is

P(t) = I(t)V(t) = I0V0 cos(2ω t) +
1

2



I2
0

√

L

C
−

V 2
0

√

L/C



 sin(2ω t),

(2.44)
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Figure 2.5: A simple pendulum.

where use has been made of Equations (2.41) and (2.43), as well as the

trigonometric identities cos(2 θ) ≡ cos2θ−sin2θ and sin(2 θ) ≡ 2 sin θ cos θ.

Hence, the average power absorption during a cycle of the oscillation,

〈P〉 =
1

T

∫T

0

P(t)dt, (2.45)

is zero, since it is easily demonstrated that 〈cos(2ω t)〉 = 〈sin(2ω t)〉 = 0. In

other words, any energy which the capacitor absorbs from the circuit during

one part of the oscillation cycle is returned to the circuit without loss during

another. The same goes for the inductor.

2.4 Simple Pendulum

Consider a compact mass m suspended from a light inextensible string of

length l, such that the mass is free to swing from side to side in a vertical

plane, as shown in Figure 2.5. This setup is known as a simple pendulum.

Let θ be the angle subtended between the string and the downward verti-

cal. Obviously, the stable equilibrium state of the system corresponds to the

situation in which the mass is stationary, and hangs vertically down (i.e.,

θ = θ̇ = 0). The angular equation of motion of the pendulum is simply

I θ̈ = τ, (2.46)
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where I is the moment of inertia of the mass, and τ the torque acting about

the suspension point. For the case in hand, given that the mass is essentially

a point particle, and is situated a distance l from the axis of rotation (i.e.,

the suspension point), it is easily seen that I = ml2.

The two forces acting on the mass are the downward gravitational force,

mg, where g is the acceleration due to gravity, and the tension, T , in the

string. Note, however, that the tension makes no contribution to the torque,

since its line of action clearly passes through the suspension point. From

elementary trigonometry, the line of action of the gravitational force passes

a perpendicular distance l sin θ from the suspension point. Hence, the mag-

nitude of the gravitational torque is mg l sin θ. Moreover, the gravitational

torque is a restoring torque: i.e., if the mass is displaced slightly from its

equilibrium position (i.e., θ = 0) then the gravitational torque clearly acts

to push the mass back towards that position. Thus, we can write

τ = −mg l sin θ. (2.47)

Combining the previous two equations, we obtain the following angular

equation of motion of the pendulum:

l θ̈+ g sin θ = 0. (2.48)

Note that, unlike all of the other time evolution equations which we have ex-

amined so far in this chapter, the above equation is nonlinear [since sin(aθ) 6=
a sin θ], which means that it is generally very difficult to solve.

Suppose, however, that the system does not stray very far from its equi-

librium position (θ = 0). If this is the case then we can expand sin θ in a

Taylor series about θ = 0. We obtain

sin θ = θ−
θ3

6
+
θ5

120
+ O(θ7). (2.49)

Clearly, if |θ| is sufficiently small then the series is dominated by its first term,

and we can write sin θ ≃ θ. This is known as the small angle approximation.

Making use of this approximation, the equation of motion (2.48) simplifies

to

θ̈+ω2θ ≃ 0, (2.50)

where

ω =

√

g

l
. (2.51)
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Of course, (2.50) is just the simple harmonic oscillator equation. Hence, we

can immediately write its solution in the form

θ(t) = θ0 cos(ωt− φ), (2.52)

where θ0 > 0 and φ are constants. We conclude that the pendulum swings

back and forth at a fixed frequency, ω, which depends on l and g, but is

independent of the amplitude, θ0, of the motion. Of course, this result only

holds as long as the small angle approximation remains valid. It turns out

that sin θ ≃ θ is a good approximation provided |θ| <
∼
6◦. Hence, the period

of a simple pendulum is only amplitude independent when the amplitude

of the motion is less than about 6◦.

2.5 Exercises

1. A mass stands on a platform which executes simple harmonic oscillation in
a vertical direction at a frequency of 5Hz. Show that the mass loses contact
with the platform when the displacement exceeds 10−2 m.

2. A small body rests on a horizontal diaphragm of a loudspeaker which is
supplies with an alternating current of constant amplitude but variable fre-
quency. If diaphragm executes simple harmonic oscillation in the vertical
direction of amplitude 10µm, at all frequencies, find the greatest frequency
for which the small body stays in contact with the diaphragm.

3. Two light springs have spring constants k1 and k2, respectively, and are used
in a vertical orientation to support an object of mass m. Show that the an-
gular frequency of small amplitude oscillations about the equilibrium state is
[(k1 + k2)/m]1/2 if the springs are in parallel, and [k1 k2/(k1 + k2)m]1/2 if
the springs are in series.

4. A body of uniform cross-sectional area A and mass density ρ floats in a liquid
of density ρ0 (where ρ < ρ0), and at equilibrium displaces a volume V.
Making use of Archimedes principle (that the buoyancy force acting on a
partially submerged body is equal to the mass of the displaced liquid), show
that the period of small amplitude oscillations about the equilibrium position
is

T = 2π

√

V

gA
.

5. A particle of mass m slides in a frictionless semi-circular depression in the
ground of radius R. Find the angular frequency of small amplitude oscilla-
tions about the particle’s equilibrium position, assuming that the oscillations
are essentially one dimensional, so that the particle passes through the low-
est point of the depression during each oscillation cycle.
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6. If a thin wire is twisted through an angle θ then a restoring torque τ = −kθ

develops, where k > 0 is known as the torsional force constant. Consider
a so-called torsional pendulum, which consists of a horizontal disk of mass
M, and moment of inertia I, suspended at its center from a thin vertical
wire of negligible mass and length l, whose other end is attached to a fixed
support. The disk is free to rotate about a vertical axis passing through the
suspension point, but such rotation twists the wire. Find the frequency of
torsional oscillations of the disk about its equilibrium position.

7. Suppose that a hole is drilled through a laminar (i.e., flat) object of mass
M, which is then suspended in a frictionless manner from a horizontal axis
passing through the hole, such that it is free to rotate in a vertical plane.
Suppose that the moment of inertia of the object about the axis is I, and
that the distance of the hole from the object’s center of mass is d. Find
the frequency of small angle oscillations of the object about its equilibrium
position. Hence, find the frequency of small angle oscillations of a compound

pendulum consisting of a uniform rod of mass M and length l suspended
vertically from a horizontal axis passing through one of its ends.

8. A pendulum consists of a uniform circular disk of radius r which is free to
turn about a horizontal axis perpendicular to its plane. Find the position of
the axis for which the periodic time is a minimum.

9. A particle of mass m executes one-dimensional simple harmonic oscillation
under the action of a conservative force such that its instantaneous x coordi-
nate is

x(t) = a cos(ωt− φ).

Find the average values of x, x2, ẋ, and ẋ2 over a single cycle of the oscil-
lation. Find the average values of the kinetic and potential energies of the
particle over a single cycle of the oscillation.

10. A particle executes two-dimensional simple harmonic oscillation such that its
instantaneous coordinates in the x-y plane are

x(t) = a cos(ωt),

y(t) = a cos(ωt− φ).

Describe the motion when (a) φ = 0, (b) φ = π/2, and (c) φ = −π/2. In
each case, plot the trajectory of the particle in the x-y plane.

11. An LC circuit is such that at t = 0 the capacitor is uncharged and a current
I0 flows through the inductor. Find an expression for the charge Q stored on
the positive plate of the capacitor as a function of time.

12. A simple pendulum of mass m and length l is such that θ(0) = 0 and θ̇(0) =

ω0. Find the subsequent motion, θ(t), assuming that its amplitude remains
small. Suppose, instead, that θ(0) = θ0 and θ̇(0) = 0. Find the subsequent
motion. Suppose, finally, that θ(0) = θ0 and θ̇(0) = ω0. Find the subsequent
motion.
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13. Demonstrate that

E =
1

2
m l2 θ̇ 2 +mg l (cos θ− 1)

is a constant of the motion of a simple pendulum whose time evolution equa-
tion is given by (2.48). (Do not make the small angle approximation.) Hence,
show that the amplitude of the motion, θ0, can be written

θ0 = 2 sin−1

(

E

2mg l

)1/2

.

Finally, demonstrate that the period of the motion is determined by

T

T0

=
1

π

∫θ0

0

dθ
√

sin2
(θ0/2) − sin2

(θ/2)

,

where T0 is the period of small angle oscillations. Verify that T/T0 → 1 as
θ0 → 0. Does the period increase, or decrease, as the amplitude of the
motion increases?
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3 Damped and Driven Harmonic Oscillation

3.1 Damped Harmonic Oscillation

In the previous chapter, we encountered a number of energy conserving

physical systems which exhibit simple harmonic oscillation about a stable

equilibrium state. One of the main features of such oscillation is that, once

excited, it never dies away. However, the majority of the oscillatory sys-

tems which we generally encounter in everyday life suffer some sort of irre-

versible energy loss due, for instance, to frictional or viscous heat generation

whilst they are oscillating. We would therefore expect oscillations excited in

such systems to eventually be damped away. Let us examine an example of

a damped oscillatory system.

Consider the mass-spring system investigated in Section 2.1. Suppose

that, as it slides over the horizontal surface, the mass is subject to a frictional

damping force which opposes its motion, and is directly proportional to its

instantaneous velocity. It follows that the net force acting on the mass when

its instantaneous displacement is x(t) takes the form

f = −k x−mν ẋ, (3.1)

where m > 0 is the mass, k > 0 the spring force constant, and ν > 0 a

constant (with the dimensions of angular frequency) which parameterizes

the strength of the damping. The time evolution equation of the system thus

becomes [cf., Equation (2.2)]

ẍ+ ν ẋ+ω2
0 x = 0, (3.2)

where ω0 =
√

k/m is the undamped oscillation frequency [cf., Equation

(2.5)]. We shall refer to the above as the damped harmonic oscillator equa-

tion.

Let us search for a solution to Equation (3.2) of the form

x(t) = a e−γt cos(ω1 t− φ), (3.3)

where a > 0, γ > 0, ω1 > 0, and φ are all constants. By analogy with the

discussion in Section 2.1, we can interpret the above solution as a periodic

oscillation, of fixed angular frequency ω1 and phase angle φ, whose ampli-

tude decays exponentially in time as a(t) = a exp(−γ t). So, (3.3) certainly
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seems like a plausible solution for a damped oscillatory system. It is easily

demonstrated that

ẋ = −γa e−γt cos(ω1 t− φ) −ω1a e−γt sin(ω1 t− φ), (3.4)

ẍ = (γ2 −ω2
1)a e−γt cos(ω1 t− φ) + 2 γω1a e−γt sin(ω1 t− φ),

(3.5)

so Equation (3.2) becomes

0 =
[

(γ2 −ω2
1) − νγ+ω2

0

]

a e−γt cos(ω1 t− φ)

+ [2 γω1 − νω1]a e−γt sin(ω1 t− φ). (3.6)

Now, the only way in which the above equation can be satisfied at all times

is if the coefficients of exp(−γ t) cos(ω1 t−φ) and exp(−γ t) sin(ω1 t−φ)

separately equate to zero, so that

(γ2 −ω2
1) − νγ+ω2

0 = 0, (3.7)

2 γω1 − νω1 = 0. (3.8)

These equations can easily be solved to give

γ = ν/2, (3.9)

ω1 = (ω2
0 − ν2/4)1/2. (3.10)

Thus, the solution to the damped harmonic oscillator equation is written

x(t) = a e−νt/2 cos (ω1 t− φ) , (3.11)

assuming that ν < 2ω0 (since ω2
1 = ω2

0 −ν2/4 clearly cannot be negative).

We conclude that the effect of a relatively small amount of damping, pa-

rameterized by the damping constant ν, on a system which exhibits simple

harmonic oscillation about a stable equilibrium state is to reduce the angular

frequency of the oscillation from its undamped value ω0 to (ω2
0 − ν2/4)1/2,

and to cause the amplitude of the oscillation to decay exponentially in time

at the rate ν/2. This modified type of oscillation, which we shall refer to as

damped harmonic oscillation, is illustrated in Figure 3.1. [Here, T0 = 2π/ω0,

ν T0 = 0.5, and φ = 0. The solid line shows x(t)/a, whereas the dashed

lines show ±a(t)/a.] Incidentally, if the damping is sufficiently large that

ν ≥ 2ω0, which we shall assume is not the case, then the system does not
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Figure 3.1: Damped harmonic oscillation.

oscillate at all, and any motion simply decays away exponentially in time

(see Exercise 3).

Note that, although the angular frequency, ω1, and decay rate, ν/2,

of the damped harmonic oscillation specified in Equation (3.11) are deter-

mined by the constants appearing in the damped harmonic oscillator equa-

tion, (3.2), the initial amplitude, a, and the phase angle, φ, of the oscillation

are determined by the initial conditions. In fact, if x(0) = x0 and ẋ(0) = v0

then it follows from Equation (3.11) that

x0 = a cosφ, (3.12)

v0 = −
ν

2
a cosφ+ω1a sinφ, (3.13)

giving

a =

[

x2
0 +

(v0 + νx0/2)
2

ω2
1

]1/2

, (3.14)

φ = tan−1

(

v0 + νx0/2

ω1x0

)

. (3.15)

Note, further, that the damped harmonic oscillator equation is a linear dif-

ferential equation: i.e., if x(t) is a solution then so is ax(t), where a is an
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arbitrary constant. It follows that the solutions of this equation are superpos-

able, so that if x1(t) and x2(t) are two solutions corresponding to different

initial conditions then ax1(t)+bx2(t) is a third solution, where a and b are

arbitrary constants.

Multiplying the damped harmonic oscillator equation (3.2) by ẋ, we ob-

tain

ẋ ẍ+ ν ẋ2 +ω2
0 ẋ x = 0, (3.16)

which can be rearranged to give

dE

dt
= −mν ẋ2, (3.17)

where

E =
1

2
m ẋ2 +

1

2
k x2 (3.18)

is the total energy of the system: i.e., the sum of the kinetic and potential

energies. Clearly, since the right-hand side of (3.17) cannot be positive, and

is only zero when the system is stationary, the total energy is not a conserved

quantity, but instead decays monotonically in time due to the presence of

damping. Now, the net rate at which the force (3.1) does work on the mass

is

P = f ẋ = −k ẋ x−mν ẋ2. (3.19)

Note that the spring force (i.e., the first term on the right-hand side) does

negative work on the mass (i.e., it reduces the system kinetic energy) when

ẋ and x are of the same sign, and does positive work when they are of the

opposite sign. On average, the spring force does no net work on the mass

during an oscillation cycle. The damping force, on the other hand, (i.e., the

second term on the right-hand side) always does negative work on the mass,

and, therefore, always acts to reduce the system kinetic energy.

3.2 Quality Factor

The energy loss rate of a weakly damped (i.e., ν≪ 2ω0) harmonic oscillator

is conveniently characterized in terms of a parameter,Qf, which is known as

the quality factor. This quantity is defined to be 2π times the energy stored

in the oscillator, divided by the energy lost in a single oscillation period. If

the oscillator is weakly damped then the energy lost per period is relatively

small, and Qf is therefore much larger than unity. Roughly speaking, Qf is

the number of oscillations that the oscillator typically completes, after being

set in motion, before its amplitude decays to a negligible value. For instance,
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the quality factor for the damped oscillation shown in Figure 3.1 is 12.6. Let

us find an expression for Qf.

As we have seen, the motion of a weakly damped harmonic oscillator is

specified by [see Equation (3.11)]

x = a e−νt/2 cos(ω1 t− φ), (3.20)

It follows that

ẋ = −
aν

2
e−νt/2 cos(ω1 t− φ) − aω1 e−νt/2 sin(ω1 t− φ). (3.21)

Thus, making use of Equation (3.17), the energy lost during a single oscil-

lation period is

∆E = −

∫ (2π+φ)/ω1

φ/ω1

dE

dt
dt (3.22)

= mνa2

∫ (2π+φ)/ω1

φ/ω1

e−νt

[

ν

2
cos(ω1 t− φ) +ω1 sin(ω1 t− φ)

]2

dt.

In the weakly damped limit, ν ≪ 2ω0, the exponential factor is approxi-

mately unity in the interval t = φ/ω1 to (2π+ φ)/ω1, so that

∆E ≃ mνa2

ω1

∫2π

0

(

ν2

4
cos2θ+ νω1 cos θ sin θ+ω2

1 sin2θ

)

dθ, (3.23)

where θ = ω1 t− φ. Thus,

∆E ≃ πmνa2

ω1

(ν2/4+ω2
1) = πmω2

0 a
2

(

ν

ω1

)

, (3.24)

since, as is easily demonstrated,

∫2π

0

cos2θdθ =

∫2π

0

sin2θdθ = π, (3.25)

∫2π

0

cos θ sin θdθ = 0. (3.26)

Now, the energy stored in the oscillator (at t = 0) is [cf., Equation (2.15)]

E =
1

2
mω2

0 a
2. (3.27)

Hence, we obtain

Qf = 2π
E

∆E
=
ω1

ν
≃ ω0

ν
. (3.28)
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3.3 LCR Circuit

Consider an electrical circuit consisting of an inductor, of inductance L, con-

nected in series with a capacitor, of capacitance C, and a resistor, of resis-

tance R. See Figure 3.2. Such a circuit is known as an LCR circuit, for obvi-

ous reasons. Suppose that I(t) is the instantaneous current flowing around

the circuit. As we saw in Section 2.3, the potential differences across the

inductor and the capacitor are L İ and Q/C, respectively. Here, Q is the

charge on the capacitor’s positive plate, and I = Q̇. Moreover, from Ohm’s

law, the potential difference across the resistor is V = I R. Now, Kichhoff ’s

second circuital law states that the sum of the potential differences across

the various components of a closed circuit loop is zero. It follows that

L İ+ R I+Q/C = 0. (3.29)

Dividing by L, and differentiating with respect to time, we obtain

Ï+ ν İ+ω2
0 I = 0, (3.30)

where

ω0 =
1√
LC

, (3.31)

ν =
R

L
. (3.32)

Comparison with Equation (3.2) reveals that (3.30) is a damped harmonic

oscillator equation. Thus, provided that the resistance is not too high (i.e.,

provided that ν < ω0/2, which is equivalent to R < 2
√

L/C), the current

in the circuit executes damped harmonic oscillations of the form [cf., Equa-

tion (3.11)]

I(t) = I0 e−νt/2 cos(ω1 t− φ), (3.33)

where I0 and φ are constants, and ω1 =
√

ω2
0 − ν2/4. We conclude that

when a small amount of resistance is introduced into an LC circuit the char-

acteristic oscillations in the current damp away exponentially at a rate pro-

portional to the resistance.

Multiplying Equation (3.29) by I, and making use of the fact that I = Q̇,

we obtain

L İ I+ R I2 + Q̇Q/C = 0, (3.34)

which can be rearranged to give

dE

dt
= −R I2, (3.35)
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Figure 3.2: An LCR circuit.

where

E =
1

2
L I2 +

1

2

Q2

C
. (3.36)

Clearly, E is the circuit energy: i.e., the sum of the energies stored in the

inductor and the capacitor. Moreover, according to Equation (3.35), the cir-

cuit energy decays in time due to the power R I2 dissipated via Joule heating

in the resistor. Note that the dissipated power is always positive: i.e., the

circuit never gains energy from the resistor.

Finally, a comparison of Equations (3.28), (3.31), and (3.32) reveals

that the quality factor of an LCR circuit is

Qf =

√

L/C

R
. (3.37)

3.4 Driven Damped Harmonic Oscillation

We saw earlier, in Section 3.1, that when a damped mechanical oscillator

is set into motion the oscillations eventually die away due to frictional en-

ergy losses. In fact, the only way of maintaining the motion of a damped

oscillator is to continually feed energy into the system in such a manner as

to offset the frictional losses. A steady-state (i.e., constant amplitude) os-

cillation of this type is called driven damped harmonic oscillation. Consider

a modified version of the mass-spring system investigated in Section 3.1 in
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x

m

x = 0

Piston

X

X = 0

Figure 3.3: A driven oscillatory system

which one end of the spring is attached to the mass, and the other to a mov-

ing piston. See Figure 3.3. Let x(t) be the horizontal displacement of the

mass, and X(t) the horizontal displacement of the piston. The extension of

the spring is thus x(t) − X(t), assuming that the spring is unstretched when

x = X = 0. Thus, the horizontal force acting on the mass can be written [cf.,

Equation (3.1)]

f = −k (x− X) −mν ẋ. (3.38)

The equation of motion of the system then becomes [cf., Equation (3.2)]

ẍ+ ν ẋ+ω2
0 x = ω2

0 X, (3.39)

where ν > 0 is the damping constant, and ω0 > 0 the undamped oscillation

frequency. Suppose, finally, that the piston executes simple harmonic oscil-

lation of angular frequency ω > 0 and amplitude X0 > 0, so that the time

evolution equation of the system takes the form

ẍ+ ν ẋ+ω2
0 x = ω2

0 X0 cos(ωt). (3.40)

We shall refer to the above as the driven damped harmonic oscillator equa-

tion.

Now, we would generally expect the periodically driven oscillator shown

in Figure 3.3 to eventually settle down to a steady (i.e., constant amplitude)

pattern of oscillation, with the same frequency as the piston, in which the

frictional energy loss per cycle is exactly matched by the work done by the

piston per cycle (see Exercise 7). This suggests that we should search for a

solution to Equation (3.40) of the form

x(t) = x0 cos(ωt−ϕ). (3.41)
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Here, x0 > 0 is the amplitude of the driven oscillation, whereasϕ is the phase

lag of this oscillation (with respect to the phase of the piston oscillation).

Now, since

ẋ = −ωx0 sin(ωt−ϕ), (3.42)

ẍ = −ω2x0 cos(ωt−ϕ), (3.43)

Equation (3.40) becomes

(ω2
0 −ω2) x0 cos(ωt−ϕ)−νωx0 sin(ωt−ϕ) = ω2

0 X0 cos(ωt). (3.44)

However, cos(ωt−ϕ) ≡ cos(ωt) cosϕ+ sin(ωt) sinϕ and sin(ωt−ϕ) ≡
sin(ωt) cosϕ− cos(ωt) sinϕ, so we obtain

[

x0 (ω2
0 −ω2) cosϕ+ x0νω sinϕ−ω2

0 X0

]

cos(ωt) (3.45)

+x0

[

(ω2
0 −ω2) sinϕ− νω cosϕ

]

sin(ωt) = 0.

Now, the only way in which the above equation can be satisfied at all times

is if the coefficients of cos(ωt) and sin(ωt) separately equate to zero. In

other words,

x0 (ω2
0 −ω2) cosϕ+ x0νω sinϕ−ω2

0 X0 = 0, (3.46)

(ω2
0 −ω2) sinϕ− νω cosϕ = 0. (3.47)

These two expressions can be combined to give

x0 =
ω2

0 X0
[

(ω2
0 −ω2)2 + ν2ω2

]1/2
, (3.48)

ϕ = tan−1

(

νω

ω2
0 −ω2

)

. (3.49)

Let us investigate the dependence of the amplitude, x0, and phase lag,

ϕ, of the driven oscillation on the driving frequency, ω. This is most easily

done graphically. Figure 3.4 shows x0/X0 and ϕ plotted as functions of ω

for various different values of ν/ω0. In fact, ν/ω0 = 1/Qf = 1, 1/2, 1/4,

1/8, and 1/16 correspond to the solid, dotted, short-dashed, long-dashed,

and dot-dashed curves, respectively. It can be seen that as the amount of

damping in the system is decreased the amplitude of the response becomes

progressively more peaked at the natural frequency of oscillation of the sys-

tem, ω0. This effect is known as resonance, and ω0 is termed the resonant
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Figure 3.4: Driven harmonic motion.

frequency. Thus, a weakly damped oscillator (i.e., ν≪ ω0) can be driven to

large amplitude by the application of a relatively small amplitude external

driving force which oscillates at a frequency close to the resonant frequency.

Note that the response of the oscillator is in phase (i.e., ϕ ≃ 0) with the

external drive for driving frequencies well below the resonant frequency,

is in phase quadrature (i.e., ϕ = π/2) at the resonant frequency, and is in

anti-phase (i.e., ϕ ≃ π) for frequencies well above the resonant frequency.

According to Equations (3.28) and (3.48),

x0(ω = ω0)

X0

=
ω0

ν
= Qf. (3.50)

In other words, when the driving frequency matches the resonant frequency

the ratio of the amplitude of the driven oscillation to that of the piston os-

cillation is the quality factor, Qf. Hence, Qf can be regarded as the resonant

amplification factor of the oscillator. Equations (3.48) and (3.49) imply that,

for a weakly damped oscillator (i.e., ν ≪ ω0) which is close to resonance

[i.e., |ω−ω0| ∼ ν≪ ω0],

x0(ω)

x0(ω = ω0)
≃ sinϕ ≃ ν

[4 (ω0 −ω)2 + ν2]1/2
. (3.51)

Hence, the width of the resonance peak (in angular frequency) is ∆ω =

ν, where the edges of peak are defined as the points at which the driven

amplitude is reduced to 1/
√
2 of its maximum value: i.e., ω = ω0 ± ν/2.

Note that the phase lag at the low and high frequency edges of the peak are
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π/4 and 3π/4, respectively. Furthermore, the fractional width of the peak is

∆ω

ω0

=
ν

ω0

=
1

Qf

. (3.52)

We conclude that the height and width of the resonance peak of a weakly

damped (Qf ≫ 1) harmonic oscillator scale as Qf and Q−1
f , respectively.

Thus, the area under the resonance peak stays approximately constant as

Qf varies.

Now, the force exerted on the system by the piston is

F(t) = kX0 cos(ωt). (3.53)

Hence, the instantaneous power absorption from the piston becomes

P(t) = F(t) ẋ(t)

= −kX0x0ω cos(ωt) sin(ωt−ϕ) (3.54)

= −kX0x0ω
[

cos(ωt) sin(ωt) cosϕ− cos2(ωt) sinϕ
]

.

Thus, the average power absorption during an oscillation cycle is

〈P〉 =
1

2
kX0 x0ω sinϕ, (3.55)

since 〈cos(ωt) sin(ωt)〉 = 0 and 〈cos2(ωt)〉 = 1/2. Of course, given that

the amplitude of the driven oscillation neither grows nor decays, the average

power absorption from the piston during an oscillation cycle must be equal

to the average power dissipation due to friction (see Exercise 7). Making

use of Equations (3.50) and (3.51), the mean power absorption when the

driving frequency is close to the resonant frequency is

〈P〉 ≃ 1

2
ω0kX

2
0 Qf

[

ν2

4 (ω0 −ω)2 + ν2

]

. (3.56)

Thus, the maximum power absorption occurs at the resonance (i.e., ω =

ω0), and the absorption is reduced to half of this maximum value at the

edges of the resonance (i.e., ω = ω0 ± ν/2). Furthermore, the peak power

absorption is proportional to the quality factor, Qf, which means that it is

inversely proportional to the damping constant, ν.
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Figure 3.5: A driven LCR circuit.

3.5 Driven LCR Circuit

Consider an LCR circuit consisting of an inductor, L, a capacitor, C, and a re-

sistor, R, connected in series with an emf of voltage V(t). See Figure 3.5. Let

I(t) be the instantaneous current flowing around the circuit. Now, according

to Kichhoff ’s second circuital law, the sum of the potential drops across the

various components of a closed circuit loop is equal to zero. Thus, since the

potential drop across an emf is minus the associated voltage, we obtain [cf.,

Equation (3.29)]

L İ+ R I+Q/C = V, (3.57)

where Q̇ = I. Suppose that the emf is such that its voltage oscillates sinu-

soidally at the angular frequency ω > 0, with the peak value V0 > 0, so

that

V(t) = V0 sin(ωt). (3.58)

Dividing Equation (3.57) by L, and differentiating with respect to time, we

obtain [cf., Equation (3.30)]

Ï+ ν İ+ω2
0 I =

ωV0

L
cos(ωt), (3.59)

whereω0 = 1/
√
LC and ν = R/L. Comparison with Equation (3.40) reveals

that this is a driven damped harmonic oscillator equation. It follows, by

comparison with the analysis contained in the previous section, that the

current driven in the circuit by the oscillating emf is of the form

I(t) = I0 cos(ωt−ϕ), (3.60)
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where

I0 =
ωV0/L

[

(ω2
0 −ω2)2 + ν2ω2

]1/2
, (3.61)

ϕ = tan−1

(

νω

ω2
0 −ω2

)

. (3.62)

In the immediate vicinity of the resonance (i.e., |ω −ω0| ∼ ν ≪ ω0) these

expression simplify to

I0 ≃ V0

R

ν

[4 (ω0 −ω)2 + ν2]1/2
, (3.63)

sinϕ ≃ ν

[4 (ω−ω0)2 + ν2]1/2
. (3.64)

Now, the circuit’s mean power absorption from the emf is written

〈P〉 = 〈I(t)V(t)〉 = I0V0 〈cos(ωt−ϕ) sin(ωt)〉

=
1

2
I0V0 sinϕ, (3.65)

so that

〈P〉 ≃ 1

2

V 2
0

R

[

ν2

4 (ω0 −ω)2 + ν2

]

(3.66)

close to the resonance. It follows that the peak power absorption, (1/2)V 2
0 /R,

takes place when the emf oscillates at the resonant frequency,ω0. Moreover,

the power absorption falls to half of this peak value at the edges of the res-

onant peak: i.e., ω = ω0 ± ν.

LCR circuits are often employed as analogue radio tuners. In this appli-

cation, the emf represents the analogue signal picked-up by a radio antenna.

It is clear, from the above analysis, that the circuit only has a strong response

(i.e., it only absorbs significant energy) when the signal oscillates in the an-

gular frequency range ω0±ν, which corresponds to 1/
√
LC±R/L. Thus, if

the values of L, C, and R are properly chosen then the circuit can be made

to strongly absorb the signal from a particular radio station, which has a

given carrier frequency and bandwidth, whilst essentially ignoring the sig-

nals from other stations with different carrier frequencies. In practice, the

values of L and R are fixed, whilst the value of C is varied (by turning a

knob which adjusts the degree of overlap between two sets of parallel semi-

circular conducting plates) until the signal from the desired radio station is

found.
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3.6 Transient Oscillator Response

The time evolution of the driven mechanical oscillator discussed in Sec-

tion 3.4 is governed by the driven damped harmonic oscillator equation,

ẍ+ ν ẋ+ω2
0 x = ω2

0 X0 cos(ωt). (3.67)

Recall that the steady-state (i.e., constant amplitude) solution to this equa-

tion which we found earlier takes the form

xta(t) = x0 cos(ωt−ϕ), (3.68)

where

x0 =
ω2

0 X0
[

(ω2
0 −ω2)2 + ν2ω2

]1/2
, (3.69)

ϕ = tan−1

(

νω

ω2
0 −ω2

)

. (3.70)

Now, Equation (3.67) is a second-order ordinary differential equation, which

means that its general solution should contain two arbitrary constants. Note,

however, that (3.68) contains no arbitrary constants. It follows that (3.68)

cannot be the most general solution to the driven damped harmonic oscil-

lator equation, (3.67). However, it is fairly easy to see that if we add any

solution of the undriven damped harmonic oscillator equation,

ẍ+ ν ẋ+ω2
0 x = 0, (3.71)

to (3.68) then the result will still be a solution to Equation (3.67). Now,

from Section 3.1, the most general solution to the above equation can be

written

xtr(t) = A e−νt/2 cos(ω1 t) + B e−νt/2 sin(ω1 t), (3.72)

where ω1 = (ω2
0 −ν2/4)1/2, and A and B are arbitrary constants. [In terms

of the standard solution (3.11), A = a cosφ and B = a sinφ.] Thus, a

more general solution to (3.67) is

x(t) = xta(t) + xtr(t) (3.73)

= x0 cos(ωt−ϕ) +A e−νt/2 cos(ω1 t) + B e−νt/2 sin(ω1 t).

In fact, since the above solution contains two arbitrary constants, we can be

sure that it is the most general solution. Of course, the constants A and B are
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determined by the initial conditions. It is, thus, clear that the most general

solution to the driven damped harmonic oscillator equation (3.67) consists

of two parts. First, the solution (3.68), which oscillates at the driving fre-

quency ω with a constant amplitude, and which is independent of the initial

conditions. Second, the solution (3.72), which oscillates at the natural fre-

quency ω1 with an amplitude which decays exponentially in time, and which

depends on the initial conditions. The former is termed the time asymptotic

solution, since if we wait long enough then it becomes dominant. The latter

is called the transient solution, since if we wait long enough then it decays

away.

Suppose, for the sake of argument, that the system is initially in its equi-

librium state: i.e., x(0) = ẋ(0) = 0. It follows from (3.73) that

x(0) = x0 cosϕ+A = 0, (3.74)

ẋ(0) = x0ω sinϕ−
ν

2
A+ Bω1 = 0. (3.75)

These equations can be solved to give

A = −x0 cosϕ, (3.76)

B = −x0

[

ω sinϕ+ (ν/2) cosϕ

ω1

]

. (3.77)

Now, according to the analysis in Section 3.4, for driving frequencies close

to the resonant frequency (i.e., |ω−ω0| ∼ ν), we can write

x0 ≃ X0ω0

[4 (ω0 −ω)2 + ν2]1/2
, (3.78)

sinϕ ≃ ν

[4 (ω0 −ω)2 + ν2]1/2
, (3.79)

cosϕ ≃ 2 (ω0 −ω)

[4 (ω0 −ω)2 + ν2]1/2
. (3.80)

Hence, in this case, the solution (3.73), combined with (3.76)–(3.80), re-

duces to

x(t) ≃ X0

[

2ω0 (ω0 −ω)

4 (ω0 −ω)2 + ν2

]

[

cos(ωt) − e−νt/2 cos(ω0 t)
]

+X0

[

ω0ν

4 (ω0 −ω)2 + ν2

]

[

sin(ωt) − e−νt/2 sin(ω0 t)
]

.

(3.81)
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Figure 3.6: Resonant response of a driven damped harmonic oscillator.

There are a number of interesting cases which are worthy of discussion.

Consider, first, the situation in which the driving frequency is equal to the

resonant frequency: i.e., ω = ω0. In this case, Equation (3.81) reduces to

x(t) = X0Qf

(

1− e−νt/2
)

sin(ω0 t), (3.82)

since Qf = ω0/ν. Thus, the driven response oscillates at the resonant fre-

quency, ω0, since both the time asymptotic and transient solutions oscillate

at this frequency. However, the amplitude of the oscillation grows monotoni-

cally as a(t) = X0Qf

(

1− e−νt/2
)

, and so takes a time of order ν−1 to attain

its final value X0Qf, which is, of course, larger that the driving amplitude

by the resonant amplification factor (or quality factor), Qf. This behavior

is illustrated in Figure 3.6. [Here, T0 = 2π/ω0 and Qf = ω0/ν = 16. The

solid curve shows x(t)/X0 and the dashed curves show ±a(t)/X0.]

Consider, now, the situation in which there is no damping, so that ν = 0.

In this case, Equation (3.81) yields

x(t) = X0

(

ω0

ω0 −ω

)

sin[(ω0 −ω) t/2] sin[(ω0 +ω) t/2], (3.83)

where use has been made of the trigonometry identity cosa − cosb ≡
−2 sin[(a + b)/2] sin[(a − b)/2]. It can be seen that the driven response
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Figure 3.7: Off-resonant response of a driven undamped harmonic oscillator.

oscillates relatively rapidly at the “sum frequency” (ω0 +ω)/2 with an am-

plitude a(t) = X0 [ω0/(ω0−ω)] sin[(ω0−ω)/t] which modulates relatively

slowly at the “difference frequency” (ω0−ω)/2. (Recall, that we are assum-

ing that ω is close to ω0.) This behavior is illustrated in Figure 3.7. [Here,

T0 = 2π/ω0 and ω0 −ω = ω0/16. The solid curve shows x(t)/X0 and the

dashed curves show ±a(t)/X0.] The amplitude modulations shown in Fig-

ure 3.7 are called beats, and are produced whenever two sinusoidal oscilla-

tions of similar amplitude, and slightly different frequency, are superposed.

In this case, the two oscillations are the time asymptotic solution, which

oscillates at the driving frequency, ω, and the transient solution, which os-

cillates at the resonant frequency, ω0. The beats modulate at the difference

frequency, (ω0 −ω)/2. In the limit ω → ω0, Equation (3.83) yields

x(t) =
X0

2
ω0 t sin(ω0 t), (3.84)

since sin x ≃ x when |x| ≪ 1. Thus, the resonant response of a driven un-

damped oscillator is an oscillation at the resonant frequency whose ampli-

tude, a(t) = (X0/2)ω0 t, increases linearly in time. In this case, the period

of the beats has effectively become infinite.

Finally, Figure 3.8 illustrates the non-resonant response of a driven dam-

ped harmonic oscillator, obtained from Equation (3.81). [Here, T0 = 2π/ω0,
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Figure 3.8: Off-resonant response of a driven damped harmonic oscillator.

ω0 −ω = ω0/16, and ν = ω0/16.] It can be seen that the driven response

grows, showing some initial evidence of beat modulation, but eventually

settles down to a steady pattern of oscillation. This behavior occurs because

the transient solution, which is needed to produce beats, initially grows, but

then damps away, leaving behind the constant amplitude time asymptotic

solution.

3.7 Exercises

1. Show that the ratio of two successive maxima in the displacement of a damped
harmonic oscillator is constant.

2. If the amplitude of a damped harmonic oscillator decreases to 1/e of its initial
value after n ≫ 1 periods show that the ratio of the period of oscillation to
the period of the oscillation with no damping is

(

1+
1

4π2 n2

)1/2

≃ 1+
1

8π2 n2
.

3. Many oscillatory systems are subject to damping effects which are not exactly
analogous to the frictional damping considered in Section 3.1. Nevertheless,
such systems typically exhibit an exponential decrease in their average stored
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energy of the form 〈E〉 = E0 exp(−ν t). It is possible to define an effective
quality factor for such oscillators as Qf = ω0/ν, where ω0 is the natural
angular oscillation frequency. For example, when the note “middle C” on a
piano is struck its oscillation energy decreases to one half of its initial value
in about 1 second. The frequency of middle C is 256 Hz. What is the effective
Qf of the system?

4. According to classical electromagnetic theory, an accelerated electron radi-
ates energy at the rate Ke2 a2/c3, where K = 6 × 109 N m2/C2, e is the
charge on an electron, a the instantaneous acceleration, and c the velocity
of light. If an electron were oscillating in a straight-line with displacement
x(t) = A sin(2π f t) how much energy would it radiate away during a single
cycle? What is the effective Qf of this oscillator? How many periods of oscil-
lation would elapse before the energy of the oscillation was reduced to half
of its initial value? Substituting a typical optical frequency (i.e., for visible
light) for f, give numerical estimates for the Qf and half-life of the radiating
system.

5. Demonstrate that in the limit ν → 2ω0 the solution to the damped harmonic
oscillator equation becomes

x(t) = (x0 + [v0 + (ν/2) x0] t) e−ν t/2,

where x0 = x(0) and v0 = ẋ(0).

6. What are the resonant angular frequency and quality factor of the circuit
pictured below? What is the average power absorbed at resonance?

.

I0 cos(ω t)

L R C

7. The power input 〈P〉 required to maintain a constant amplitude oscillation in
a driven damped harmonic oscillator can be calculated by recognizing that
this power is minus the average rate that work is done by the damping force,
−k ẋ.

(a) Using x = x0 cos(ωt−ϕ), show that the average rate that the damping
force does work is −kω2 x 2

0 /2.

(b) Substitute the value of x0 at an arbitrary driving frequency and, hence,
obtain an expression for 〈P〉.
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(c) Demonstrate that this expression yields (3.56) in the limit that the driv-
ing frequency is close to the resonant frequency.

8. A generator of emf V(t) = V0 cos(ωt) is connected in series with a resistance
R, an inductor L, and a capacitor C. Let I(t) be the current flowing in the
circuit, and Q(t) the charge on the capacitor. Suppose that I = Q = 0 at
t = 0. Find I(t) and Q(t) for t > 0.

9. The equation mẍ + k x = F0 sin(ωt) governs the motion of an undamped
harmonic oscillator driven by a sinusoidal force of angular frequency ω.
Show that the steady-state solution is

x =
F0 sin(ωt)

m (ω 2
0 −ω2)

,

where ω0 =
√

k/m. Sketch the behavior of x versus t for ω < ω0 and
ω > ω0. Demonstrate that if x = ẋ = 0 at t = 0 then the general solution is

x =
F0

m (ω 2
0 −ω2)

[

sin(ωt) −
ω

ω0

sin(ω0 t)

]

.

Show, finally, that if ω is close to the resonant frequency ω0 then

x ≃ F0

2ω 2
0

[sin(ω0 t) −ω0 t cos(ω0 t)] .

Sketch the behavior of x versus t.



Coupled Oscillations 43

4 Coupled Oscillations

4.1 Two Spring-Coupled Masses

Consider a mechanical system consisting of two identical masses m which

are free to slide over a frictionless horizontal surface. Suppose that the

masses are attached to one another, and to two immovable walls, by means

of three identical light horizontal springs of spring constant k, as shown in

Figure 4.1. The instantaneous state of the system is conveniently specified

by the displacements of the left and right masses, x1(t) and x2(t), respec-

tively. The extensions of the left, middle, and right springs are thus x1,

x2 − x1, and −x2, respectively, assuming that x1 = x2 = 0 corresponds to

the equilibrium configuration in which the springs are all unextended. The

equations of motion of the two masses are thus

mẍ1 = −k x1 + k (x2 − x1), (4.1)

mẍ1 = −k (x2 − x1) + k (−x2). (4.2)

Here, we have made use of the fact that a mass attached to the left end

of a spring of extension x and spring constant k experiences a horizontal

force +k x, whereas a mass attached to the right end of the same spring

experiences an equal and opposite force −k x.

Equations (4.1)–(4.2) can be rewritten in the form

ẍ1 = −2ω2
0 x1 +ω2

0 x2, (4.3)

ẍ2 = ω2
0 x1 − 2ω2

0 x2, (4.4)

x2

mm

x1

x2 = 0x1 = 0

k kk

Figure 4.1: Two degree of freedom mass-spring system.
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where ω0 =
√

k/m. Let us search for a solution in which the two masses

oscillate in phase at the same angular frequency, ω. In other words,

x1(t) = x̂1 cos(ωt− φ), (4.5)

x2(t) = x̂2 cos(ωt− φ), (4.6)

where x̂1, x̂2, and φ are constants. Equations (4.3) and (4.4) yield

−ω2 x̂1 cos(ωt− φ) =
(

−2ω2
0 x̂1 +ω2

0 x̂2

)

cos(ωt− φ), (4.7)

−ω2 x̂2 cos(ωt− φ) =
(

ω2
0 x̂1 − 2ω2

0 x̂2

)

cos(ωt− φ), (4.8)

or

(ω̂2 − 2) x̂1 + x̂2 = 0, (4.9)

x̂1 + (ω̂2 − 2) x̂2 = 0, (4.10)

where ω̂ = ω/ω0. Note that by searching for a solution of the form (4.5)–

(4.6) we have effectively converted the system of two coupled linear differ-

ential equations (4.3)–(4.4) into the much simpler system of two coupled

linear algebraic equations (4.9)–(4.10). The latter equations have the trivial

solutions x̂1 = x̂2 = 0, but also yield

x̂1

x̂2

= −
1

(ω̂2 − 2)
= −(ω̂2 − 2). (4.11)

Hence, the condition for a nontrivial solution is clearly

(ω̂2 − 2) (ω̂2 − 2) − 1 = 0. (4.12)

In fact, if we write Equations (4.9)–(4.10) in the form of a homogenous

(i.e., with a null right-hand side) 2× 2 matrix equation, so that

(

ω̂2 − 2 1

1 ω̂2 − 2

)(

x̂1

x̂2

)

=

(

0

0

)

, (4.13)

then it is clear that the criterion (4.12) can also be obtained by setting the

determinant of the associated 2× 2 matrix to zero.

Equation (4.12) can be rewritten

ω̂4 − 4 ω̂2 + 3 = (ω̂2 − 1) (ω̂2 − 3) = 0. (4.14)
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It follows that

ω̂ = 1 or
√
3. (4.15)

Here, we have neglected the two negative frequency roots of (4.14)—i.e.,

ω̂ = −1 and ω̂ = −
√
3—since a negative frequency oscillation is equivalent

to an oscillation with an equal and opposite positive frequency, and an equal

and opposite phase: i.e., cos(ωt − φ) ≡ cos(−ωt + φ). It is thus apparent

that the dynamical system pictured in Figure 4.1 has two unique frequencies

of oscillation: i.e., ω = ω0 and ω =
√
3ω0. These are called the normal

frequencies of the system. Since the system possesses two degrees of freedom

(i.e., two independent coordinates are needed to specify its instantaneous

configuration) it is not entirely surprising that it possesses two normal fre-

quencies. In fact, it is a general rule that a dynamical system withN degrees

of freedom possesses N normal frequencies.

The patterns of motion associated with the two normal frequencies can

easily be deduced from Equation (4.11). Thus, for ω = ω0 (i.e., ω̂ = 1), we

get x̂1 = x̂2, so that

x1(t) = η̂1 cos(ω0 t− φ1), (4.16)

x2(t) = η̂1 cos(ω0 t− φ1), (4.17)

where η̂1 and φ1 are constants. This first pattern of motion corresponds to

the two masses executing simple harmonic oscillation with the same ampli-

tude and phase. Note that such an oscillation does not stretch the middle

spring. On the other hand, for ω =
√
3ω0 (i.e., ω̂ =

√
3), we get x̂1 = −x̂2,

so that

x1(t) = η̂2 cos
(√
3ω0 t− φ2

)

, (4.18)

x2(t) = −η̂2 cos
(√
3ω0 t− φ2

)

, (4.19)

where η̂2 and φ2 are constants. This second pattern of motion corresponds

to the two masses executing simple harmonic oscillation with the same am-

plitude but in anti-phase: i.e., with a phase shift of π radians. Such os-

cillations do stretch the middle spring, implying that the restoring force

associated with similar amplitude displacements is greater for the second

pattern of motion than for the first. This accounts for the higher oscillation

frequency in the second case. (The inertia is the same in both cases, so

the oscillation frequency is proportional to the square root of the restoring

force associated with similar amplitude displacements.) The two distinc-

tive patterns of motion which we have found are called the normal modes
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of oscillation of the system. Incidentally, it is a general rule that a dynami-

cal system possessing N degrees of freedom has N unique normal modes of

oscillation.

Now, the most general motion of the system is a linear combination of the

two normal modes. This immediately follows because Equations (4.1) and

(4.2) are linear equations. [In other words, if x1(t) and x2(t) are solutions

then so are ax1(t) and ax2(t), where a is an arbitrary constant.] Thus, we

can write

x1(t) = η̂1 cos(ω0 t− φ1) + η̂2 cos
(√
3ω0 t− φ2

)

, (4.20)

x2(t) = η̂1 cos(ω0 t− φ1) − η̂2 cos
(√
3ω0 t− φ2

)

. (4.21)

Note that we can be sure that this represents the most general solution to

Equations (4.1) and (4.2) because it contains four arbitrary constants: i.e.,

η̂1, φ1, η̂2, and φ2. (In general, we expect the solution of a second-order

ordinary differential equation to contain two arbitrary constants. It, thus,

follows that the solution of a system of two coupled ordinary differential

equations should contain four arbitrary constants.) Of course, these con-

stants are determined by the initial conditions.

For instance, suppose that x1 = a, ẋ1 = 0, x2 = 0, and ẋ2 = 0 at t = 0. It

follows, from (4.20) and (4.21), that

a = η̂1 cosφ1 + η̂2 cosφ2, (4.22)

0 = η̂1 sinφ1 +
√
3 η̂2 sinφ2, (4.23)

0 = η̂1 cosφ1 − η̂2 cosφ2, (4.24)

0 = η̂1 sinφ1 −
√
3 η̂2 sinφ2, (4.25)

which implies that φ1 = φ2 = 0 and η̂1 = η̂2 = a/2. Thus, the system

evolves in time as

x1(t) = a cos(ω− t) cos(ω+ t), (4.26)

x2(t) = a sin(ω− t) sin(ω+ t), (4.27)

where ω± = [(
√
3 ± 1)/2]ω0, and use has been made of the trigonometric

identities cos(a + b) ≡ 2 cos[(a + b)/2] cos[(a − b)/2] and cos(a − b) ≡
−2 sin[(a + b)/2] sin[(a − b)/2]. This evolution is illustrated in Figure 4.2.

[Here, T0 = 2π/ω0. The solid curve corresponds to x1, and the dashed curve

to x2.]
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Figure 4.2: Coupled oscillations in a two degree of freedom mass-spring system.

Finally, let us define the so-called normal coordinates,

η1(t) = [x1(t) + x2(t)]/2, (4.28)

η2(t) = [x1(t) − x2(t)]/2. (4.29)

It follows from (4.20) and (4.21) that, in the presence of both normal

modes,

η1(t) = η̂1 cos(ω0 t− φ1), (4.30)

η2(t) = η̂2 cos(
√
3ω0 t− φ2). (4.31)

Thus, in general, the two normal coordinates oscillate sinusoidally with

unique frequencies, unlike the regular coordinates, x1(t) and x2(t)—see Fig-

ure 4.2. This suggests that the equations of motion of the system should

look particularly simple when expressed in terms of the normal coordinates.

In fact, it is easily seen that the sum of Equations (4.3) and (4.4) reduces to

η̈1 = −ω2
0 η1, (4.32)

whereas the difference gives

η̈2 = −3ω2
0 η2. (4.33)
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Thus, when expressed in terms of the normal coordinates, the equations of

motion of the system reduce to two uncoupled simple harmonic oscillator

equations. Of course, most general solution to Equation (4.32) is (4.30),

whereas the most general solution to Equation (4.33) is (4.31). Hence, if

we can guess the normal coordinates of a coupled oscillatory system then the

determination of the normal modes of oscillation is considerably simplified.

4.2 Two Coupled LC Circuits

Consider the LC circuit pictured in Figure 4.3. Let I1(t), I2(t), and I3(t) be

the currents flowing in the three legs of the circuit, which meet at junctions

A and B. According to Kichhoff ’s first circuital law, the net current flowing

into each junction is zero. It follows that I3 = −(I1+I2). Hence, this is a two

degree of freedom system whose instantaneous configuration is specified by

the two independent variables I1(t) and I2(t). It follows that there are two

independent normal modes of oscillation. Now, the potential differences

across the left, middle, and right legs of the circuit are Q1/C+ L İ1, Q3/C
′,

and Q2/C + L İ2, respectively, where Q̇1 = I1, Q̇2 = I2, and Q3 = −(Q1 +

Q2). However, since the three legs are connected in parallel, the potential

differences must all be equal, so that

Q1/C+ L İ1 = Q3/C
′ = −(Q1 +Q2)/C

′, (4.34)

Q2/C+ L İ2 = Q3/C
′ = −(Q1 +Q2)/C

′. (4.35)

Differentiating with respect to t, and dividing by L, we obtain the coupled

time evolution equations of the system:

Ï1 +ω2
0 (1+ α) I1 +ω2

0 α I2 = 0, (4.36)

Ï2 +ω2
0 (1+ α) I2 +ω2

0 α I1 = 0, (4.37)

where ω0 = 1/
√
LC and α = C/C ′.

It is fairly easy to guess that the normal coordinates of the system are

η1 = (I1 + I2)/2, (4.38)

η2 = (I1 − I2)/2. (4.39)

Forming the sum and difference of Equations (4.36) and (4.37), we obtain

the evolution equations for the two independent normal modes of oscilla-

tion:

η̈1 +ω2
0 (1+ 2α)η1 = 0, (4.40)

η̈2 +ω2
0 η2 = 0. (4.41)
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Figure 4.3: Two degree of freedom LC circuit.

These equations can readily be solved to give

η1(t) = η̂1 cos(ω1 t− φ1), (4.42)

η2(t) = η̂2 cos(ω0 t− φ2), (4.43)

where ω1 = (1 + 2α)1/2ω0. Here, η̂1, φ1, η̂2, and φ2 are constants deter-

mined by the initial conditions. It follows that

I1(t) = η1(t) + η2(t) = η̂1 cos(ω1 t− φ1) + η̂2 cos(ω0 t− φ2),

(4.44)

I2(t) = η1(t) − η2(t) = η̂1 cos(ω1 t− φ1) − η̂2 cos(ω0 t− φ2).

(4.45)

As an example, suppose that φ1 = φ2 = 0 and η̂1 = η̂2 = I0/2. We obtain

I1(t) = I0 cos(ω− t) cos(ω+ t), (4.46)

I2(t) = I0 sin(ω− t) sin(ω+ t), (4.47)

where ω± = (ω0 ±ω1)/2. This solution is illustrated in Figure 4.4. [Here,

T0 = 2π/ω0 and α = 0.2. Thus, the two normal frequencies are ω0 and

1.18ω0.] Note the beats generated by the superposition of two normal

modes with similar normal frequencies.

We can also solve the problem in a more systematic manner by specifi-

cally searching for a normal mode of the form

I1(t) = Î1 cos(ωt− φ), (4.48)

I2(t) = Î2 cos(ωt− φ). (4.49)
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Figure 4.4: Coupled oscillations in a two degree of freedom LC circuit.

Substitution into the time evolution equations (4.36) and (4.37) yields the

matrix equation
(

ω̂2 − (1+ α) −α

−α ω̂2 − (1+ α)

)(

Î1

Î2

)

=

(

0

0

)

, (4.50)

where ω̂ = ω/ω0. The normal frequencies are determined by setting the

determinant of the matrix to zero. This gives

[

ω̂2 − (1+ α)
]2

− α2 = 0, (4.51)

or

ω̂4 − 2 (1+ α) ω̂2 + 1+ 2α =
(

ω̂2 − 1
) (

ω̂2 − [1+ 2α]
)

= 0. (4.52)

The roots of the above equation are ω̂ = 1 and ω̂ = (1+ 2α)1/2. (Again, we

neglect the negative frequency roots, since they generate the same patterns

of motion as the corresponding positive frequency roots.) Hence, the two

normal frequencies are ω0 and (1 + 2α)1/2ω0. The characteristic patterns

of motion associated with the normal modes can be calculated from the first

row of the matrix equation (4.50), which can be rearranged to give

Î1

Î2
=

α

ω̂2 − (1+ α)
. (4.53)

It follows that Î1 = −Î2 for the normal mode with ω̂ = 1, and Î1 = Î2
for the normal mode with ω̂ = (1 + 2α)1/2. We are thus led to Equa-

tions (4.44)–(4.45), where η̂1 and φ1 are the amplitude and phase of the
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higher frequency normal mode, whereas η̂2 and φ2 are the amplitude and

phase of the lower frequency mode.

4.3 Three Spring Coupled Masses

Consider a generalized version of the mechanical system discussed in Sec-

tion 4.1 that consists of three identical masses m which slide over a fric-

tionless horizontal surface, and are connected by identical light horizontal

springs of spring constant k. As before, the outermost masses are attached

to immovable walls by springs of spring constant k. The instantaneous con-

figuration of the system is specified by the horizontal displacements of the

three masses from their equilibrium positions: i.e., x1(t), x2(t), and x3(t).

Clearly, this is a three degree of freedom system. We, therefore, expect it to

possesses three independent normal modes of oscillation. Equations (4.1)–

(4.2) generalize to

mẍ1 = −k x1 + k (x2 − x1), (4.54)

mẍ2 = −k (x2 − x1) + k (x3 − x2), (4.55)

mẍ3 = −k (x3 − x2) + k (−x3). (4.56)

These equations can be rewritten

ẍ1 = −2ω2
0 x1 +ω2

0 x2, (4.57)

ẍ2 = ω2
0 x1 − 2ω2

0 x2 +ω2
0 x3, (4.58)

ẍ3 = ω2
0 x2 − 2ω2

0 x3, (4.59)

where ω0 =
√

k/m. Let us search for a normal mode solution of the form

x1(t) = x̂1 cos(ωt− φ), (4.60)

x2(t) = x̂2 cos(ωt− φ), (4.61)

x3(t) = x̂3 cos(ωt− φ). (4.62)

Equations (4.57)–(4.62) can be combined to give the 3 × 3 homogeneous

matrix equation







ω̂2 − 2 1 0

1 ω̂2 − 2 1

0 1 ω̂2 − 2













x̂1

x̂2

x̂3






=







0

0

0






, (4.63)
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where ω̂ = ω/ω0. The normal frequencies are determined by setting the

determinant of the matrix to zero: i.e.,

(ω̂2 − 2)
[

(ω̂2 − 2)2 − 1
]

− (ω̂2 − 2) = 0, (4.64)

or

(ω̂2 − 2)
[

ω̂2 − 2−
√
2
] [

ω̂2 − 2+
√
2
]

= 0. (4.65)

Thus, the normal frequencies are ω̂ =
√
2 (1 − 1/

√
2)1/2,

√
2, and

√
2 (1 +

1/
√
2)1/2. According to the first and third rows of Equation (4.63),

x̂1 : x̂2 : x̂3 :: 1 : 2− ω̂2 : 1, (4.66)

provided ω̂2 6= 2. According to the second row,

x̂1 : x̂2 : x̂3 :: −1 : 0 : 1 (4.67)

when ω̂2 = 2. Note that we can only determine the relative ratios of x̂1,

x̂2, and x̂3, rather than the absolute values of these quantities. In other

words, only the direction of the vector x̂ = (x̂1, x̂2, x̂3) is well-defined. [This

follows because the most general solution, (4.71), is undetermined to an

arbitrary multiplicative constant. That is, if x(t) = (x1(t), x2(t), x3(t)) is a

solution to the dynamical equations (4.57)–(4.59) then so is a x(t), where

a is an arbitrary constant. This, in turn, follows because the dynamical

equations are linear.] Let us arbitrarily set the magnitude of x̂ to unity. It

follows that the normal mode associated with the normal frequency ω̂1 =√
2 (1− 1/

√
2)1/2 is

x̂1 =

(

1

2
,
1√
2
,
1

2

)

. (4.68)

Likewise, the normal mode associated with the normal frequency ω̂2 =
√
2

is

x̂2 =

(

−
1√
2
, 0,

1√
2

)

. (4.69)

Finally, the normal mode associated with the normal frequency ω̂3 =
√
2(1+

1/
√
2)1/2 is

x̂3 =

(

1

2
,−

1√
2
,
1

2

)

. (4.70)

Let x = (x1, x2, x2). It follows that the most general solution to the problem

is

x(t) = η1(t) x̂1 + η2(t) x̂2 + η3(t) x̂3, (4.71)
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where

η1(t) = η̂1 cos(ω̂1 t− φ1), (4.72)

η2(t) = η̂2 cos(ω̂2 t− φ2), (4.73)

η3(t) = η̂3 cos(ω̂3 t− φ3). (4.74)

Here, η̂1,2,3 and φ1,2,3 are constants. Equation (4.71) yields







x1

x2

x3






=









1/2 1/
√
2 1/2

−1/
√
2 0 1/

√
2

1/2 −1/
√
2 1/2















η1

η2

η3






(4.75)

The above equation can easily be inverted by noting that the matrix is uni-

tary: i.e., its transpose is equal to its inverse. Thus, we obtain







η1

η2

η3






=









1/2 −1/
√
2 1/2

1/
√
2 0 −1/

√
2

1/2 1/
√
2 1/2















x1

x2

x3






(4.76)

This equation determines the three normal coordinates, η1, η2, η3, in terms

of the three conventional coordinates, x1, x2, x3. Note that, in general, the

normal coordinates are undetermined to arbitrary multiplicative constants.

4.4 Exercises

1. A particle of mass m is attached to a rigid support by means of a spring of
spring constant k. At equilibrium, the spring hangs vertically downward. An
identical oscillator is added to this system, the spring of the former being
attached to the mass of the latter. Calculate the normal frequencies for one-
dimensional vertical oscillations, and describe the associated normal modes.

2. Consider a mass-spring system of the general form shown in Figure 4.1 in
which the two masses are of mass m, the two outer springs have spring
constant k, and the middle spring has spring constant k ′. Find the normal
frequencies and normal modes in terms of ω0 =

√

k/m and α = k ′/k.

3. Consider a mass-spring system of the general form shown in Figure 4.1 in
which the springs all have spring constant k, and the left and right masses
are of mass m and m ′, respectively. Find the normal frequencies and normal
modes in terms of ω0 =

√

k/m and α = m ′/m.
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4. Consider two simple pendula with the same length, l, but different bob
masses, m1 and m2. Suppose that the pendula are connected by a spring
of spring constant k. Let the spring be unextended when the two bobs are in
their equilibrium positions. Demonstrate that the equations of motion of the
system (for small amplitude oscillations) are

m1 θ̈1 = −m1

g

l
θ1 + k (θ2 − θ1),

m2 θ̈2 = −m2

g

l
θ2 + k (θ2 − θ1),

where θ1 and θ2 are the angular displacements of the respective pendula
from their equilibrium positions. Show that the normal coordinates are η1 =

(m1 θ1 +m2 θ2)/(m1 +m2) and η2 = θ1 − θ2. Find the normal frequencies
and normal modes. Find a superposition of the two modes such that at t = 0

the two pendula are stationary, with θ1 = θ0, and θ2 = 0.

5. Find the normal frequencies and normal modes of the coupled LC circuit
shown below in terms of ω0 = 1/

√
LC and α = L ′/L.

. .

.L

C C

L′

I1 I2

L



Transverse Standing Waves 55

5 Transverse Standing Waves

5.1 Normal Modes of a Beaded String

Consider a mechanical system consisting of a taut string which is stretched

between two immovable walls. Suppose that N identical beads of mass m

are attached to the string in such a manner that they cannot slide along it.

Let the beads be equally spaced a distance a apart, and let the distance be-

tween the first and the last beads and the neighboring walls also be a. See

Figure 5.1. Consider transverse oscillations of the string: i.e., oscillations

in which the string moves from side to side (i.e., in the y-direction). It is

assumed that the inertia of the string is negligible with respect to that of the

beads. It follows that the sections of the string between neighboring beads,

and between the outermost beads and the walls, are straight. (Otherwise,

there would be a net tension force acting on the sections, and they would

consequently suffer an infinite acceleration.) In fact, we expect the instan-

taneous configuration of the string to be a set of continuous straight-line

segments of varying inclinations, as shown in the figure. Finally, assuming

that the transverse displacement of the string is relatively small, it is reason-

able to suppose that each section of the string possesses the same tension,

T .

It is convenient to introduce a Cartesian coordinate system such that x

measure distance along the string from the left wall, and y measures the

transverse displacement of the string from its equilibrium position. See Fig-

ure 5.1. Thus, when the string is in its equilibrium position it runs along the

x
T

a

wall string

equilibrium position of string

bead

m

aa

y

Figure 5.1: A beaded string.
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T

yi+1

θi+1

T

Figure 5.2: A short section of a beaded string.

x-axis. We can define

xi = i a, (5.1)

where i = 1, 2, · · · , N. Here, x1 is the x-coordinate of the closest bead to

the left wall, x2 the x-coordinate of the second closest bead, etc. The x-

coordinates of the beads are assumed to remain constant during the trans-

verse oscillations. We can also define x0 = 0 and xN+1 = (N + 1)a as the

x-coordinates of the left and right ends of the string. Let the transverse dis-

placement of the ith bead be yi(t), for i = 1,N. Since each displacement

can vary independently, we are clearly dealing with an N degree of freedom

system. We would, therefore, expect such a system to possess N unique

normal modes of oscillation.

Consider the section of the string lying between the i − 1th and i + 1th

beads, as shown in Figure 5.2. Here, xi−1 = xi−a, xi, and xi+1 = xi+a are

the distances of the i− 1th, ith, and i+ 1th beads, respectively, from the left

wall, whereas yi+1, yi, and yi+1 are the corresponding transverse displace-

ments of these beads. The two sections of the string which are attached to

the ith bead subtend angles θi and θi+1 with the x-axis, as illustrated in the

figure. Simple trigonometry reveals that

tan θi =
yi − yi−1

xi − xi−1

=
yi − yi−1

a
, (5.2)

and

tan θi+1 =
yi+1 − yi

a
. (5.3)
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However, if the transverse displacement of the string is relatively small—i.e.,

if |yi| ≪ a for all i—which we shall assume to be the case, then θi and θi+1

are both small angles. Now, it is well known that tan θ ≃ θ when |θ| ≪ 1. It

follows that

θi ≃ yi − yi−1

a
, (5.4)

θi+1 ≃ yi+1 − yi

a
. (5.5)

Let us find the transverse equation of motion of the ith bead. This bead is

subject to two forces: i.e., the tensions in the sections of the string to the left

and to the right of it. These tensions are of magnitude T , and are directed

parallel to the associated string sections, as shown in Figure 5.2. Thus, the

transverse (i.e., y-directed) components of these two tensions are −T sin θi

and T sin θi+1, respectively. Hence, the transverse equation of motion of the

ith bead becomes

mÿi = −T sin θi + T sin θi+1. (5.6)

However, since θi and θi+1 are both small angles, we can employ the small

angle approximation sin θ ≃ θ. It follows that

ÿi ≃
T

m
(θi+1 − θi) . (5.7)

Finally, making use of Equations (5.4) and (5.5), we obtain

ÿi = ω2
0 (yi−1 − 2 yi + yi+1) , (5.8)

where ω0 =
√

T/ma. Since there is nothing special about the ith bead, we

deduce that the above equation of motion applies to all N beads: i.e., it is

valid for i = 1,N. Of course, the first (i = 1) and last (i = N) beads are

special cases, since there is no bead corresponding to i = 0 or i = N+ 1. In

fact, i = 0 and i = N+ 1 correspond to the left and right ends of the string,

respectively. However, Equation (5.8) still applies to the first and last beads

as long as we set y0 = 0 and yN+1 = 0. What we are effectively demanding

is that the two ends of the string, which are attached to the left and right

walls, must both have zero transverse displacement.

Let us search for a normal mode solution to Equation (5.8) which takes

the form

yi(t) = A sin(k xi) cos(ωt− φ), (5.9)

where A > 0, k > 0, ω > 0, and φ are constants. This particular type of

solution is such that all of the beads execute transverse simple harmonic
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oscillations in phase with one another. See Figure 5.4. Moreover, the os-

cillations have an amplitude A sin(k xi) which varies sinusoidally along the

length of the string (i.e., in the x-direction). The pattern of oscillations is

thus periodic in space. The spatial repetition period, which is usually known

as the wavelength, is λ = 2π/k. [This follows from (5.9) because sin θ is a

periodic function with period 2π: i.e., sin(θ + 2π) ≡ sin θ.] The constant

k, which determines the wavelength, is usually referred to as the wavenum-

ber. Thus, a small wavenumber corresponds to a long wavelength, and vice

versa. The type of solution specified in (5.9) is generally known as a standing

wave. It is a wave because it is periodic in both space and time. (An oscilla-

tion is periodic in time only.) It is a standing wave, rather than a traveling

wave, because the points of maximum and minimum amplitude oscillation

are stationary (in x). See Figure 5.4.

Substituting (5.9) into (5.8), we obtain

−ω2A sin(k xi) cos(ωt− φ) = ω2
0 A [sin(k xi−1) − 2 sin(k xi)

+ sin(k xi+1)] cos(ωt− φ), (5.10)

which yields

−ω2 sin(k xi) = ω2
0 (sin[k (xi − a)] − 2 sin(k xi) + sin[k (xi + a)]) . (5.11)

However, since sin(a+ b) ≡ sina cosb+ cosa sinb, we get

−ω2 sin(k xi) = ω2
0 [cos(ka) − 2+ cos(ka)] sin(k xi), (5.12)

or

ω2 = 4ω2
0 sin2(ka/2), (5.13)

where use has been made of the trigonometric identity 1−cosθ ≡ 2 sin2(θ/2).

Note that an expression, such as (5.13), which determines the angular fre-

quency, ω, of a wave in terms of its wavenumber, k, is generally known as a

dispersion relation.

Now, the solution (5.9) is only physical provided y0 = yN+1 = 0: i.e.,

provided that the two ends of the string remain stationary. The first con-

straint is automatically satisfied, since x0 = 0 [see (5.1)]. The second con-

straint implies that

sin(k xN+1) = sin[(N+ 1)ka] = 0. (5.14)

This condition can only be satisfied if

k =
n

N+ 1

π

a
, (5.15)



Transverse Standing Waves 59

where the integer n is known as the mode number. Clearly, a small mode

number translates to a small wavenumber, and, hence, to a long wavelength,

and vice versa. We conclude that the possible wavenumbers, k, of the nor-

mal modes of the system are quantized such that they are integer multiples

of π/[(N + 1)a]. Thus, the nth normal mode is associated with the charac-

teristic pattern of bead displacements

yn,i(t) = An sin

(

n i

N+ 1
π

)

cos(ωn t− φn), (5.16)

where

ωn = 2ω0 sin

(

n

N+ 1

π

2

)

. (5.17)

Here, the integer i = 1,N indexes the beads, whereas the mode number n

indexes the normal modes. Furthermore, An and φn are arbitrary constants

determined by the initial conditions. Of course, An is the peak amplitude of

the nth normal mode, whereas φn is the associated phase angle.

So, how many unique normal modes does the system possess? At first

sight, it might seem that there are an infinite number of normal modes,

corresponding to the infinite number of possible values that the integer n

can take. However, this is not the case. For instance, if n = 0 or n = N + 1

then all of the yn,i are zero. Clearly, these cases are not real normal modes.

Moreover, it is easily demonstrated that

ω−n = −ωn, (5.18)

y−n,i(t) = yn,i(t), (5.19)

provided A−n = −An and φ−n = −φn, as well as

ωN+1+n = ωN+1−n, (5.20)

yN+1+n,i(t) = yN+1−n,i(t), (5.21)

provided AN+1+n = −AN+1−n and φN+1+n = φN+1−n. We, thus, conclude

that only those normal modes which have n in the range 1 to N correspond

to unique modes. Modes with n values lying outside this range are either

null modes, or modes that are identical to other modes with n values lying

within the prescribed range. It follows that there are N unique normal

modes of the form (5.16). Hence, given that we are dealing with an N

degree of freedom system, which we would expect to only possess N unique

normal modes, we can be sure that we have found all of the normal modes

of the system.
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Figure 5.3: Normal modes of a beaded string with eight equally spaced beads.
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Figure 5.4: Time evolution of the n = 2 normal mode of a beaded string with

eight equally spaced beads.

Figure 5.3 illustrates the spatial variation of the normal modes of a

beaded string possessing eight beads: i.e., an N = 8 system. The modes

are all shown at the instances in time at which they attain their maximum

amplitudes: i.e., at ωn t − φn = 0. It can be seen that the low-n—i.e.,

long wavelength—modes cause the string to oscillate in a fairly smoothly

varying (in x) sine wave pattern. On the other hand, the high-n—i.e., short

wavelength—modes cause the string to oscillate in a rapidly varying zig-zag

pattern which bears little resemblance to a sine wave. The crucial distinc-

tion between the two different types of mode is that the wavelength of the

oscillation (in the x-direction) is much larger than the bead spacing in the

former case, whilst it is similar to the bead spacing in the latter. For instance,

λ = 18 a for the n = 1 mode, λ = 9 a for the n = 2 mode, but λ = 2.25 a for

the n = 8 mode.

Figure 5.5 displays the temporal variation of the n = 2 normal mode of

an N = 8 beaded string. The mode is shown at ω2 t − φ2 = 0, π/8, π/4,

3π/8, π/2, 5π/8, 3π/2, 7π/8 and π. It can be seen that the beads oscillate

in phase with one another: i.e., they all attain their maximal transverse

displacements, and pass through zero displacement, simultaneously. Note

that the mid-way point of the string always remains stationary. Such a point
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Figure 5.5: Normal frequencies of a beaded string with eight equally spaced

beads.

is known as a node. The n = 1 normal mode has two nodes (counting the

stationary points at each end of the string as nodes), the n = 2 mode has

three nodes, the n = 2 mode four nodes, etc. In fact, the existence of nodes

is one of the distinguishing features of a standing wave.

Figure 5.5 shows the normal frequencies of an N = 8 beaded string

plotted as a function of the normalized wavenumber. Recall that, for an

N = 8 system, the relationship between the normalized wavenumber, ka,

and the mode number, n, is ka = (n/9)π. It can be seen that the an-

gular frequency increases as the wavenumber increases, which implies that

shorter wavelength modes have higher oscillation frequencies. Note that the

dependence of the angular frequency on the normalized wavenumber, ka,

is approximately linear when ka ≪ 1. Indeed, it can be seen from Equa-

tion (5.17) that if ka ≪ 1 then the small angle approximation sin θ ≃ θ

yields a linear dispersion relation of the form

ωn ≃ (ka)ω0 =

(

n

N+ 1

)

πω0. (5.22)

We, thus, conclude that those normal modes of a uniformly beaded string

whose wavelengths greatly exceed the bead spacing (i.e., modes with ka≪
1) have approximately linear dispersion relations in which their angular fre-
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quencies are directly proportional to their mode numbers. However, it is

clear from the figure that this linear relationship breaks down as ka → 1,

and the mode wavelength consequently becomes similar to the bead spac-

ing.

5.2 Normal Modes of a Uniform String

Consider a uniformly beaded string in the limit in which the number of

beads, N, becomes increasingly large, whilst the spacing, a, and the indi-

vidual mass, m, of the beads becomes increasingly small. Let the limit be

taken in such a manner that the length, l = (N + 1)a, and the average

mass per unit length, ρ = m/a, of the string both remain constant. Clearly,

as N increases, and becomes very large, such a string will more and more

closely approximate a uniform string of length l and mass per unit length

ρ. What can we guess about the normal modes of a uniform string from

the analysis contained in the previous section? Well, first of all, we would

guess that a uniform string is an infinite degree of freedom system, with an

infinite number of unique normal modes of oscillation. This follows because

a uniform string is the N → ∞ limit of a beaded string, and a beaded string

possesses N unique normal modes. Next, we would guess that the normal

modes of a uniform string exhibit smooth sinusoidal spatial variation in the

x-direction, and that the angular frequency of the modes is directly propor-

tional to their wavenumber. These last two conclusions follow because all

of the normal modes of a beaded string are characterized by ka≪ 1 in the

limit in which the spacing between the beads becomes zero. Let us now

investigate whether these guesses are correct.

Consider the transverse oscillations of a uniform string of length l and

mass per unit length ρ which is stretched between two immovable walls.

It is again convenient to define a Cartesian coordinate system in which x

measures distance along the string from the left wall, and y measures the

transverse displacement of the string. Thus, the instantaneous state of the

system at time t is determined by the function y(x, t) for 0 ≤ x ≤ l. Of

course, this function consists of an infinite number of different y values,

corresponding to the infinite number of different x values in the range 0

to l. Moreover, all of these y values are free to vary independently of one

another. It follows that we are indeed dealing with a dynamical system

possessing an infinite number of degrees of freedom.

Let us try to reuse some of the analysis of the previous section. We can

reinterpret yi(t) as y(x, t), yi−1(t) as y(x−δx, t), and yi+1(t) as y(x+δx, t),
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assuming that xi = x and a = δx. Moreover, ÿi(t) becomes ∂2y(x, t)/∂t2:

i.e., a second derivative of y(x, t) with respect to t at constant x. Finally,

ω2
0 = T/(ma), where T is the tension in the string, can be rewritten as

T/[ρ (δx)2], since ρ = m/δx. Incidentally, we are again assuming that the

transverse displacement of the string remains sufficiently small that the ten-

sion is approximately constant in x. Thus, the equation of motion of the

beaded string, (5.8), transforms into

∂2y(x, t)

∂t2
=
T

ρ

[

y(x− δx, t) − 2 y(x, t) + y(x+ δx, t)

(δx)2

]

. (5.23)

However, Taylor expanding y(x+ δx, t) in x at constant t, we obtain

y(x+ δx, t) = y(x, t) +
∂y(x, t)

∂x
δx+

1

2

∂2y(x, t)

∂x2
(δx)2 + O(δx)3. (5.24)

Likewise,

y(x− δx, t) = y(x, t) −
∂y(x, t)

∂x
δx+

1

2

∂2y(x, t)

∂x2
(δx)2 + O(δx)3. (5.25)

It follows that

[

y(x− δx, t) − 2 y(x, t) + y(x+ δx, t)

(δx)2

]

=
∂2y(x, t)

∂x2
+ O(δx). (5.26)

Thus, in the limit that δx → 0, Equation (5.23) reduces to

∂2y

∂t2
= v2 ∂

2y

∂x2
, (5.27)

where

v =

√

T

ρ
(5.28)

is a quantity having the dimensions of velocity. Equation (5.27), which is

the transverse equation of motion of the string, takes the form of a very

famous partial differential equation known as the wave equation. The quan-

tity v turns out to the the propagation velocity of transverse waves along the

string. See Section 7.1.

By analogy with Equation (5.9), let us search for a solution of the wave

equation of the form

y(x, t) = A sin(k x) cos(ωt− φ), (5.29)
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where A > 0, k > 0, ω > 0, and φ are constants. We would interpret

such a solution as a standing wave of wavenumber k, wavelength λ = 2π/k,

angular frequencyω, peak amplitude A, and phase angle φ. Substitution of

the above expression into Equation (5.27) yields the dispersion relation [cf.,

(5.13)]

ω2 = k2 v2. (5.30)

Now, the standing wave solution (5.29) is subject to the physical con-

straint that the two ends of the string, which are attached to immovable

walls, remain stationary. This leads directly to the boundary conditions

y(0, t) = 0, (5.31)

y(l, t) = 0. (5.32)

It can be seen that the solution (5.29) automatically satisfies the first bound-

ary condition. However, the second boundary condition is only satisfied

when sin(k l) = 0, which immediately implies that

k = n
π

l
, (5.33)

where the mode number, n, is an integer. We, thus, conclude that the

possible normal modes of a taut string, of length l and fixed ends, have

wavenumbers which are quantized such that they are integer multiples of

π/l. Moreover, it is clear that this quantization is a direct consequence of

the imposition of the physical boundary conditions at the two ends of the

string.

It follows, from the above analysis, that the nth normal mode of the

string is associated with the pattern of motion

yn(x, t) = An sin

(

nπ
x

l

)

cos(ωn t− φn), (5.34)

where

ωn = n
πv

l
. (5.35)

Here, An and φn are constants which are determined by the initial con-

ditions. See Section 5.3. So, how many unique normal modes are there?

Well, the choice n = 0 yields y0(x, t) = 0 for all x and t, so this is not a real

normal mode. Moreover,

ω−n = −ωn, (5.36)

y−n(x, t) = yn(x, t), (5.37)
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provided that A−n = −An and φ−n = −φn. We, thus, conclude that modes

with negative mode numbers give rise to the same patterns of motion as

modes with corresponding positive mode numbers. However, the modes

with positive mode numbers each correspond to unique patterns of motion

which oscillate at unique frequencies. It follows that the string possesses

an infinite number of normal modes, corresponding to the mode numbers

n = 1, 2, 3, etc. Recall that we are dealing with an infinite degree of freedom

system, which we would expect to possess an infinite number of unique

normal modes. The fact that we have actually found an infinite number

of such modes suggests that we have found all of the normal modes of the

system.

Figure 5.6 illustrates the spatial variation of the first eight normal modes

of a uniform string with fixed ends. The modes are all shown at the instances

in time at which they attain their maximum amplitudes: i.e., atωn t−φn =

0. It can be seen that the modes are all smoothly varying sine waves. The

low mode number (i.e., long wavelength) modes are actually quite similar

in form to the corresponding normal modes of a uniformly beaded string.

See Figure 5.3. However, the high mode number modes are substantially

different. We conclude that the normal modes of a beaded string are similar

to those of a uniform string, with the same length and mass per unit length,

provided that the wavelength of the mode is much larger than the spacing

between the beads.

Figure 5.7 illustrates the temporal variation of the n = 4 normal mode

of a uniform string. The mode is shown at ω4 t − φ4 = 0, π/8, π/4, 3π/8,

π/2, 5π/8, 3π/2, 7π/8 and π. It can be seen that all points on the string

attain their maximal transverse displacements, and pass through zero dis-

placement, simultaneously. Note that the n = 4 mode possesses five nodes,

at which the string remains stationary. Two of these are located at the ends

of the string, and three in the middle. In fact, it is clear from Equation (5.34)

that the nodes correspond to points at which sin[n (x/l)π] = 0. Hence, the

nodes are located at

xn,j =

(

j

n

)

l, (5.38)

where j is an integer lying in the range 0 to n. Here, n indexes the normal

mode, and j the node. Thus, the j = 0 node lies at the left end of the

string, the j = 1 node is the next node to the right, etc. It is apparent, from

the above formula, that the nth normal mode has n + 1 nodes which are

uniformly spaced a distance l/n apart.

Finally, Figure 5.8 shows the first eight normal frequencies of a uniform

string with fixed ends, plotted as a function of the mode number. It can
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Figure 5.6: First eight normal modes of a uniform string.
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Figure 5.7: Time evolution of the n = 4 normal mode of a uniform string.

Figure 5.8: Normal frequencies of the first eight normal modes of a uniform

string.
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be seen that the angular frequency of oscillation increases linearly with the

mode number. Recall that the low mode number (i.e., long wavelength)

normal modes of a beaded string also exhibit a linear relationship between

normal frequency and mode number of the form [see Equation (5.22)]

ωn =
nπ

N+ 1
ω0 =

nπ

N+ 1

(

T

ma

)1/2

. (5.39)

However, m = ρa and l = (N+ 1)a, so we obtain

ωn =
nπ

l

(

T

ρ

)1/2

= n
πv

l
, (5.40)

which is identical to Equation (5.35). We, thus, conclude that the normal

frequencies of a uniformly beaded string are similar to those of a uniform

string, with the same length and mass per unit length, as long as the wave-

length of the associated normal mode is much larger than the spacing be-

tween the beads.

5.3 General Time Evolution of a Uniform String

In the previous section, we found the normal modes of a uniform string

of length l, both ends of which are attached to immovable walls. These

modes are spatially periodic solutions of the wave equation (5.27) which

oscillate at unique frequencies and satisfy the boundary conditions (5.31)

and (5.32). Since the wave equation is obviously linear [i.e., if y(x, t) is a

solution then so is ay(x, t), where a is an arbitrary constant], it follows that

its most general solution is a linear combination of all of the normal modes.

In other words,

y(x, t) =
∑

n′=1,∞

yn′(x, t) =
∑

n′=1,∞

An′ sin

(

n ′ π
x

l

)

cos

(

n ′ π
v t

l
− φn′

)

,

(5.41)

where use has been made of (5.34) and (5.35). Note that this expression is

obviously a solution of (5.27), and also automatically satisfies the boundary

conditions (5.31) and (5.32). As we have already mentioned, the constants

An and φn are determined by the initial conditions. Let us see how this

comes about in more detail.

Suppose that the initial displacement of the string at t = 0 is

y0(x) ≡ y(x, 0). (5.42)
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Likewise, let the initial velocity of the string be

v0(x) ≡
∂y(x, 0)

∂t
. (5.43)

Obviously, for consistency with the boundary conditions, we must have

y0(0) = y0(l) = v0(0) = v0(l) = 0. It follows from Equation (5.41) that

y0(x) =
∑

n′=1,∞

An′ cosφn′ sin

(

n ′ π
x

l

)

, (5.44)

v0(x) =
v

l

∑

n′=1,∞

n ′ πAn′ sinφn′ sin

(

n ′ π
x

l

)

. (5.45)

Now, it is readily demonstrated that

2

l

∫ l

0

sin

(

nπ
x

l

)

sin

(

n ′ π
x

l

)

dx

=
2

π

∫π

0

sin (nθ) sin
(

n ′ θ
)

dθ

=
1

π

∫π

0

cos
[

(n− n ′) θ
]

dθ−
1

π

∫ l

0

cos
[

(n+ n ′) θ
]

dθ,

=
1

π

[

sin [(n− n ′) θ]

n− n ′
−

sin [(n+ n ′) θ]

n+ n ′

]π

0

=
sin [(n− n ′)π]

(n− n ′)π
−

sin [(n+ n ′)π]

(n+ n ′)π
, (5.46)

where n and n ′ are (possibly different) positive integers, θ = πx/l, and use

has been made of the trigonometric identity 2 sina sinb ≡ cos(a − b) −

cos(a+ b). Furthermore, it is easily seen that if k is a non-zero integer then

sin(kπ)

kπ
= 0. (5.47)

On the other hand, k = 0 is a special case, since both the numerator and the

denominator in the above expression become zero simultaneously. However,

application of l‘Hopital’s rule yields

lim
x→0

sin x

x
= lim

x→0

d(sin x)/dx

dx/dx
= lim

x→0

cos x

1
= 1. (5.48)

It follows that
sin(kπ)

kπ
=

{
1 k = 0

0 k 6= 0
, (5.49)
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where k is any integer. This result can be combined with Equation (5.46),

recalling that n and n ′ are both positive integers, to give

2

l

∫ l

0

sin

(

nπ
x

l

)

sin

(

n ′ π
x

l

)

dx = δn,n′ . (5.50)

Here, the quantity

δn,n′ =

{
1 n = n ′

0 n 6= n ′
, (5.51)

where n and n ′ are integers, is known as the Kronecker delta function.

Let us multiply Equation (5.44) by (2/l) sin(nπx/l) and integrate over

x from 0 to l. We obtain

2

l

∫ l

0

y0(x) sin

(

nπ
x

l

)

dx

=
∑

n′=1,∞

An′ cosφn′

2

l

∫π

0

sin

(

n ′ π
x

l

)

sin

(

nπ
x

l

)

dx

=
∑

n′=1,∞

An′ cosφn′ δn,n′ = An cosφn, (5.52)

where use has been made of Equations (5.50) and (5.51). Similarly, Equa-

tion (5.45) yields

2

v

∫ l

0

v0(x) sin

(

nπ
x

l

)

dx = nπAn sinφn. (5.53)

Thus, defining the integrals

Cn =
2

l

∫ l

0

y0(x) sin

(

nπ
x

l

)

dx, (5.54)

Sn =
2

nπ v

∫ l

0

v0(x) sin

(

nπ
x

l

)

dx, (5.55)

for n = 1,∞, we obtain

Cn = An cosφn, (5.56)

Sn = An sinφn, (5.57)

and, hence,

An = (C2
n + S2

n)1/2, (5.58)

φn = tan−1(Sn/Cn). (5.59)
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Thus, the constants An and φn, appearing in the general expression (5.41)

for the time evolution of a uniform string with fixed ends, are ultimately

determined by integrals over the string’s initial displacement and velocity

which are of the form (5.54) and (5.55).

As an example, suppose that the string is initially at rest, so that

v0(x) = 0, (5.60)

but has the initial displacement

y0(x) = 2A

{
x/l 0 ≤ x < l/2

1− x/l l/2 ≤ x ≤ l . (5.61)

This triangular pattern is zero at both ends of the string, rising linearly to

a peak value of A halfway along the string, and is designed to mimic the

initial displacement of a guitar string which is plucked at its mid-point. See

Figure 5.10. A comparison of Equations (5.55) and (5.60) reveals that, in

this particular example, all of the Sn coefficients are zero. Hence, from

(5.58) and (5.59), An = Cn and φn = 0 for all n. Thus, making use

of Equations (5.41), (5.54), and (5.61), the time evolution of the string is

governed by

y(x, t) =
∑

n=1,∞

An sin

(

nπ
x

l

)

cos

(

n2π
t

τ

)

, (5.62)

where τ = 2 l/v is the oscillation period of the n = 1 normal mode, and

An =
2

l

∫ l/2

0

2A
x

l
sin

(

nπ
x

l

)

dx+
2

l

∫ l

l/2

2A

(

1−
x

l

)

sin

(

nπ
x

l

)

dx.

(5.63)

The above expression transforms to

An = A

(

2

π

)2
{∫π/2

0

θ sin(nθ)dθ+

∫π

π/2

(π− θ) sin(nθ)dθ

}

, (5.64)

where θ = πx/l. Integration by parts yields

An = 2A
sin(nπ/2)

(nπ/2)2
. (5.65)

Note that An = 0 whenever n is even. We conclude that the triangular ini-

tial displacement pattern (5.61) only excites normal modes with odd mode

numbers.
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Figure 5.9: Relative amplitudes of the overtone harmonics of a uniform guitar

string plucked at its mid-point.

Now, when a stringed instrument, such as a guitar, is sounded a charac-

teristic pattern of normal mode oscillations is excited on the plucked string.

These oscillations excite sound waves of the same frequency, which are audi-

ble to a listener. The normal mode (of appreciable amplitude) with the low-

est oscillation frequency is called the fundamental harmonic, and determines

the pitch of the musical note which is heard by the listener. For instance,

a fundamental harmonic which oscillates at 261.6 Hz would correspond to

“middle C”. Those normal modes (of appreciable amplitude) with higher

oscillation frequencies than the fundamental harmonic are called overtone

harmonics, since their frequencies are integer multiples of the fundamen-

tal frequency. In general, the amplitudes of the overtone harmonics are

much smaller than the amplitude of the fundamental. Nevertheless, when

a stringed instrument is sounded, the particular mix of overtone harmonics

which accompanies the fundamental determines the timbre of the musical

note heard by the listener. For instance, when middle C is played on a piano

and a harpsichord the same frequency fundamental harmonic is excited in

both cases. However, the mix of excited overtone harmonics is quite dif-

ferent. This accounts for the fact that middle C played on a piano is easily

distinguishable from middle C played on a harpsichord.
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Figure 5.10: Reconstruction of the initial displacement of a uniform guitar

string plucked at its mid-point.

Figure 5.9 shows the ratio An/A1 for the first ten overtone harmonics

of a uniform guitar string plucked at its midpoint: i.e., the ratio An/A1 for

odd-n modes with n > 1, calculated from Equation (5.65). It can be seen

that the amplitudes of the overtone harmonics are all small compared to the

amplitude of the fundamental. Moreover, the amplitudes decrease rapidly

in magnitude with increasing mode number, n.

In principle, we must include all of the normal modes in the sum on the

right-hand side of Equation (5.62). In practice, given that the amplitudes

of the normal modes decrease rapidly in magnitude as n increases, we can

truncate the sum, by neglecting high-n normal modes, without introducing

significant error into our calculation. Figure 5.11 illustrates the effect of

such a truncation. In fact, this figure shows the reconstruction of y0(x), ob-

tained by setting t = 0 in Equation (5.62), made with various different num-

bers of normal modes. The long-dashed line shows a reconstruction made

with only the largest amplitude normal mode, the short dashed-line shows a

reconstruction made with the four largest amplitude normal modes, and the

solid line shows a reconstruction made with the sixteen largest amplitude

normal modes. It can be seen that sixteen normal modes is sufficient to very

accurately reconstruct the triangular initial displacement pattern. Indeed, a
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Figure 5.11: Time evolution of a uniform guitar string plucked at its mid-point.

reconstruction made with only four normal modes is surprisingly accurate.

On the other hand, a reconstruction made with only one normal mode is

fairly inaccurate.

Figure 5.11 shows the time evolution of a uniform guitar string plucked

at its mid-point. This evolution is reconstructed from expression (5.62)

using the sixteen largest amplitude normal modes of the string. The up-

per solid, upper short-dashed, upper long-dashed, upper dot-short-dashed,

dot-long-dashed, lower dot-short-dashed, lower long-dashed, lower short-

dashed, and lower solid curves correspond to t/τ = 0, 1/16, 1/8, 3/16, 1/4,

5/16, 3/8, 7/16, and 1/2, respectively. It can be seen that the string oscillates

in a fairly strange fashion. The initial kink in the string at x = l/2 splits into

two equal kinks which propagate in opposite directions along the string at

the velocity v. The string remains straight and parallel to the x-axis between

the kinks, and straight and inclined to the x-axis between each kink and the

closest wall. When the two kinks reach the wall the string is instantaneously

found in its undisturbed position. The kinks then reflect off the two walls,

with a phase change of π radians. When the two kinks meet again at x = l/2

the string is instantaneously found in a state which is an inverted form of its

initial state. The kinks subsequently pass through one another, reflect off the

walls, with another phase change of π radians, and meet for a second time
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at x = l/2. At this instant, the string is again found in its initial position.

The pattern of motion then repeats itself ad infinitum. The period of the

oscillation is the time required for a kink to propagate two string lengths,

which is τ = 2 l/v. This, of course, is also the oscillation period of the n = 1

normal mode.

5.4 Exercises

1. Consider a uniformly beaded string with N beads which is similar to that
pictured in Figure 5.1, except that each end of the string is attached to a
massless ring which slides (in the y-direction) on a frictionless rod. Demon-
strate that the normal modes of the system take the form

yn,i(t) = An cos

[

n (i− 1/2)

N
π

]

cos(ωn t− φn),

where

ωn = 2ω0 sin
( n

N

π

2

)

,

ω0 is as defined in Section 5.1, An and φn are constants, the integer i = 1,N

indexes the beads, and the mode number n indexes the modes. How many
unique normal modes does the system possess, and what are their mode
numbers? Show that the lowest frequency mode has an infinite wavelength
and zero frequency. Explain this peculiar result. Plot the normal modes
and normal frequencies of an N = 8 beaded string in a similar fashion to
Figures 5.3 and 5.5.

2. Consider a uniformly beaded string with N beads which is similar to that
pictured in Figure 5.1, except that the left end of the string is fixed, and
the right end is attached to a massless ring which slides (in the y-direction)
on a frictionless rod. Find the normal modes and normal frequencies of the
system. Plot the normal modes and normal frequencies of an N = 8 beaded
string in a similar fashion to Figures 5.3 and 5.5.

.. . .

I2

C

LL L
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L

C C C

3. The above figure shows the left and right extremities of a linear LC network
consisting of N identical inductors of inductance L, and N + 1 identical ca-
pacitors of capacitance C. Let the instantaneous current flowing through the
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ith inductor be Ii(t), for i = 1,N. Demonstrate from Kirchoff’s circuital laws
that the currents evolve in time according to the coupled equations

Ïi = ω 2
0 (Ii−1 − 2 Ii + Ii+1),

for i = 1,N, where ω0 = 1/
√
LC, and I0 = IN+1 = 0. Find the normal

frequencies of the system.

4. Suppose that the outermost two capacitors in the circuit considered in the
previous exercise are short-circuited. Find the new normal frequencies of the
system.

5. A uniform string of length l, tension T , and mass per unit length ρ, is stretched
between two immovable walls. Suppose that the string is initially in its equi-
librium state. At t = 0 it is struck by a hammer in such a manner as to impart
an impulsive velocity u0 to a small segment of length a < l centered on the
mid-point. Find an expression for the subsequent motion of the string. Plot
the motion as a function of time in a similar fashion to Figure 5.11, assuming
that a = l/10.

6. A uniform string of length l, tension T , and mass per unit length ρ, is stretched
between two massless rings, attached to its ends, which slide (in the y-
direction) along frictionless rods. Demonstrate that, in this case, the most
general solution to the wave equation takes the form

y(x, t) = Y0 + V0 t+
∑

n>0

An cos
(

nπ
x

l

)

cos

(

nπ
v t

l
− φn

)

,

where v =
√

T/ρ, and Y0, V0, An, and φn are arbitrary constants. Show that

2

l

∫ l

0

cos
(

nπ
x

l

)

cos
(

n ′ π
x

l

)

dx = δn,n ′ ,

where n and n ′ are integers. Use this result to demonstrate that the arbitrary
constants in the above solution can be determined from the initial conditions
as follows:

Y0 =
2

l

∫ l

0

y0(x)dx,

V0 =
2

l

∫ l

0

v0(x)dx,

An = (C 2
n + S 2

n)1/2,

φn = tan−1(Sn/Cn),

where y0(x) ≡ y(x, 0), v0(x) ≡ ∂y(x, 0)/∂t, and

Cn =
2

l

∫ l

0

y0(x) cos
(

nπ
x

l

)

dx,



78 OSCILLATIONS AND WAVES

Sn =
2

l

∫ l

0

v0(x) cos
(

nπ
x

l

)

dx.

Suppose that the string is initially in its equilibrium state. At t = 0 it is struck
by a hammer in such a manner as to impart an impulsive velocity u0 to a
small segment of length a < l centered on the mid-point. Find an expression
for the subsequent motion of the string. Plot the motion as a function of time
in a similar fashion to Figure 5.11, assuming that a = l/10.

7. The linear LC circuit considered in Exercise 3 can be thought of as a discrete
model of a uniform lossless transmission line: e.g., a co-axial cable. In this
interpretation, Ii(t) represents I(xi, t), where xi = i δx. Moreover, C = C δx,
and L = L δx, where C and L are the capacitance per unit length and the
inductance per unit length of the line, respectively. Show that, in the limit
δx → 0, the evolution equation for the coupled currents given in Exercise 3
reduces to the wave equation

∂2I

∂t2
= v2 ∂

2I

∂x2
,

where I = I(x, t), x measures distance along the line, and v = 1/
√
LC.

If Vi(t) is the potential difference (measured from the top to the bottom)
across the i+ 1th capacitor (from the left) in the circuit shown in Exercise 3,
and V(x, t) is the corresponding voltage in the transmission line, show that
the discrete circuit equations relating the Ii(t) and Vi(t) reduce to

∂V

∂t
= −

1

C
∂I

∂x
,

∂I

∂t
= −

1

L
∂V

∂x
,

in the transmission line limit. Hence, demonstrate that the voltage in a trans-
mission line satisfies the wave equation

∂2V

∂t2
= v2 ∂

2V

∂x2
.

8. Consider a uniform string of length l, tension T , and mass per unit length ρ
which is stretched between two immovable walls. Show that the total energy
of the string, which is the sum of its kinetic and potential energies, is

E =
1

2

∫ l

0

[

ρ

(

∂y

∂t

)2

+ T

(

∂y

∂x

)2
]

dx,

where y(x, t) is the string’s (relatively small) transverse displacement. Now,
the general motion of the string can be represented as a linear superposition
of the normal modes:

y(x, t) =
∑

n=1,∞

An sin
(

nπ
x

l

)

cos

(

nπ
v t

l
− φn

)

,
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where v =
√

T/ρ. Demonstrate that

E =
∑

n=1,∞

En,

where

En =
1

4
mω 2

nA
2
n

is the energy of the nth normal mode. Here,m = ρ l is the mass of the string,
and ωn = nπv/l the angular frequency of the nth normal mode.



80 OSCILLATIONS AND WAVES



Longitudinal Standing Waves 81

6 Longitudinal Standing Waves

6.1 Spring Coupled Masses

Consider a mechanical system consisting of a linear array of N identical

masses, m, which are free to slide in one dimension over a frictionless hor-

izontal surface. Suppose that the masses are coupled to their immediate

neighbors via identical light springs of unstretched length a, and force con-

stant K. (Here, we use the symbol K to denote the spring force constant,

rather than k, since k is already being used to denote wavenumber.) Let x

measure distance along the array (from the left to the right). So, if the array

is in its equilibrium configuration then the x-coordinate of the ith mass is

xi = i a, for i = 1,N. Consider longitudinal oscillations of the masses: i.e.,

oscillations such that the x-coordinate of the ith mass becomes

xi = i a+ψi(t), (6.1)

where ψi(t) represents the mass’s longitudinal displacement from equilib-

rium. It is assumed that all of the displacements are relatively small: i.e.,

|ψi| ≪ a, for i = 1,N.

Consider the equation of motion of the ith mass. See Figure 6.1. The

extensions of the springs to the immediate left and right of the mass are

ψi −ψi−1 and ψi+1 −ψi, respectively. Thus, the x-directed forces that these

springs exert on the mass are −K (ψi−ψi−1) and K (ψi+1−ψi), respectively,

and its equation of motion is easily shown to be

ψ̈i = ω2
0 (ψi−1 − 2ψi +ψi+1), (6.2)

ψi+1

xi−1 xi xi+1

mm m

ψi−1 ψi
K

x

K

Figure 6.1: Detail of a system of spring coupled masses.
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where ω0 =
√

K/m. Since there is nothing special about the ith mass,

the above equation is assumed to hold for all N masses: i.e., for i = 1,N.

Note that Equation (6.2), which governs the longitudinal oscillations of a lin-

ear array of spring coupled masses, is analogous in form to Equation (5.8),

which governs the transverse oscillations of a beaded string. This observa-

tion suggests that longitudinal and transverse waves in discrete dynamical

systems (i.e., systems with a finite number of degrees of freedom) can be

described using the same mathematical equations.

We can interpret the quantities ψ0 and ψN+1, which appear in the equa-

tions of motion for ψ1 and ψN, respectively, as the longitudinal displace-

ments of the left and right extremities of springs which are attached to the

outermost masses in such a manner as to form the left and right boundaries

of the array. The respective equilibrium positions of these extremities are

x0 = 0 and xN+1 = (N + 1)a. Now, the end displacements, ψ0 and ψN+1,

must be prescribed, otherwise Equations (6.2) do not constitute a complete

set of equations: i.e., there are more unknowns than equations. The partic-

ular choice of ψ0 and ψN+1 depends on the nature of the physical boundary

conditions at the two ends of the array. Suppose that the left extremity of

the leftmost spring is anchored in an immovable wall. This implies that

ψ0 = 0: i.e., the left extremity of the spring cannot move. Suppose, on the

other hand, that the left extremity of the leftmost spring is not attached to

anything. In this case, there is no reason for the spring to become extended,

which implies that ψ0 = ψ1. In other words, if the left end of the array is

fixed (i.e., attached to an immovable object) then ψ0 = 0, and if the left end

is free (i.e., not attached to anything) then ψ0 = ψ1. Likewise, if the right

end of the array is fixed then ψN+1 = 0, and if the right end is free then

ψN+1 = ψN.

Suppose, for the sake of argument, that the left end of the array is free,

and the right end is fixed. It follows that ψ0 = ψ1, and ψN+1 = 0. Let us

search for normal modes of the general form

ψi(t) = A cos[k (xi − a/2)] cos(ωt− φ), (6.3)

where A > 0, k > 0, ω > 0, and φ are constants. Note that the above

expression automatically satisfies the boundary condition ψ0 = ψ1. This

follows because x0 = 0 and x1 = a, and, consequently, cos[k (x0 − a/2)] =

cos(−ka/2) = cos(ka/2) = cos[k (x1 − a/2)]. The other boundary condi-

tion, ψN+1 = 0, is satisfied provided

cos[k (xN+1 − a/2)] = cos[(N+ 1/2)ka] = 0, (6.4)
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Figure 6.2: Normal modes of a system of eight spring coupled masses.
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which yields [cf., (5.15)]

ka =
(n− 1/2)π

N+ 1/2
, (6.5)

where n is an integer. As before, the imposition of the boundary conditions

causes a quantization of the possible mode wavenumbers (see Section 5.1).

Finally, substitution of (6.3) into (6.2) gives the dispersion relation [cf.,

(5.13)]

ω = 2ω0 sin(ka/2). (6.6)

It follows, from the above analysis, that the longitudinal normal modes

of a linear array of spring coupled masses, the left end of which is free, and

the right end fixed, are associated with the following characteristic displace-

ment patterns:

ψn,i(t) = An cos

[

(n− 1/2) (i− 1/2)

N+ 1/2
π

]

cos(ωn − φn), (6.7)

where

ωn = 2ω0 sin

(

n− 1/2

N+ 1/2

π

2

)

, (6.8)

and the An and φn are arbitrary constants determined by the initial condi-

tions. Here, the integer i = 1,N indexes the masses, and the mode number

n indexes the normal modes. It is easily demonstrated that there are only

N unique normal modes, corresponding to mode numbers in the range 1 to

N.

Figures 6.2 and 6.3 display the normal modes and normal frequencies

of a linear array of eight spring coupled masses, the left end of which is

free, and the right end fixed. The data shown in these figures is obtained

from Equations (6.7) and (6.8), respectively, with N = 8. The modes in

Figure 6.2 are all plotted at the instances in time at which they attain their

maximum amplitudes: i.e., when cos(ωn t − φn) = 1. It can be seen that

normal modes with small wavenumbers—i.e., ka ≪ 1, so that n ≪ N—

have displacements which vary in a fairly smooth sinusoidal manner from

mass to mass, and oscillations frequencies which increase approximately

linearly with increasing wavenumber. On the other hand, normal modes

with large wavenumbers—i.e., ka ∼ 1, so that n ∼ N—have displacements

which exhibit large variations from mass to mass, and oscillation frequen-

cies which do not depend linearly on wavenumber. We conclude that the

longitudinal normal modes of an array of spring coupled masses have anal-

ogous properties to the transverse normal modes of a beaded string. See

Section 5.1.
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Figure 6.3: Normal frequencies of a system of eight spring coupled masses.

The dynamical system pictured in Figure 6.1 can be used to model the ef-

fect of a planar sound wave (i.e., a longitudinal oscillation in position which

is periodic in space in one dimension) on a crystal lattice. In this applica-

tion, the masses represent parallel planes of atoms, the springs represent

the interatomic forces acting between these planes, and the longitudinal

oscillations represent the sound wave. Of course, a macroscopic crystal con-

tains a great many atomic planes, so we would expect N to be very large.

Note, however, from Equations (6.5) and (6.8), that, no matter how large

N becomes, ka cannot exceed π (since n cannot exceed N), and ωn cannot

exceed 2ω0. In other words, there is a minimum wavelength that a sound

wave in a crystal lattice can have, which turns out to be twice the inter-

atomic spacing, and a corresponding maximum oscillation frequency. For

waves whose wavelengths are much greater than the interatomic spacing

(i.e., ka≪ 1), the dispersion relation (6.6) reduces to

ω ≃ k c (6.9)

where c = ω0a =
√

K/ma is a constant which has the dimensions of

velocity. It seems plausible that (6.9) is the dispersion relation for sound

waves in a continuous elastic medium. Let us investigate such waves.
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6.2 Sound Waves in an Elastic Solid

Consider a thin uniform elastic rod of length l and cross-sectional area A.

Let us examine the longitudinal oscillations of such a rod. These oscillations

are usually, somewhat loosely, referred to as sound waves. It is again conve-

nient to let x denote position along the rod. Thus, in equilibrium, the two

ends of the rod lie at x = 0 and x = l. Suppose that a sound wave causes

an x-directed displacement ψ(x, t) of the various elements of the rod from

their equilibrium positions. Consider a thin section of the rod, of length δx,

lying between x−δx/2 and x+δx/2. The displacements of the left and right

boundaries of the section are ψ(x− δx/2, t) and ψ(x+ δx/2, t), respectively.

Thus, the change in length of the section, due to the action of the sound

wave, is ψ(x + δx/2, t) − ψ(x − δx/2, t). Now, strain in an elastic rod is

defined as change in length over unperturbed length. Thus, the strain in the

section of the rod under consideration is

ǫ(x, t) =
ψ(x+ δx/2, t) −ψ(x− δx/2, t)

δx
. (6.10)

In the limit δx → 0, this becomes

ǫ(x, t) =
∂ψ(x, t)

∂x
. (6.11)

Of course, it is assumed that the strain is small: i.e., |ǫ| ≪ 1. Stress, σ(x, t),

in an elastic rod is defined as the elastic force per unit cross-sectional area. In

a conventional elastic material, the relationship between stress and strain

(for small strains) takes the simple form

σ = Y ǫ. (6.12)

Here, Y is a constant, with the dimensions of pressure, which is known as

the Young’s modulus. Note that if the strain in a given element is positive

then the stress acts to lengthen the element, and vice versa. (Similarly, in

the spring coupled mass system investigated in the previous section, the

external forces exerted on an individual spring act to lengthen it when its

extension is positive, and vice versa.)

Consider the motion of a thin section of the rod lying between x − δx/2

and x + δx/2. If ρ is the mass density of the rod then the section’s mass is

ρAδx. The stress acting on the left boundary of the section is σ(x−δx/2) =

Y ǫ(x− δx/2). Since stress is force per unit area, the force acting on the left

boundary is AY ǫ(x− δx/2). This force is directed in the minus x-direction,



Longitudinal Standing Waves 87

assuming that the strain is positive (i.e., the force acts to lengthen the sec-

tion). Likewise, the force acting on the right boundary of the section is

AY ǫ(x + δx/2), and is directed in the positive x-direction, assuming that

the strain is positive (i.e., the force again acts to lengthen the section). Fi-

nally, the mean longitudinal (i.e., x-directed) acceleration of the section is

∂2ψ(x, t)/∂t2. Hence, the section’s longitudinal equation of motion becomes

ρAδx
∂2ψ(x, t)

∂t2
= AY [ǫ(x+ δx/2, t) − ǫ(x− δx/2)] . (6.13)

In the limit δx → 0, this expression reduces to

ρ
∂2ψ(x, t)

∂t2
= Y

∂ǫ(x, t)

∂x
, (6.14)

or
∂2ψ

∂t2
= c2

∂2ψ

∂x2
, (6.15)

where c =
√

Y/ρ is a constant having the dimensions of velocity, which

turns out to be the speed of sound in the rod (see Section 7.1), and use has

been made of Equation (6.11). Of course, (6.15) is a wave equation. As

such, it has the same form as Equation (5.27), which governs the motion

of transverse waves on a uniform string. This suggests that longitudinal

and transverse waves in continuous dynamical systems (i.e., systems with

an infinite number of degrees of freedom) can be described using the same

mathematical equations.

In order to solve (6.15), we need to specify boundary conditions at the

two ends of the rod. Suppose that the left end of the rod is fixed: i.e., it

is clamped in place so that it cannot move. This implies that ψ(0, t) = 0.

Suppose, on the other hand, that the left end of the rod is free: i.e., it is not

attached to anything. This implies that σ(0, t) = 0, since there is nothing

that the end can exert a force (or a stress) on, and vice versa. It follows from

(6.11) and (6.12) that ∂ψ(0, t)/∂x = 0. Likewise, if the right end of the rod

is fixed then ψ(l, t) = 0, and if the right end is free then ∂ψ(l, t)/∂x = 0.

Suppose, for the sake of argument, that the left end of the rod is free,

and the right end is fixed. It follows that ∂ψ(0, t)/∂x = 0, and ψ(l, t) = 0.

Let us search for normal modes of the form

ψ(x, t) = A cos(k x) cos(ωt− φ), (6.16)

where A > 0, k > 0, ω > 0, and φ are constants. Note that the above

expression automatically satisfies the boundary condition ∂ψ(0, t)/∂x = 0.
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The other boundary condition is satisfied provided

cos(k l) = 0, (6.17)

which yields

k l = (n− 1/2)π, (6.18)

where n is an integer. As usual, the imposition of the boundary conditions

leads to a quantization of the possible mode wavenumbers. Substitution of

(6.16) into the equation of motion (6.15) yields the normal mode dispersion

relation

ω = k c = k

√

Y

ρ
. (6.19)

Note that this dispersion relation is consistent with the previously derived

dispersion relation (6.9), since m = ρAa and K = AY/a. Here, a is the

interatomic spacing, m the mass of a section of the rod containing a sin-

gle plane of atoms, and K the effective force constant between neighboring

atomic planes.

It follows, from the above analysis, that the nth longitudinal normal

mode of an elastic rod, of length l, whose left end is free, and whose right

end is fixed, is associated with the characteristic displacement pattern

ψn(x, t) = An cos

[

(n− 1/2)π
x

l

]

cos(ωn t− φn), (6.20)

where

ωn = (n− 1/2)
π c

l
. (6.21)

Here, An and φn are constants which are determined by the initial condi-

tions. It is easily demonstrated that only those normal modes whose mode

numbers are positive integers yield unique displacement patterns: i.e., n > 0.

Equation (6.20) describes a standing wave whose nodes (i.e., points at which

ψ = 0 for all t) are evenly spaced a distance l/(n − 1/2) apart. Of course,

the boundary condition ψ(l, t) = 0 ensures that the right end of the rod

is always coincident with a node. On the other hand, the boundary con-

dition ∂ψ(0, t)/∂x = 0 ensures that the left hand of the rod is always co-

incident with a point of maximum amplitude oscillation [i.e., a point at

which cos(k x) = ±1]. Such a point is known as an anti-node. It is easily

demonstrated that the anti-nodes associated with a given normal mode lie

halfway between the corresponding nodes. Note, from (6.21), that the nor-

mal mode oscillation frequencies depend linearly on mode number. Finally,

it is easily demonstrated that, in the long wavelength limit ka ≪ 1, the
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normal modes and normal frequencies of a uniform elastic rod specified in

Equations (6.20) and (6.21) are analagous to the normal modes and normal

frequencies of a linear array of identical spring coupled masses specified in

Equations (6.7) and (6.8), and pictured in Figures 6.2 and 6.3.

Since Equation (6.15) is obviously linear, its most general solution is a

linear combination of all of the normal modes: i.e.,

ψ(x, t) =
∑

n′=1,∞

An′ cos

[

(n ′ − 1/2)π
x

l

]

cos

[

(n ′ − 1/2)π
c t

l
− φn′

]

.

(6.22)

The constants An and φn are determined from the initial displacement,

ψ(x, 0) =
∑

n′=1,∞

An′ cosφn′ cos

[

(n ′ − 1/2)π
x

l

]

, (6.23)

and the initial velocity,

ψ̇(x, 0) =
π c

l

∑

n′=1,∞

(n ′ − 1/2)An′ sinφn′ cos

[

(n ′ − 1/2)π
x

l

]

. (6.24)

Now, it is easily demonstrated that [cf., (5.50)]

2

l

∫ l

0

cos

[

(n− 1/2)π
x

l

]

cos

[

(n ′ − 1/2)π
x

l

]

dx = δn,n′ . (6.25)

Thus, multiplying (6.23) by (2/l) cos[(n − 1/2)πx/l], and then integrating

over x from 0 to l, we obtain

Cn ≡ 2

l

∫ l

0

ψ(x, 0) cos

[

(n− 1/2)π
x

l

]

dx = An cosφn, (6.26)

where use has been made of (6.25) and (5.51). Likewise, (6.24) gives

Sn ≡ 2

c (n− 1/2)π

∫ l

0

ψ̇(x, 0) cos

[

(n− 1/2)π
x

l

]

dx = An sinφn. (6.27)

Finally, An = (C2
n + S2

n)1/2 and φn = tan−1(Sn/Cn).

Suppose, for the sake of example, that the rod is initially at rest, and that

its left end is hit with a hammer at t = 0 in such a manner that a section of

the rod lying between x = 0 and x = a (where a < l) acquires an instanta-

neous velocity V0. It follows that ψ(0, t) = 0. Furthermore, ψ̇(0, t) = V0 if
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Figure 6.4: Time evolution of the normalized displacement of an elastic rod.
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0 ≤ x ≤ a, and ψ̇(0, t) = 0 otherwise. It is easily demonstrated that these

initial conditions yield Cn = 0, φn = π/2,

An = Sn =
V0a

c

2

π

sin[(n− 1/2)πa/l]

(n− 1/2)2πa/l
, (6.28)

and

ψ(x, t) =
∑

n=1,∞

An cos

[

(n− 1/2)π
x

l

]

sin

[

(n− 1/2)π
t

τ

]

, (6.29)

where τ = l/c. Figure 6.4 shows the time evolution of the normalized rod

displacement, ψ̂(x, t) = (c/V0a)ψ(x, t), calculated from the above equa-

tions using the first 100 normal modes (i.e., n = 1, 100), and choosing

a/l = 0.1. The top-left, top-right, middle-left, middle-right, bottom-left,

and bottom-right panels correspond to t/τ = 0.01, 0.02, 0.04, 0.08, 0.16,

0.32, 0.64, and 1.28, respectively. It can be seen that the hammer blow gen-

erates a displacement wave that initially develops at the free end of the rod

(x/l = 0), which is the end that is struck, propagates along the rod at the

velocity c, and reflects off the fixed end (x/l = 1) at time t/τ = 1 with no

phase shift.

6.3 Sound Waves in an Ideal Gas

Consider a uniform ideal gas of equilibrium mass density ρ and equilibrium

pressure p. Let us investigate the longitudinal oscillations of such a gas. Of

course, these oscillations are usually referred to as sound waves. Generally

speaking, a sound wave in an ideal gas oscillates sufficiently rapidly that

heat is unable to flow fast enough to smooth out any temperature perturba-

tions generated by the wave. Under these circumstances, the gas obeys the

adiabatic gas law,

pVγ = constant, (6.30)

where p is the pressure, V the volume, and γ the ratio of specific heats (i.e.,

the ratio of the gas’s specific heat at constant pressure to its specific heat at

constant volume). This ratio is approximately 1.4 for ordinary air.

Consider a sound wave in a column of gas of cross-sectional area A. Let

x measure distance along the column. Suppose that the wave generates an

x-directed displacement of the column, ψ(x, t). Consider a small section of

the column lying between x − δx/2 and x + δx/2. The change in volume of
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the section is δV = A [ψ(x + δx/2, t) − ψ(x − δx/2, t)]. Hence, the relative

change in volume, which is assumed to be small, is

δV

V
=
A [ψ(x+ δx/2, t) −ψ(x− δx/2, t)]

Aδx
. (6.31)

In the limit δx → 0, this becomes

δV(x, t)

V
=
∂ψ(x, t)

∂x
. (6.32)

The pressure perturbation δp(x, t) associated with the volume perturbation

δV(x, t) follows from (6.30), which yields

(p+ δp) (V + δV)γ = pVγ, (6.33)

or

(1+ δp/p) (1+ δV/V)γ ≃ 1+ δp/p+ γ δV/V = 1, (6.34)

giving

δp = −γp
δV

V
= −γp

∂ψ

∂x
, (6.35)

where use has been made of (6.32).

Consider a section of the gas column lying between x − δx/2 and x +

δx/2. The mass of this section is ρAδx. The x-directed force acting on

its left boundary is A [p + δp(x − δx/2, t)], whereas the x-directed force

acting on its right boundary is −A [p+ δp(x+ δx/2, t)]. Finally, the average

longitudinal (i.e., x-directed) acceleration of the section is ∂2ψ(x, t)/∂t2.

Thus, the section’s longitudinal equation of motion is written

ρAδx
∂2ψ(x, t)

∂t2
= −A [δp(x+ δx/2, t) − δp(x− δx/2, t)] . (6.36)

In the limit δx → 0, this equation reduces to

ρ
∂2ψ(x, t)

∂t2
= −

∂δp(x, t)

∂x
. (6.37)

Finally, (6.35) yields

∂2ψ

∂t2
= c2

∂2ψ

∂x2
, (6.38)

where c =
√

γp/ρ is a constant with the dimensions of velocity, which turns

out to be the sound speed in the gas (see Section 7.1).



Longitudinal Standing Waves 93

f = 5 f1f = f1 f = 3 f1

Figure 6.5: First three normal modes of an organ pipe.

As an example, suppose that a standing wave is excited in a uniform

organ pipe of length l. Let the closed end of the pipe lie at x = 0, and the

open end at x = l. The standing wave satisfies the wave equation (6.38),

where c represents the speed of sound in air. The boundary conditions

are that ψ(0, t) = 0—i.e., there is zero longitudinal displacement of the

air at the closed end of the pipe—and ∂ψ(l, t)/∂x = 0—i.e., there is zero

pressure perturbation at the open end of the pipe (since the small pressure

perturbation in the pipe is not intense enough to modify the pressure of the

air external to the pipe). Let us write the displacement pattern associated

with the standing wave in the form

ψ(x, t) = A sin(k x) cos(ωt− φ), (6.39)

where A > 0, k > 0, ω > 0, and φ are constants. This expression auto-

matically satisfies the boundary condition ψ(0, t) = 0. The other boundary

condition is satisfied provided

cos(k l) = 0, (6.40)

which yields

k l = (n− 1/2)π, (6.41)

where the mode number n is a positive integer. Equations (6.38) and (6.39)

yield the dispersion relation

ω = k c. (6.42)
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Hence, the nth normal mode has a wavelength

λn =
4 l

2n− 1
, (6.43)

and an oscillation frequency (in Hertz)

fn = (2n− 1) f1, (6.44)

where f1 = c/4 l is the frequency of the fundamental harmonic (i.e., the

normal mode with the lowest oscillation frequency). Figure 6.5 shows the

characteristic displacement patterns (which are pictured as transverse dis-

placements, for the sake of clarity) and oscillation frequencies of the pipe’s

first three normal modes (i.e., n = 1, 2, and 3). It can be seen that the

modes all have a node at the closed end of the pipe, and an anti-node at the

open end. The fundamental harmonic has a wavelength which is four times

the length of the pipe. The first overtone harmonic has a wavelength which

is 4/3rds the length of the pipe, and a frequency which is three times that

of the fundamental. Finally, the second overtone has a wavelength which is

4/5ths the length of the pipe, and a frequency which is five times that of the

fundamental. By contrast, the normal modes of a guitar string have nodes

at either end of the string. See Figure 5.6. Thus, as is easily demonstrated,

the fundamental harmonic has a wavelength which is twice the length of the

string. The first overtone harmonic has a wavelength which is the length of

the string, and a frequency which is twice that of the fundamental. Finally,

the second overtone harmonic has a wavelength which is 2/3rds the length

of the string, and a frequency which is three times that of the fundamental.

6.4 Fourier Analysis

Playing a musical instrument, such as a guitar or an organ, generates a set of

standing waves which cause a sympathetic oscillation in the surrounding air.

Such an oscillation consists of a fundamental harmonic, whose frequency

determines the pitch of the musical note heard by the listener, accompanied

by a set of overtone harmonics which determine the timbre of the note. By

definition, the oscillation frequencies of the overtone harmonics are integer

multiples of that of the fundamental. Thus, we expect the pressure pertur-

bation generated in a listener’s ear when a musical instrument is played to

have the general form

δp(t) =
∑

n=1,∞

An cos(nωt− φn), (6.45)
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whereω is the angular frequency of the fundamental (i.e., n = 1) harmonic,

and the An and φn are the amplitudes and phases of the various harmonics.

The above expression can also be written

δp(t) =
∑

n=1,∞

[Cn cos(nωt) + Sn sin(nωt)] , (6.46)

where Cn = An cosφn and Sn = An sinφn. Note that δp(t) is periodic

in time with period τ = 2π/ω. In other words, δp(t + τ) = δp(t) for all

t. This follows because cos(θ + n2π) = cos θ and sin(θ + n2π) = sin θ

for all angles, θ, and for all integers, n. [Moreover, there is no τ ′ < τ for

which δp(t + τ ′) = δp(t) for all t.] So, the question arises, can any peri-

odic waveform be represented as a linear superposition of sine and cosine

waveforms, whose periods are integer subdivisions of that of the waveform,

such as that shown in Equation (6.46)? To put it another way, given an arbi-

trary periodic waveform δp(t), can we uniquely determine the constants Cn

and Sn appearing in expression (6.46)? Actually, it turns out that we can.

Incidentally, the decomposition of a periodic waveform into a linear super-

position of sinusoidal waveforms is commonly known as Fourier analysis.

Let examine this topic in a little more detail.

The problem under investigation is as follows. Given a periodic wave-

form y(t), where y(t+τ) = y(t) for all t, we need to determine the constants

Cn and Sn in the expansion

y(t) =
∑

n′=1,∞

[

Cn′ cos(n ′ωt) + Sn′ sin(n ′ωt)
]

, (6.47)

where ω = 2π/τ. Now, it is easily demonstrated that [cf., (5.50)]

2

τ

∫τ

0

cos(nωt) cos(n ′ωt)dt = δn,n′ , (6.48)

2

τ

∫τ

0

sin(nωt) sin(n ′ωt)dt = δn,n′ , (6.49)

2

τ

∫τ

0

cos(nωt) sin(n ′ωt)dt = 0, (6.50)

where n and n ′ are positive integers. Thus, multiplying Equation (6.47) by

(2/τ) cos(nωt), and then integrating over t from 0 to τ, we obtain

Cn =
2

τ

∫τ

0

y(t) cos(nωt)dt, (6.51)
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Figure 6.6: Fourier reconstruction of a periodic sawtooth waveform.

where use has been made of (6.48)–(6.50), as well as (5.51). Likewise,

multiplying (6.47) by (2/τ) sin(nωt), and then integrating over t from 0

to τ, we obtain

Sn =
2

τ

∫τ

0

y(t) sin(nωt)dt. (6.52)

Thus, we have uniquely determined the constants Cn and Sn in the expan-

sion (6.47). These constants are generally known as Fourier coefficients,

whereas the expansion itself is known as either a Fourier expansion or a

Fourier series.

In principle, there is no restriction on the waveform y(t) in the above

analysis, other than the requirement that it be periodic in time. In other

words, we ought to be able to Fourier analyze any periodic waveform. Let

us see how this works. Consider the periodic sawtooth waveform (see Fig-

ure 6.6)

y(t) = A (2 t/τ− 1) 0 ≤ t/τ ≤ 1, (6.53)
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with y(t + τ) = y(t) for all t. This waveform rises linearly from an initial

value −A at t = 0 to a final value +A at t = τ, discontinuously jumps

back to its initial value, and then repeats ad infinitum. According to Equa-

tions (6.51) and (6.52), the Fourier harmonics of the waveform are

Cn =
2

τ

∫τ

0

A (2 t/τ− 1) cos(nωt)dt =
A

π2

∫2π

0

(θ− π) cos(nθ)dθ,

(6.54)

Sn =
2

τ

∫τ

0

A (2 t/τ− 1) sin(nωt)dt =
A

π2

∫2π

0

(θ− π) sin(nθ)dθ,

(6.55)

where θ = ωt. Integration by parts yields

Cn = 0, (6.56)

Sn = −
2A

nπ
. (6.57)

Hence, the Fourier reconstruction of the waveform is written

y(t) = −
2A

π

∑

n=1,∞

sin(n2π t/τ)

n
. (6.58)

Given that the Fourier coefficients fall off like 1/n, as n increases, it seems

plausible that the above series can be truncated, after a finite number of

terms, without unduly affecting the reconstructed waveform. Figure 6.6

shows the result of truncating the series after 4, 8, 16, and 32 terms (these

cases correspond the top-left, top-right, bottom-left, and bottom-right pan-

els, respectively). It can be seen that the reconstruction becomes increas-

ingly accurate as the number of terms retained in the series increases. The

annoying oscillations in the reconstructed waveform at t = 0, τ, and 2τ are

known as Gibbs phenomena, and are the inevitable consequence of trying

to represent a discontinuous waveform as a Fourier series. In fact, it can be

demonstrated mathematically that, no matter how many terms are retained

in the series, the Gibbs phenomena never entirely go away.

We can slightly generalize the Fourier series (6.47) by including an n = 0

term. In other words,

y(t) = C0 +
∑

n′=1,∞

[

Cn′ cos(n ′ωt) + Sn′ sin(n ′ωt)
]

, (6.59)



98 OSCILLATIONS AND WAVES

Figure 6.7: Fourier reconstruction of a periodic “tent” waveform.

which allows the waveform to have a non-zero average. Of course, there

is no term involving S0, since sin(nωt) = 0 when n = 0. Now, it is easily

demonstrated that

2

τ

∫τ

0

cos(nωt)dt = 0, (6.60)

2

τ

∫τ

0

sin(nωt) dt = 0, (6.61)

where ω = 2π/τ, and n is a positive integer. Thus, making use of these

expressions, as well as Equations (6.48)–(6.50), we can easily show that

C0 =
1

τ

∫

y(t)dt, (6.62)

and that Equations (6.51) and (6.52) still hold for n > 0.
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As an example, consider the periodic “tent” waveform (see Figure 6.7)

y(t) = 2A

{
t/τ 0 ≤ t/τ ≤ 1/2

1− t/τ 1/2 < t/τ ≤ 1 , (6.63)

where y(t + τ) = y(t) for all t. This waveform rises linearly from zero at

t = 0, reaches a peak value A at t = τ/2, falls linearly, becomes zero again

at t = τ, and repeats ad infinitum. Moreover, the waveform clearly has a

non-zero average. It is easily demonstrated, from Equations (6.51), (6.52),

(6.62), and (6.63), that

C0 =
A

2
, (6.64)

and

Cn = −A
sin2(nπ/2)

(nπ/2)2
(6.65)

for n > 1, with Sn = 0 for n > 1. Note that only the odd-n Fourier har-

monics are non-zero. Figure 6.7 shows a Fourier reconstruction of the “tent”

waveform using the first 1, 2, 4, and 8 terms (in addition to the C0 term) in

the Fourier series (these cases correspond to the top-left, top-right, bottom-

left, and bottom-right panels, respectively). It can be seen that the recon-

struction becomes increasingly accurate as the number of terms in the series

increases. Moreover, in this example, there is no sign of Gibbs phenomena,

since the tent waveform is completely continuous.

Now, in our first example—i.e., the sawtooth waveform—all of the Sn

Fourier coefficients are zero, whereas in our second example—i.e., the tent

waveform—all of the Cn coefficients are zero. It is easily demonstrated that

this occurs because the sawtooth waveform is odd in t—i.e., y(−t) = −y(t)

for all t—whereas the tent waveform is even—i.e., y(−t) = y(t) for all t.

In fact, it is a general rule that waveforms which are even in t only have

cosines in their Fourier series, whereas waveforms which are odd only have

sines. Of course, waveforms which are neither even nor odd in t have both

cosines and sines in their Fourier series.

Fourier series arise quite naturally in the theory of standing waves, since

the normal modes of oscillation of any uniform continuous system possess-

ing linear equations of motion (e.g., a uniform string, an elastic solid, an

ideal gas) take the form of spatial cosine and sine waves whose wavelengths

are rational fractions of one another. Thus, the instantaneous spatial wave-

form of such a system can always be represented as a linear superposition of

cosine and sine waves: i.e., a Fourier series in space, rather than in time. In

fact, we can easily appreciate that the process of determining the amplitudes
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and phases of the normal modes of oscillation from the initial conditions is

essentially equivalent to Fourier analyzing the initial conditions in space—

see Sections 5.3 and 6.2.

6.5 Exercises

1. Estimate the highest possible frequency (in Hertz), and the smallest possible
wavelength, of a sound wave in aluminium, due to the discrete atomic struc-
ture of this material. The mass density, Young’s modulus, and atomic weight
of aluminium are 2.7× 103 kg m

−3
, 6× 1010 N m−2, and 27, respectively.

2. Consider a linear array of N identical simple pendulums of mass m and
length lwhich are suspended from equal height points that are evenly spaced
a distance a apart. Suppose that each pendulum bob is attached to its two
immediate neighbors by means of light springs of unstretched length a and
spring constant K. The figure shows a small part of such an array. Let xi = i a

be the equilibrium position of the ith bob, for i = 1,N, and let ψi(t) be its
horizontal displacement. It is assumed that |ψi|/a≪ 1 for all i. Demonstrate
that the equation of motion of the ith pendulum bob is

ψ̈i = −
g

l
ψi +

K

m
(ψi−1 − 2ψi +ψi+1).

Consider a general normal mode of the form

ψi(t) = [A sin(k xi) + B cos(k xi)] cos(ωt− φ).

Show that the associated dispersion relation is

ω2 =
g

l
+
4K

m
sin2

(ka/2).

Suppose that the first and last pendulums in the array are attached to immov-
able walls, located a horizontal distance a away, by means of light springs of

m

xi+1xi

K

ψi+1ψi

x

a

l
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unstretched length a and spring constant K. Find the normal modes of the
system. Suppose, on the other hand, that the first and last pendulums are
not attached to anything on their outer sides. Find the normal modes of the
system.

3. Find the system of coupled inductors and capacitors which is analogous to
the system of coupled pendulums considered in the previous exercise, in
the sense that the time evolution equation for the current flowing through
the ith inductor has the same form as the equation of motion of the ith
pendulum. Consider both types of boundary condition discussed above. Find
the dispersion relation.

4. Consider a periodic waveform y(t) of period τ, where y(t+ τ) = y(t) for all
t, which is represented as a Fourier series:

y(t) = C0 +
∑

n>1

[Cn cos(nωt) + Sn sin(nωt)] ,

where ω = 2π/τ. Demonstrate that

y(−t) = C0 +
∑

n>1

[C ′

n cos(nωt) + S ′

n sin(nωt)] ,

where C ′

n = Cn and S ′

n = −Sn, and

y(t+ T) = C0 +
∑

n>1

[C ′′

n cos(nωt) + S ′′

n sin(nωt)] ,

where

C ′′

n = Cn cos(nωT) + Sn sin(nωT),

S ′′

n = Sn cos(nωT) − Cn sin(nωT).

5. Demonstrate that the periodic square-wave

y(t) = A

{
−1 0 ≤ t/τ ≤ 1/2
+1 1/2 < t/τ ≤ 1 ,

where y(t+ τ) = y(t) for all t, has the Fourier representation

y(t) = −
4A

π

[

sin(ωt)

1
+

sin(3ω t)

3
+

sin(5ω t)

5
+ · · ·

]

.

Here, ω = 2π/τ. Plot the reconstructed waveform, retaining the first 4, 8,
16, and 32 terms in the Fourier series.

6. Show that the periodically repeated pulse waveform

y(t) = A

{
1 |t− T/2| ≤ τ/2
0 otherwise

,
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where y(t+ T) = y(t) for all t, and τ < T , has the Fourier representation

y(t) = A
τ

T
+
2A

π

∑

n=1,∞

(−1)n sin(nπτ/T)

n
cos(n2π t/T)

Demonstrate that if τ≪ T then the most significant terms in the above series
have frequencies (in Hertz) which range from the fundamental frequency
1/T to a frequency of order 1/τ.
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7 Traveling Waves

7.1 Standing Waves in a Finite Continuous Medium

We saw earlier, in Sections 5.2, 6.2, and 6.3, that a small amplitude trans-

verse wave on a uniform string, and a small amplitude longitudinal wave in

an elastic solid or an ideal gas, are all governed by the wave equation, which

(in one dimension) takes the general form

∂2ψ

∂t2
= c2

∂2ψ

∂x2
, (7.1)

where ψ(x, t) represents the wave disturbance, and c > 0 is a constant, with

the dimensions of velocity, which is a property of the particular medium

that supports the wave. Up to now, we have only considered media of finite

length: e.g., media which extend from x = 0 to x = l. Generally speaking,

we have encountered two distinct types of physical constraint which hold at

the boundaries of such media. Firstly, if a given boundary is fixed then the

wave displacement is constrained to be zero there: e.g., if the left bound-

ary is fixed then ψ(0, t) = 0. Secondly, if a given boundary is free then the

spatial derivative of the displacement (which usually corresponds to some

sort of force) is constrained to be zero there: e.g., if the right boundary is

free then ∂ψ(l, t)/∂x = 0. It follows that a fixed boundary corresponds to a

node—i.e., a point at which the amplitude of the wave disturbance is always

zero—whereas a free boundary corresponds to an anti-node—i.e., a point

at which the amplitude of the wave disturbance is always locally maximal.

Consequently, the nodes and the anti-nodes of a wave, of definite wave-

length, supported in a medium of finite length with stationary boundaries,

which can be either fixed or free, are constrained to be stationary. The only

simple solution of the wave equation (7.1) which has stationary nodes and

anti-nodes is a standing wave of the general form

ψ(x, t) = [A cos(k x) + B sin(k x)] cos(ωt− φ). (7.2)

The associated nodes are located at the values of x that satisfy

A cos(k x) + B sin(k x) = 0, (7.3)

which implies that they are indeed stationary, and also evenly spaced a dis-

tance λ/2 apart, where λ = 2π/k is the wavelength. Moreover, the anti-

nodes are situated halfway between the nodes. For example, suppose that



104 OSCILLATIONS AND WAVES

both boundaries of the medium are fixed boundaries. It follows that the

points x = 0 and x = lmust each correspond to a node. This is only possible

if the length of the medium, l, is a half-integer number of wavelengths: i.e.,

l = nλ/2, where n is a positive integer. We conclude that, in this case, the

possible wavenumbers of standing wave solutions to the wave equation are

quantized such that

k l = nπ. (7.4)

Moreover, the same is true if both boundaries are free boundaries. Fi-

nally, if one boundary is free, and the other fixed, then the quantization

of wavenumbers takes the slightly different form

k l = (n− 1/2)π. (7.5)

Now, those standing wave solutions that satisfy the appropriate quantiza-

tion criterion are known as the normal modes of the system. Moreover,

substitution of (7.2) into the wave equation (7.1) yields the standing wave

dispersion relation

ω2 = k2 c2. (7.6)

Thus, the fact that the normal mode wavenumbers are quantized immedi-

ately implies that the associated oscillation frequencies are also quantized.

Finally, since the wave equation is linear, the most general solution which

satisfies the boundary conditions is a linear superposition of all of the nor-

mal modes. Such a solution has the appropriate node or anti-node at each

of the boundaries, but does not necessarily have any stationary nodes or

anti-nodes in the interior of the medium.

7.2 Traveling Waves in an Infinite Continuous Medium

Let us now consider solutions of the wave equation (7.1) in an infinite

medium. Such a medium does not possess any boundaries, and so is not

subject to boundary conditions. Hence, there is no particular reason why a

wave of definite wavelength should have stationary nodes or anti-nodes. In

other words, (7.2) may not be the only permissible type of wave solution

in an infinite medium. What other kind of solution could we have? Well,

suppose that

ψ(x, t) = A cos(k x−ωt− φ), (7.7)

where A > 0, k > 0, ω > 0, and φ are constants. We would interpret this

solution as a wave of amplitude A, wavenumber k, wavelength λ = 2π/k,

angular frequency ω, frequency (in Hertz) f = ω/2π, period T = 1/f, and
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phase angle φ. Note, in particular, thatψ(x+λ, t) = ψ(x, t) andψ(x, t+T) =

ψ(x, t) for all x and t: i.e., the wave is periodic in space with period λ, and

periodic in time with period T . Now, a wave maximum corresponds to a

point at which cos(k x − ωt − φ) = 1. It follows, from the well known

properties of the cosine function, that the various wave maxima are located

at

k x−ωt− φ = n2π, (7.8)

where n is an integer. Thus, differentiating the above expression with re-

spect to t, and rearranging, the equation of motion of a particular maximum

becomes
dx

dt
=
ω

k
. (7.9)

We conclude that the wave maximum in question propagates along the x-

axis at the velocity

vp =
ω

k
. (7.10)

It is easily demonstrated that the other wave maxima, as well as the wave

minima and the wave zeros, also propagate along the x-axis at the same

velocity. In fact, the whole wave pattern propagates in the positive x-

direction without changing shape. The characteristic propagation velocity

vp is known as the phase velocity of the wave, since it is the velocity with

which points of constant phase in the wave disturbance (i.e., points which

satisfy k x − ωt − φ = constant) move. For obvious reasons, the type of

wave solution given in (7.7) is called a traveling wave.

Substitution of (7.7) into the wave equation (7.1) yields the familiar

dispersion relation

ω2 = k2 c2. (7.11)

We immediately conclude that the traveling wave solution (7.7) satisfies the

wave equation provided

vp =
ω

k
= c : (7.12)

i.e., provided that the phase velocity of the wave takes the fixed value c.

In other words, the constant c2, which appears in the wave equation (7.1),

can be interpreted as the square of the velocity with which traveling waves

propagate through the medium in question. It follows, from the discussion

in Sections 5.2, 6.2, and 6.3, that transverse waves propagate along strings

of tension T and mass per unit length ρ at the phase velocity
√

T/ρ, that

longitudinal sound waves propagate through elastic media of Young’s mod-

ulus Y and mass density ρ at the phase velocity
√

Y/ρ, and that sound waves
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Material Y (N m−2) ρ (kg m−3)
√

Y/ρ (m s−1) v (m s−1)

Aluminium 6.0× 1010 2.7× 103 4700 5100

Granite 5.0× 1010 2.7× 103 4300 ∼ 5000

Lead ∼ 1.6× 1010 11.4× 103 1190 1320

Nickel 21.4× 1010 8.9× 103 4900 4970

Pyrex 6.1× 1010 2.25× 103 5200 5500

Silver 7.5× 1010 10.4× 103 2680 2680

Table 7.1: Calculated versus measured sound velocities in various solid materi-

als. [From Vibrations and Waves, A.P. French (W.W. Norton & Co., New York

NY, 1971).]

propagate through ideal gases of pressure p, mass density ρ, and ratio of

specific heats γ, at the phase velocity
√

γp/ρ.

Table 7.1 shows some data on the calculated and measured speeds of

sound in various solid materials. It can be seen that the agreement between

the two is fairly good. Actually, the formula v =
√

Y/ρ is only valid if the

material in question is free to (very slightly) expand and contract sideways

as a wave of compression or decompression passes by. However, bulk mate-

rial is not free to do this, and so its resistance to deformation is effectively

increased. This, typically, has the effect of raising the sound speed by about

15%.

An ideal gas of mass m and molecular weight M satisfies the ideal gas

equation of state,

pV =
m

M
RT, (7.13)

where p is the pressure, V the volume, R the gas constant, and T the absolute

temperature. Since the ratio m/V is equal to the density, ρ, the expression

for the sound speed, v =
√

γp/ρ, yields

v =

(

γR T

M

)1/2

. (7.14)

We, thus, conclude that the speed of sound in an ideal gas is independent of

the pressure or the density, proportional to the square root of the absolute

temperature, and inversely proportional to the square root of the molecular

mass. All of these predictions are borne out in practice.

A comparison of Equations (7.6) and (7.11) reveals that standing waves

and traveling waves in a given medium satisfy the same dispersion relation.
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However, since traveling waves in infinite media are not subject to boundary

conditions, it follows that there is no restriction on the possible wavenum-

bers, or wavelengths, of such waves. Hence, any traveling wave solution

whose wavenumber, k, and angular frequency, ω, are related according to

ω = k c (7.15)

[which is just the square root of the dispersion relation (7.11)] is a valid

solution of the wave equation. Another way of putting this is that any trav-

eling wave solution whose wavelength, λ = 2π/k, and frequency, f = ω/2π,

are related according to

c = f λ (7.16)

is a valid solution of the wave equation. We, thus, conclude that high fre-

quency traveling waves propagating through a given medium possess short

wavelengths, and vice versa.

Consider the alternative wave solution

ψ(x, t) = A cos(k x+ωt− φ), (7.17)

where A > 0, k > 0, ω > 0, and φ are constants. As before, we would

interpret this solution as a wave of amplitude A, wavenumber k, angular

frequency ω, and phase angle φ. However, the wave maxima are now lo-

cated at

k x+ωt− φ = n2π, (7.18)

where n is an integer, and thus have equations of motion of the form

dx

dt
= −

ω

k
. (7.19)

Clearly, (7.17) represents a traveling wave that propagates in the minus x-

direction at the phase velocity vp = ω/k. Moreover, substitution of (7.17)

into the wave equation (7.1) again yields the dispersion relation (7.15),

which implies that vp = c. It follows that traveling wave solutions to the

wave equation (7.1) can propagate in either the positive or the negative

x-direction, as long as they always move at the fixed speed c.

7.3 Wave Interference

But, what is the relationship between traveling wave and standing wave so-

lutions to the wave equation (7.1) in an infinite medium? To help answer
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this question, let us form a superposition of two traveling wave solutions of

equal amplitudeA, and zero phase angle φ, which have the same wavenum-

ber k, but are moving in opposite directions. In other words,

ψ(x, t) = A cos(k x−ωt) +A cos(k x+ωt). (7.20)

Since the wave equation (7.1) is linear, it follows that the above superpo-

sition is a solution provided the two component waves are also solutions:

i.e., provided that ω = k c, which we shall assume to be the case. How-

ever, making use of the trigonometric identity cosa + cosb ≡ 2 cos[(a +

b)/2] cos[(a− b)/2], the above expression can also be written

ψ(x, t) = 2A cos(k x) cos(ωt), (7.21)

which is clearly a standing wave [cf., (7.2)]. Evidently, a standing wave is

a linear superposition of two, otherwise identical, traveling waves which

propagate in opposite directions. The two waves completely cancel one

another out at the nodes, which are situated at k x = (n − 1/2)π, where n

is an integer. This process is known as total destructive interference. On the

other hand, the waves reinforce one another at the anti-nodes, which are

situated at k x = nπ, generating a wave whose amplitude is twice that of

the component waves. This process is known as constructive interference.

As a more general example of wave interference, consider a superpo-

sition of two traveling waves of unequal amplitudes which again have the

same wavenumber and zero phase angle, and are moving in opposite direc-

tions: i.e.,

ψ(x, t) = A1 cos(k x−ωt) +A2 cos(k x+ωt), (7.22)

where A1, A2 > 0. In this case, the trigonometric identities cos(a − b) ≡
cosa cosb+ sina sinb and cos(a+ b) ≡ cosa cosb− sina sinb yield

ψ(x, t) = (A1+A2) cos(k x) cos(ωt)+(A1−A2) sin(k x) sin(ωt). (7.23)

Thus, the two waves interfere destructively at k x = (n − 1/2)π [i.e., at

points where cos(k x) = 0 and | sin(k x)| = 1] to produce a minimum wave

amplitude |A1 −A2|, and interfere constructively at k x = nπ [i.e., at points

where | cos(k x)| = 1 and sin(k x) = 0] to produce a maximum wave ampli-

tude A1+A2. Note, however, that the destructive interference is incomplete

unless A1 = A2. Incidentally, it is a general result that when two waves of

amplitude A1 > 0 and A2 > 0 interfere then the maximum and minimum

possible values of the resulting wave amplitude are A1 +A2 and |A1 −A2|,

respectively.
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7.4 Energy Conservation

Consider a small amplitude transverse wave propagating along a uniform

string of infinite length, tension T , and mass per unit length ρ. See Sec-

tion 5.2. Let x measure distance along the string, and let y(x, t) be the

transverse wave displacement. Of course, y(x, t) satisfies the wave equation

∂2y

∂t2
= v2 ∂

2y

∂x2
, (7.24)

where v =
√

T/ρ is the phase velocity of traveling waves on the string.

Consider a section of the string lying between x = x1 and x = x2. The

kinetic energy of this section is

K =

∫x2

x1

1

2
ρ

(

∂y

∂t

)2

dx, (7.25)

since ∂y/∂t is the string’s transverse velocity. The potential energy is simply

the work done in stretching the section, which is T ∆s, where ∆s is the

difference between the section’s stretched and unstretched lengths. Here,

it is assumed that the tension remains approximately constant when the

section is slowly stretched. Now, an element of length of the string is

ds = (dx2 + dy2)1/2 =

[

1+

(

dy

dx

)2
]1/2

dx. (7.26)

Hence,

∆s =

∫x2

x1

{
[

1+

(

dy

dx

)2
]1/2

− 1

}

dx ≃
∫x2

x1

1

2

(

∂y

∂x

)2

dx, (7.27)

since it is assumed that |∂y/∂x| ≪ 1: i.e., the transverse displacement is

sufficiently small that the string remains almost parallel to the x-axis. Thus,

the potential energy of the section is U = T ∆s, or

U =

∫x2

x1

1

2
T

(

∂y

∂x

)2

dx. (7.28)

It follows that the total energy of the section is

E =

∫x2

x1

1

2

[

ρ

(

∂y

∂t

)2

+ T

(

∂y

∂x

)2
]

dx. (7.29)
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Multiplying the wave equation (7.24) by ρ (∂y/∂t), we obtain

ρ
∂y

∂t

∂2y

∂t2
= T

∂y

∂t

∂2y

∂x2
, (7.30)

since v2 = T/ρ. This expression yields

ρ
∂y

∂t

∂2y

∂t2
+ T

∂y

∂x

∂2y

∂t ∂x
= T

∂y

∂t

∂2y

∂x2
+ T

∂y

∂x

∂2y

∂t ∂x
, (7.31)

which can be written in the form

1

2

∂

∂t

[

ρ

(

∂y

∂t

)2

+ T

(

∂y

∂x

)2
]

=
∂

∂x

(

T
∂y

∂t

∂y

∂x

)

, (7.32)

or
∂E
∂t

+
∂I
∂x

= 0, (7.33)

where

E(x, t) =
1

2

[

ρ

(

∂y

∂t

)2

+ T

(

∂y

∂x

)2
]

(7.34)

is the energy per unit length of the string, and

I(x, t) = −T
∂y

∂t

∂y

∂x
. (7.35)

Finally, integrating (7.33) in x from x1 to x2, we obtain

d

dt

∫x2

x1

E dx+ I(x2, t) − I(x1, t) = 0, (7.36)

or
dE

dt
= I(x1, t) − I(x2, t). (7.37)

Here, E(t) is the energy stored in the section of the string lying between

x = x1 and x = x2 [see Equation (7.29)]. Now, if we interpret I(x, t) as the

instantaneous energy flux (i.e., rate of energy flow) in the positive-x direc-

tion, at position x and time t, then the above equation can be recognized

as a simple declaration of energy conservation. Basically, the equation states

that the rate of increase in the energy stored in the section of the string lying

between x = x1 and x = x2, which is dE/dt, is equal to the difference be-

tween the rate at which energy flows into the left end of the section, which is

I(x1, t), and the rate at which it flows out of the right end, which is I(x2, t).
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Note that the string must conserve energy, since it lacks any mechanism for

energy dissipation. The same is true of the other wave media discussed in

this section.

Consider a wave propagating in the positive x-direction of the form

y(x, t) = A cos(k x−ωt− φ). (7.38)

According to Equation (7.35), the energy flux associated with this wave is

I(x, t) = T kωA2 sin2(k x−ωt− φ). (7.39)

Thus, the mean energy flux is written

〈I〉 =
1

2
ω2ZA2, (7.40)

where 〈A〉(x) ≡ (ω/2π)
∫t+2π/ω

t
A(x, t ′)dt ′ represents an average over a

period of the wave oscillation. Here, use has been made of ω/k =
√

T/ρ,

and the easily demonstrated result that 〈sin2(ωt + θ)〉 = 1/2 for all θ.

Moreover, the quantity

Z =
√

ρ T (7.41)

is known as the characteristic impedance of the string. The units of Z are

force over velocity. Thus, the string impedance measures the typical ten-

sion required to produce a unit transverse velocity. Finally, according to

Equation (7.40), a traveling wave propagating in the positive x-direction is

associated with a positive energy flux: i.e., the wave transports energy in the

positive x-direction.

Consider a wave propagating in the negative x-direction of the general

form

y(x, t) = A cos(k x+ωt− φ). (7.42)

It is easily demonstrated, from (7.35), that the mean energy flux associated

with this wave is

〈I〉 = −
1

2
ω2ZA2. (7.43)

The fact that the energy flux is negative means that the wave transports

energy in the negative x-direction.

Suppose that we have a superposition of a wave of amplitude A+ propa-

gating in the positive x-direction, and a wave of amplitude A− propagating

in the negative x-direction, so that

y(x, t) = A+ cos(k x−ωt− φ+) +A− cos(k x+ωt− φ−). (7.44)
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According to (7.35), the instantaneous energy flux is written

I(x, t) = ω2Z [A+ sin(k x−ωt− φ+) +A− sin(k x+ωt− φ−)]

[A+ sin(k x−ωt− φ+) −A− sin(k x+ωt− φ−)]

= ω2Z
[

A2
+ sin2(k x−ωt− φ+) −A2

− sin2(k x+ωt− φ−)
]

.

(7.45)

Hence, the mean energy flux,

〈I〉 =
1

2
ω2ZA2

+ −
1

2
ω2ZA2

−, (7.46)

is simply the difference between the mean fluxes associated with the waves

traveling to the right (i.e., in the positive x-direction) and to the left, cal-

culated separately. Recall, from the previous section, that a standing wave

is a superposition of two traveling waves of equal amplitude, and frequency,

propagating in opposite directions. It immediately follows, from the above

expression, that a standing wave has zero associated net energy flux. In

other words, a standing wave does not give rise to net energy transport.

Now, we saw earlier, in Section 6.2, that a small amplitude longitudinal

wave in an elastic solid satisfies the wave equation,

∂2ψ

∂t2
= c2

∂2ψ

∂x2
, (7.47)

where ψ(x, t) is the longitudinal wave displacement, c =
√

Y/ρ the phase

velocity of traveling waves in the solid, Y the Young’s modulus, and ρ the

mass density. Using similar analysis to that employed above, we can derive

an energy conservation equation of the form (7.33) from the above wave

equation, where

E =
1

2

[

ρ

(

∂ψ

∂t

)2

+ Y

(

∂ψ

∂x

)2
]

(7.48)

is the total wave energy per unit volume, and

I = −Y
∂ψ

∂t

∂ψ

∂x
(7.49)

the wave energy flux (i.e., rate of energy flow per unit area) in the positive

x-direction. For a traveling wave of the form ψ(x, t) = A cos(k x−ωt−φ),

the above expression yields

〈I〉 =
1

2
ω2ZA2, (7.50)



Traveling Waves 113

where

Z =
√

ρ Y (7.51)

is the impedance of the solid. The units of Z are pressure over velocity, so, in

this case, the impedance measures the typical pressure in the solid required

to produce a unit longitudinal velocity. Analogous arguments to the above

reveal that the impedance of an ideal gas of density ρ, pressure p, and ratio

of specific heats γ, is (see Section 6.3)

Z =
√
ργp. (7.52)

7.5 Transmission Lines

A transmission line is typically used to carry high frequency electromag-

netic signals over large distances: i.e., distances sufficiently large that the

phase of the signal varies significantly along the line (which implies that

the line is much longer than the wavelength of the signal). A common

example of a transmission line is an ethernet cable. In its simplest form,

a transmission line consists of two parallel conductors which carry equal

and opposite electrical currents I(x, t), where x measures distance along

the line. Let V(x, t) be the instantaneous voltage difference between the

two conductors at position x. Consider a small section of the line lying

between x and x + δx. If Q(t) is the electric charge on one of the con-

ducting sections, and −Q(t) the charge on the other, then charge conser-

vation implies that dQ/dt = I(x, t) − I(x + δx, t). However, according to

standard electrical circuit theory, Q(t) = C δxV(x, t), where C is the ca-

pacitance per unit length of the line. Standard circuit theory also yields

V(x + δx, t) − V(x, t) = −L δx ∂I(x, t)/∂t, where L is the inductance per

unit length of the line. Taking the limit δx → 0, we obtain the so-called

Telegrapher’s equations,

∂V

∂t
= −

1

C
∂I

∂x
, (7.53)

∂I

∂t
= −

1

L
∂V

∂x
. (7.54)

These two equations can be combined to give

∂2V

∂t2
=

1

LC
∂2V

∂x2
, (7.55)

together with an analogous equation for I. In other words, V(x, t) and I(x, t)

both obey a wave equation of the form (7.24) in which the associated phase
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velocity is v = 1/
√
LC. Multiplying (7.53) by C V, (7.54) by L I, and then

adding the two resulting expressions, we obtain the energy conservation

equation
∂E
∂t

+
∂I
∂x

= 0, (7.56)

where

E =
1

2
L I2 +

1

2
C V2 (7.57)

is the electromagnetic energy per unit length of the line, and

I = I V (7.58)

is the electromagnetic energy flux along the line (i.e., the energy per unit

time which passes a given point) in the positive x-direction. Consider a sig-

nal propagating along the line, in the positive x-direction, whose associated

current takes the form

I(x, t) = I0 cos(k x−ωt− φ). (7.59)

It is easily demonstrated, from (7.53), that the corresponding voltage is

V(x, t) = V0 cos(k x−ωt− φ), (7.60)

where

V0 = I0Z. (7.61)

Here,

Z =

√

L
C (7.62)

is the characteristic impedance of the line, and is measured in Ohms. It

follows that the mean energy flux associated with the signal is written

〈I〉 = 〈I V〉 =
1

2
I0V0 =

1

2
Z I2

0 =
1

2

V 2
0

Z
. (7.63)

Likewise, for a signal propagating along the line in the negative x-direction,

I(x, t) = I0 cos(k x+ωt− φ), (7.64)

V(x, t) = −V0 cos(k x+ωt− φ), (7.65)

and the mean energy flux is

〈I〉 = −
1

2
I0V0 = −

1

2
Z I2

0 = −
1

2

V 2
0

Z
. (7.66)
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As a specific example, consider a transmission line consisting of two uni-

form parallel conducting strips of width w and perpendicular distance apart

d, where d ≪ w. It is easily demonstrated, using elementary electrostatic

theory, that the capacitance per unit length of the line is

C = ǫ0
w

d
, (7.67)

where ǫ0 = 8.8542×10−12 C2 N−1 m−2 is the electric permittivity of free space.

Likewise, according to elementary magnetostatic theory, the line’s induc-

tance per unit length takes the form

L = µ0
d

w
, (7.68)

where µ0 = 4π× 10−7 N A−2 is the magnetic permeability of free space. Thus,

the phase velocity of a signal propagating down the line is

v =
1√
LC

=
1√
ǫ0µ0

= 2.998× 108 m s−1, (7.69)

which, of course, is the velocity of light in vacuum [see Equation (7.113)].

Furthermore, the impedance of the line is

Z =

√

L
C =

d

w
Z0, (7.70)

where the quantity

Z0 =

√

µ0

ǫ0

= 376.73Ω (7.71)

is known as the impedance of free space.

7.6 Reflection and Transmission at Boundaries

Consider two uniform semi-infinite strings which run along the x-axis, and

are tied together at x = 0. Let the first string be of density per unit length

ρ1, and occupy the region x < 0, and let the second string be of density per

unit length ρ2, and occupy the region x > 0. Now, the tensions in the two

strings must be equal, otherwise the string interface would not be in force

balance in the x-direction. So, let T be the common tension. Suppose that a

transverse wave of angular frequency ω is launched from a wave source at

x = −∞, and propagates towards the interface. Assuming that ρ1 6= ρ2, we
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would expect the wave incident on the interface to be partially reflected, and

partially transmitted. Of course, the frequencies of the incident, reflected,

and transmitted waves are all the same, since this property of the waves

is ultimately determined by the oscillation frequency of the wave source.

Hence, in the region x < 0, the wave displacement takes the form

y(x, t) = Ai cos(k1x−ωt− φi) +Ar cos(k1x+ωt− φr). (7.72)

In other words, the displacement is a linear superposition of an incident

wave and a reflected wave. The incident wave propagates in the positive

x-direction, and is of amplitude Ai, wavenumber k1 = ω/v1, and phase

angle φi. The reflected wave propagates in the negative x-direction, and

is of amplitude Ar, wavenumber k1 = ω/v1, and phase angle φr. Here,

v1 =
√

T/ρ1 is the phase velocity of traveling waves on the first string. In

the region x > 0, the wave displacement takes the form

y(x, t) = At cos(k2x−ωt− φt). (7.73)

In other words, the displacement is solely due to a transmitted wave which

propagates in the positive x-direction, and is of amplitude At, wavenumber

k2 = ω/v2, and phase angle φt. Here, v2 =
√

T/ρ2 is the phase velocity of

traveling waves on the second string.

Let us now consider the matching conditions at the interface between

the two strings: i.e., at x = 0. Firstly, since the two strings are tied together

at x = 0, their transverse displacements at this point must be equal to one

another. In other words,

y(0−, t) = y(0+, t), (7.74)

or

Ai cos(ωt+ φi) +Ar cos(ωt− φr) = At cos(ωt+ φt). (7.75)

The only way in which the above equation can be satisfied for all values of

t is if φi = −φr = φt. This being the case, the common cos(ωt+φi) factor

cancels out, and we are left with

Ai +Ar = At. (7.76)

Secondly, since the two strings lack an energy dissipation mechanism, the

energy flux into the interface must match that out of the interface. In other

words,
1

2
ω2Z1 (A2

i −A2
r ) =

1

2
ω2Z2A

2
t , (7.77)
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where Z1 =
√
ρ1 T and Z2 =

√
ρ2 T are the impedances of the first and

second strings, respectively. The above expression reduces to

Z1 (Ai +Ar) (Ai −Ar) = Z2A
2
t , (7.78)

which, when combined with Equation (7.76), yields

Z1 (Ai −Ar) = Z2At. (7.79)

Equations (7.76) and (7.79) can be solved to give

Ar =

(

Z1 − Z2

Z1 + Z2

)

Ai, (7.80)

At =

(

2Z1

Z1 + Z2

)

Ai. (7.81)

The coefficient of reflection, R, is defined as the ratio of the reflected to the

incident energy flux: i.e.,

R =

(

Ar

Ai

)2

=

(

Z1 − Z2

Z1 + Z2

)2

. (7.82)

The coefficient of transmission, T , is defined as the ratio of the transmitted to

the incident energy flux: i.e.,

T =
Z2

Z1

(

At

Ai

)2

=
4Z1Z2

(Z1 + Z2)2
. (7.83)

Note that

R+ T = 1 : (7.84)

i.e., any incident wave energy which is not reflected is transmitted.

Suppose that the density per unit length of the second string, ρ2, tends

to infinity, so that Z2 =
√
ρ2 T → ∞. It follows from (7.80) and (7.81)

that Ar = −Ai and At = 0. Likewise, (7.82) and (7.83) yield R = 1 and

T = 0. Hence, the interface between the two strings is stationary (since it

oscillates with amplitude At), and there is no transmitted energy. In other

words, the second string acts exactly like a fixed boundary. It follows that

when a transverse wave on a string is incident on a fixed boundary then

it is perfectly reflected with a phase shift of π: i.e., Ar = −Ai. Thus, the

resultant wave displacement on the string becomes

y(x, t) = Ai cos(k1x−ωt− φi) −Ai cos(k1x+ωt+ φi)

= 2Ai sin(k1x) sin(ωt+ φi), (7.85)
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where use has been made of the trigonometric identity cosa − cosb ≡
2 sin[(a + b)/2] sin[(b − a)/2]. We conclude that the incident and reflected

waves interfere in such a manner as to produce a standing wave with a node

at the fixed boundary.

Suppose that the density per unit length of the second string, ρ2, tends

to zero, so that Z2 =
√
ρ2 T → 0. It follows from (7.80) and (7.81) that

Ar = Ai and At = 2Ai. Likewise, (7.82) and (7.83) yield R = 1 and T = 0.

Hence, the interface between the two strings oscillates at twice the ampli-

tude of the incident wave (i.e., the interface is a point of maximal amplitude

oscillation), and there is no transmitted energy. In other words, the second

string acts exactly like a free boundary. It follows that when a transverse

wave on a string is incident on a free boundary then it is perfectly reflected

with no phase shift: i.e., Ar = Ai. Thus, the resultant wave displacement

on the string becomes

y(x, t) = Ai cos(k1x−ωt− φi) +Ai cos(k1x+ωt+ φi)

= 2Ai cos(k1x) cos(ωt+ φi), (7.86)

where use has been made of the trigonometric identity cosa + cosb ≡
2 cos[(a+ b)/2] cos[(a− b)/2]. We conclude that the incident and reflected

waves interfere in such a manner as to produce a standing wave with an

anti-node at the free boundary.

Suppose that two strings of mass per unit length ρ1 and ρ2 are separated

by a short section of string of mass per unit length ρ3. Let all three strings

have the common tension T . Suppose that the first and second strings oc-

cupy the regions x < 0 and x > a, respectively. Thus, the middle string

occupies the region 0 ≤ x ≤ a. Moreover, the interface between the first

and middle strings is at x = 0, and the interface between the middle and

second strings is at x = a. Suppose that a wave of angular frequency ω is

launched from a wave source at x = −∞, and propagates towards the two

interfaces. We would expect this wave to be partially reflected and partially

transmitted at the first interface (x = 0), and the resulting transmitted wave

to then be partially reflected and partially transmitted at the second inter-

face (x = a). Thus, we can write the wave displacement in the region x < 0

as

y(x, t) = Ai cos(k1x−ωt) +Ar cos(k1x+ωt), (7.87)

where Ai is the amplitude of the incident wave, Ar is the amplitude of the

reflected wave, and k1 = ω/
√

T/ρ1. Here, the phase angles of the two

waves have been chosen so as to facilitate the matching process at x = 0.
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The wave displacement in the region x > a takes the form

y(x, t) = At cos(k2x−ωt− φt), (7.88)

whereAt is the amplitude of the final transmitted wave, and k2 = ω/
√

T/ρ2.

Finally, the wave displacement in the region 0 ≤ x ≤ a is written

y(x, t) = A+ cos(k3x−ωt) +A− cos(k3x+ωt), (7.89)

where A+ and A− are the amplitudes of the right and left moving waves

on the middle string, respectively, and k3 = ω/
√

T/ρ3. Continuity of the

transverse displacement at x = 0 yields

Ai +Ar = A+ +A−, (7.90)

where a common factor cos(ωt) has cancelled out. Continuity of the energy

flux at x = 0 gives

Z1 (A2
i −A2

r ) = Z3 (A2
+ −A2

−), (7.91)

so the previous two expressions can be combined to produce

Z1 (Ai −Ar) = Z3 (A+ −A−). (7.92)

Continuity of the transverse displacement at y = a yields

A+ cos(k3a−ωt)+A− cos(k3a+ωt) = At cos(k2a−ωt−φt). (7.93)

Suppose that the length of the middle string is one quarter of a wavelength:

i.e., k3a = π/2. Furthermore, let φt = k2a+π/2. It follows that cos(k3a−

ωt) = sin(ωt), cos(k3a + ωt) = − sin(ωt), and cos(k2a − ωt − φt) =

sin(ωt). Thus, canceling out a common factor sin(ωt), the above expres-

sion yields

A+ −A− = At. (7.94)

Continuity of the energy flux at x = a gives

Z3 (A2
+ −A2

−) = Z2A
2
t . (7.95)

so the previous two equations can be combined to generate

Z3 (A+ +A−) = Z2At. (7.96)

Equations (7.90) and (7.96) yield

Ai +Ar =
Z2

Z3

At, (7.97)
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whereas Equations (7.92) and (7.94) give

Ai −Ar =
Z3

Z1

At, (7.98)

so, combining the previous two expression, we obtain

Ar =

(

Z1Z2 − Z2
3

Z1Z2 + Z2
3

)

Ai, (7.99)

At =

(

2Z1Z3

Z1Z2 + Z2
3

)

Ai. (7.100)

Finally, the overall coefficient of reflection is

R =

(

Ar

Ai

)2

=

(

Z1Z2 − Z2
3

Z1Z2 + Z2
3

)2

, (7.101)

whereas the overall coefficient of transmission becomes

T =
Z2

Z1

(

At

Ai

)2

=
4Z1Z2Z

2
3

(Z1Z2 + Z2
3)2

= 1− R. (7.102)

Now, suppose that the impedance of the middle string is the geometric mean

of the impedances of the two outer strings: i.e., Z3 =
√
Z1Z2. In this case,

it is clear, from the above two equations, that R = 0 and T = 1. In other

words, there is no reflection of the incident wave, and all of the incident

energy ends up being transmitted across the middle string from the leftmost

to the rightmost string. Thus, if we wish to transmit transverse wave energy

from a string of impedance Z1 to a string of impedance Z2 (where Z2 6= Z1)

in the most efficient manner possible—i.e, with no reflection of the incident

energy flux—then we can do this by connecting the two strings via a short

section of string whose length is one quarter of a wavelength, and whose

impedance is
√
Z1Z2. This procedure is known as impedance matching.

It should be reasonably clear that the above analysis of the reflection and

transmission of transverse waves at a boundary between two strings is also

applicable to the reflection and transmission of other types of wave incident

on a boundary between two media of differing impedances. For example,

consider a transmission line, such as a co-axial cable. Suppose that the line

occupies the region x < 0, and is terminated (at x = 0) by a load resistor of

resistance RL. Such a resistor might represent a radio antenna (which acts

just like a resistor in an electrical circuit, except that the dissipated energy
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is radiated, rather than being converted into heat energy). Suppose that a

signal of angular frequency ω is sent down the line from a wave source at

x = −∞. The current and voltage on the line can be written

I(x, t) = Ii cos(k x−ωt) + Ir cos(k x+ωt), (7.103)

V(x, t) = IiZ cos(k x−ωt) − Z Ir cos(k x+ωt), (7.104)

where Ii is the amplitude of the incident signal, Ir the amplitude of the

signal reflected by the load, Z the characteristic impedance of the line, and

k = ω/v. Here, v is the characteristic phase velocity with which signals

propagate down the line. See Section 7.5. Now, the resistor obeys Ohm’s

law, which yields

V(0, t) = I(0, t)RL. (7.105)

It follows, from the three previous equations, that

Ir =

(

Z− RL

Z+ RL

)

Ii. (7.106)

Hence, the coefficient of reflection, which is the ratio of the power reflected

by the load to the power sent down the line, is

R =

(

Ir

Ii

)2

=

(

Z− RL

Z+ RL

)2

. (7.107)

Furthermore, the coefficient of transmission, which is the ratio of the power

absorbed by the load to the power sent down the line, takes the form

T = 1− R =
4ZRL

(Z+ RL)2
. (7.108)

It can be seen, by comparison with Equations (7.82) and (7.83), that the

load terminating the line acts just like another transmission line of imped-

ance RL. Moreover, it is clear that power can only be efficiently sent down a

transmission line, and transferred to a terminating load, when the impedan-

ce of the line matches the effective impedance of the load (which, in this

case, is the same as the resistance of the load). In other words, when Z = RL

there is no reflection of the signal sent down the line (i.e., R = 0), and all

of the signal energy is therefore absorbed by the load (i.e., T = 1). As

an example, a half-wave antenna (i.e., an antenna whose length is half the

wavelength of the emitted radiation) has a characteristic impedance of 73Ω.

Hence, a transmission line used to feed energy into such an antenna should
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also have a characteristic impedance of 73Ω. Suppose, however, that we en-

counter a situation in which the impedance of a transmission line, Z1, does

not match that of its terminating load, Z2. Can anything be done to avoid

reflection of the signal sent down the line? It turns out, by analogy with the

analysis presented above, that if the line is connected to the load via a short

section of transmission line whose length is one quarter of the wavelength of

the signal, and whose characteristic impedance is Z3 =
√
Z1Z2, then there

is no reflection of the signal: i.e., all of the signal power is absorbed by the

load. A short section of transmission line used in this manner is known as a

quarter wave transformer.

7.7 Electromagnetic Waves

Consider a plane electromagnetic wave propagating through a vacuum in the

z-direction. Electromagnetic waves are, incidentally, the only commonly oc-

curring waves which do not require a medium through which to propagate.

Suppose that the wave is polarized in the x-direction: i.e., its electric com-

ponent oscillates in the x-direction. It follows that the magnetic component

of the wave oscillates in the y-direction. According to standard electromag-

netic theory, the wave is described by the following pair of coupled partial

differential equations:

∂Ex

∂t
= −

1

ǫ0

∂Hy

∂z
, (7.109)

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
, (7.110)

where Ex(z, t) is the electric field-strength, and Hy(z, t) is the magnetic in-

tensity (i.e., the magnetic field-strength divided by µ0). Observe that Equa-

tions (7.109) and (7.110), which govern the propagation of electromagnetic

waves through a vacuum, are analogous to Equations (7.53) and (7.54),

which govern the propagation of electromagnetic signals down a transmis-

sion line. In particular, Ex has units of voltage over length, Hy has units of

current over length, ǫ0 has units of capacitance per unit length, and µ0 has

units of inductance per unit length.

Equations (7.109) and (7.110) can be combined to give

∂2Ex

∂t2
=

1

ǫ0µ0

∂2Ex

∂z2
, (7.111)

∂2Hy

∂t2
=

1

ǫ0µ0

∂2Hy

∂z2
. (7.112)



Traveling Waves 123

It follows that the electric and the magnetic components of an electromag-

netic wave propagating through a vacuum both separately satisfy a wave

equation of the form (7.1). Furthermore, the phase velocity of the wave is

clearly

c =
1√
ǫ0µ0

= 2.998× 108 m s−1. (7.113)

Let us search for a traveling wave solution of (7.109) and (7.110), prop-

agating in the positive z-direction, whose electric component has the form

Ex(z, t) = E0 cos(k z−ωt− φ). (7.114)

As is easily demonstrated, this is a valid solution provided that ω = k c.

According to (7.109), the magnetic component of the wave is written

Hy(z, t) = Z−1E0 cos(k z−ωt− φ), (7.115)

where

Z = Z0 ≡
√

µ0

ǫ0

, (7.116)

and Z0 is the impedance of free space [see Equation (7.71)]. Thus, the electric

and magnetic components of an electromagnetic wave propagating through

a vacuum are mutually perpendicular, and also perpendicular to the direction

of propagation. Moreover, the two components oscillate in phase (i.e, they

have simultaneous maxima and zeros), and the amplitude of the magnetic

component is that of the electric component divided by the impedance of

free space.

Multiplying (7.109) by ǫ0Ex, (7.110) by µ0Hy, and adding the two re-

sulting expressions, we obtain the energy conservation equation

∂E
∂t

+
∂I
∂z

= 0, (7.117)

where

E =
1

2

(

ǫ0E
2
x + µ0H

2
y

)

(7.118)

is the electromagnetic energy per unit volume of the wave, whereas

I = ExHy (7.119)

is the wave electromagnetic energy flux (i.e., power per unit area) in the

positive z-direction. The mean energy flux associated with the z-directed

electromagnetic wave specified in Equations (7.114) and (7.115) is thus

〈I〉 =
1

2

E2
0

Z
. (7.120)
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For a similar wave propagating in the negative z-direction, it is easily demon-

strated that

Ex(z, t) = E0 cos(k z+ωt− φ), (7.121)

Hy(z, t) = −Z−1E0 cos(k z+ωt− φ), (7.122)

and

〈I〉 = −
1

2

E2
0

Z
. (7.123)

Consider a plane electromagnetic wave, polarized in the x-direction,

which propagates in the z-direction through a transparent dielectric medium,

such as glass or water. As is well known, the electric component of the wave

causes the neutral molecules making up the medium to polarize: i.e., it

causes a small separation to develop between the mean positions of the pos-

itively and negatively charged constituents of the molecules (i.e., the atomic

nuclii and the electrons). (Incidentally, it is easily shown that the magnetic

component of the wave has a negligible influence on the molecules, pro-

vided that the wave amplitude is sufficiently small that the wave electric

field does not cause the electrons and nuclii to move with relativistic veloc-

ities.) Now, if the mean position of the positively charged constituents of

a given molecule, of net charge +q, develops a vector displacement d with

respect to the mean position of the negatively charged constituents, of net

charge −q, in response to a wave electric field E then the associated electric

dipole moment is p = qd, where d is generally parallel to E. Furthermore, if

there are N such molecules per unit volume then the dipole moment per unit

volume is written P = Nqd. Now, in a conventional dielectric medium,

P = ǫ0 (ǫ− 1) E, (7.124)

where ǫ > 1 is a dimensionless quantity, known as the relative dielectric

constant, which is a property of the medium in question. In the presence of

a dielectric medium, Equations (7.109) and (7.110) generalize to give

∂Ex

∂t
= −

1

ǫ0

(

∂Px

∂t
+
∂Hy

∂z

)

, (7.125)

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
. (7.126)

When combined with Equation (7.124), these expressions yield

∂Ex

∂t
= −

1

ǫ ǫ0

∂Hy

∂z
, (7.127)

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
. (7.128)
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It can be seen that the above equations are just like the corresponding vac-

uum equations, (7.109) and (7.110), except that ǫ0 has been replaced by

ǫ ǫ0. It immediately follows that the phase velocity of an electromagnetic

wave propagating through a dielectric medium is

v =
1√

ǫ ǫ0µ0

=
c

n
, (7.129)

where c = 1/
√
ǫ0µ0 is the velocity of light in vacuum, and the quantity

n =
√
ǫ (7.130)

is known as the refractive index of the medium. Thus, an electromagnetic

wave propagating through a transparent dielectric medium does so at a

phase velocity which is less than the velocity of light in vacuum by a fac-

tor n (where n > 1). Furthermore, the impedance of a transparent dielectric

medium becomes

Z =

√

µ0

ǫ ǫ0

=
Z0

n
, (7.131)

where Z0 is the impedance of free space.

Suppose that the plane z = 0 forms the boundary between two trans-

parent dielectric media of refractive indices n1 and n2. Let the first medium

occupy the region z < 0, and the second the region z > 0. Suppose that a

plane electromagnetic wave, polarized in the x-direction, and propagating

in the positive z-direction, is launched toward the boundary from a wave

source of angular frequency ω situated at z = −∞. Of course, we expect

the wave incident on the boundary to be partly reflected, and partly trans-

mitted. The wave electric and magnetic fields in the region z < 0 are written

Ex(z, t) = Ei cos(k1 z−ωt) + Er cos(k1 z+ωt), (7.132)

Hy(z, t) = Z−1
1 Ei cos(k1 z−ωt) − Z−1

1 Er cos(k1 z+ωt),

(7.133)

where Ei is the amplitude of (the electric component of) the incident wave,

Er the amplitude of the reflected wave, k1 = n1ω/c, and Z1 = Z0/n1. The

wave electric and magnetic fields in the region z > 0 take the form

Ex(z, t) = Et cos(k2 z−ωt), (7.134)

Hy(z, t) = Z−1
2 Et cos(k2 z−ωt), (7.135)

where Et is the amplitude of the transmitted wave, k2 = n2ω/c, and

Z2 = Z0/n2. According to standard electromagnetic theory, the appropriate
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matching conditions at the boundary (z = 0) are simply that Ex and Hy both

be continuous. Thus, continuity of Ex yields

Ei + Er = Et, (7.136)

whereas continuity of Hy gives

n1 (Ei − Er) = n2Et, (7.137)

since Z−1 ∝ n. It follows that

Er =

(

n1 − n2

n1 + n2

)

Ei, (7.138)

Et =

(

2n1

n1 + n2

)

Ei. (7.139)

The coefficient of reflection, R, is defined as the ratio of the reflected to the

incident energy flux, so that

R =

(

Er

Ei

)2

=

(

n1 − n2

n1 + n2

)2

. (7.140)

Likewise, the coefficient of transmission, T , is the ratio of the transmitted to

the incident energy flux, so that

T =
Z−1

2

Z−1
1

(

Et

Ei

)2

=
n2

n1

(

Et

Ei

)2

=
4n1n2

(n1 + n2)2
= 1− R. (7.141)

It can be seen, first of all, that if n1 = n2 then Er = 0 and Et = Ei. In

other words, if the two media have the same indices of refraction then there

is no reflection at the boundary between them, and the transmitted wave is

consequently equal in amplitude to the incident wave. On the other hand,

if n1 6= n2 then there is always some reflection at the boundary. Indeed,

the amplitude of the reflected wave is roughly proportional to the difference

between n1 and n2. This has important practical consequences. We can only

see a clean pane of glass in a window because some of the light incident on

an air/glass boundary is reflected, due to the different refractive indicies of

air and glass. As is well known, it is a lot more difficult to see glass when

it is submerged in water. This is because the refractive indices of glass and

water are quite similar, and so there is very little reflection of light incident

on a water/glass boundary.

According to Equation (7.138), Er/Ei < 0 when n2 > n1. The negative

sign indicates a π radian phase shift of the (electric component of the) re-

flected wave, with respect to the incident wave. We conclude that there is a
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π radian phase shift of the reflected wave, relative to the incident wave, on

reflection from a boundary with a medium of greater refractive index. Con-

versely, there is no phase shift on reflection from a boundary with a medium

of lesser refractive index.

Note that Equations (7.138)–(7.141) are analogous to Equations (7.80)–

(7.83), with refractive index playing the role of impedance. This suggests,

by analogy with earlier analysis, that we can prevent reflection of an elec-

tromagnetic wave normally incident at a boundary between two transparent

dielectric media of different refractive indices by separating the media by a

thin transparent layer whose thickness is one quarter of a wavelength, and

whose refractive index is the geometric mean of the refractive indices of

the two media. This is the physical principle behind the non-reflective lens

coatings used in high-quality optical instruments.

7.8 Exercises

1. Write the traveling wave ψ(x, t) = A cos(k x−ωt) as a superposition of two
standing waves. Write the standing wave ψ(x, t) = A cos(k x) cos(ωt) as
a superposition of two traveling waves propagating in opposite directions.
Show that the following superposition of traveling waves,

ψ(x, t) = A cos(k x−ωt) +AR cos(k x+ωt),

can be written as the following superposition of standing waves,

ψ(x, t) = A (1+ R) cos(k x) cos(ωt) +A (1− R) sin(k x) sin(ωt).

2. Demonstrate that for a transverse traveling wave propagating on a stretched
string

〈I〉 = v 〈E〉,
where 〈I〉 is the mean energy flux along the string due to the wave, 〈E〉 is the
mean wave energy per unit length, and v is the phase velocity of the wave.
Show that the same relation holds for a longitudinal traveling wave in an
elastic solid.

3. A transmission line of characteristic impedance Z occupies the region x < 0,
and is terminated at x = 0. Suppose that the current carried by the line takes
the form

I(x, t) = Ii cos(k x−ωt) + Ir cos(k x+ωt)

for x ≤ 0, where Ii is the amplitude of the incident signal, and Ir the am-
plitude of the signal reflected at the end of the line. Let the end of the line
be open circuited, such that the line is effectively terminated by an infinite
resistance. Find the relationship between Ir and Ii. Show that the current
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and voltage oscillate π/2 radians out of phase everywhere along the line.
Demonstrate that there is zero net flux of electromagnetic energy along the
line.

4. Suppose that the transmission line in the previous exercise is short circuited,
such that the line is effectively terminated by a negligible resistance. Find the
relationship between Ir and Ii. Show that the current and voltage oscillate
π/2 radians out of phase everywhere along the line. Demonstrate that there
is zero net flux of electromagnetic energy along the line.

5. Suppose that the transmission line of Exercise 3 is terminated by an inductor
of inductance L, such that

V(0, t) = L
∂I(0, t)

∂t
.

Find the relationship between Ir and Ii. Obtain expressions for the cur-
rent, I(x, t), and the voltage, V(x, t), along the line (which only involve Ii).
Demonstrate that the incident and the reflected wave both have zero net
associated energy flux.

6. Suppose that the transmission line of Exercise 3 is terminated by a capacitor
of capacitance C. Find the relationship between Ir and Ii. Obtain expressions
for the current, I(x, t), and the voltage, V(x, t), along the line (which only
involve Ii). Demonstrate that the incident and the reflected wave both have
zero net associated energy flux.

7. A lossy transmission line has a resistance per unit length R, in addition to
an inductance per unit length L, and a capacitance per unit length C. The
resistance can be considered to be in series with the inductance. Demonstrate
that the Telegrapher’s equations generalize to

∂V

∂t
= −

1

C
∂I

∂x
,

∂I

∂t
= −

R
L I−

1

L
∂V

∂x
,

where I(x, t) and V(x, t) are the voltage and current along the line. Derive
an energy conservation equation of the form

∂E
∂t

+
∂I
∂x

= −R I2,

where E is the energy per unit length along the line, and I the energy flux.
Give expressions for E and I. What does the right-hand side of the above
equation represent? Show that the current obeys the wave-diffusion equation

∂2I

∂t2
+

R
L
∂I

∂t
=

1

LC
∂2I

∂x2
.
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Consider the low resistance, high frequency limit ω ≫ R/L. Demonstrate
that a signal propagating down the line varies as

I(x, t) ≃ I0 cos[k (x− v t)] e−x/δ,

V(x, t) ≃ Z I0 cos[k (x− v t)] e−x/δ,

where k = ω/v, v = 1/
√
LC, δ = 2Z/R, and Z =

√

L/C. Show that k δ≪ 1:
i.e., that the decay length of the signal is much longer than its wavelength.
Estimate the maximum useful length of a low resistance, high frequency,
lossy transmission line.

8. Suppose that a transmission line consisting of two uniform parallel conduct-
ing strips of width w and perpendicular distance apart d, where d ≪ w,
is terminated by a strip of material of uniform resistance per square meter
√

µ0/ǫ0 = 376.73Ω. Such material is known as spacecloth. Demonstrate
that a signal sent down the line is completely absorbed, with no reflection,
by the spacecloth. Incidentally, the resistance of a uniform strip of material
is proportional to its length, and inversely proportional to its cross-sectional
area.

9. At normal incidence, the mean radiant power from the Sun illuminating one
square meter of the Earth’s surface is 1.35 kW. Show that the amplitude
of the electric component of solar electromagnetic radiation at the Earth’s
surface is 1010V m−1. Demonstrate that the corresponding amplitude of the
magnetic component is 2.7A m−1.

10. According to Einstein’s famous formula, E = mc2, where E is energy, m is
mass, and c is the velocity of light in vacuum. This formula implies that
anything that possesses energy also has an effective mass. Use this idea to
show that an electromagnetic wave of mean intensity (energy per unit time
per unit area) 〈I〉 has an associated mean pressure (momentum per unit time
per unit area) 〈P〉 = 〈E〉/c. Hence, estimate the pressure due to sunlight at
the Earth’s surface.

11. A glass lens is coated with a non-reflecting coating of thickness one quarter
of a wavelength (in the coating) of light whose wavelength in air is λ0. The
index of refraction of the glass is n, and that of the coating is

√
n. The

refractive index of air can be taken to be unity. Show that the coefficient of
reflection for light normally incident on the lens from air is

R = 4

(

1−
√
n

1+
√
n

)2

sin2

(

π

2

[

λ0

λ
− 1

])

,

where λ is the wavelength of the incident light in air. Assume that n = 1.5,
and that this value remains approximately constant for light whose wave-
lengths lie in the visible band. Suppose that λ0 = 550nm, which corresponds
to green light. It follows that R = 0 for green light. What is R for blue light of
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wavelength λ = 450nm, and for red light of wavelength 650nm? Comment
on how effective the coating is at suppressing unwanted reflection of visible
light incident on the lens.

12. A glass lens is coated with a non-reflective coating whose thickness is one
quarter of a wavelength (in the coating) of light whose frequency is f0.
Demonstrate that the coating also suppresses reflection from light whose fre-
quency is 3 f0, 5 f0, etc., assuming that the refractive index of the coating and
the glass is frequency independent.

13. An plane electromagnetic wave, polarized in the x-direction, and propagating
in the z-direction though a conducting medium of conductivity σ is governed
by

∂Ex

∂t
= −

σ

ǫ0

Ex −
1

ǫ0

∂Hy

∂z
,

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
,

where Ex(z, t) and Hy(z, t) are the electric and magnetic components of the
wave. Derive an energy conservation equation of the form

∂E
∂t

+
∂I
∂x

= −σE 2
x ,

where E is the electromagnetic energy per unit volume, and I the electro-
magnetic energy flux. Give expressions for E and I. What does the right-
hand side of the above equation represent? Demonstrate that Ex obeys the
wave-diffusion equation

∂2Ex

∂t2
+
σ

ǫ0

∂Ex

∂t
= c2 ∂

2Ex

∂z2
,

where c = 1/
√
ǫ0 µ0. In the high frequency, low conductivity limit ω ≫

σ/ǫ0, show that the above equation has the approximate solution

Ex(z, t) ≃ E0 cos[k (z− c t)] e−z/δ,

where k = ω/c, δ = 2/(Z0 σ), and Z0 =
√

µ0/ǫ0. What is the correspond-
ing solution for Hy(z, t)? Demonstrate that k δ ≪ 1: i.e., that the wave
penetrates many wavelengths into the medium. Estimate how far a high fre-
quency electromagnetic wave penetrates into a low conductivity conducting
medium.
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8 Wave Pulses

8.1 Fourier Transforms

Consider a function F(x) which is periodic in x with period L. In other words,

F(x+ L) = F(x) (8.1)

for all x. Recall, from Section 6.4, that we can represent such a function as

a Fourier series: i.e.,

F(x) =
∑

n=1,∞

[Cn cos(nδk x) + Sn sin(nδk x)] , (8.2)

where

δk =
2π

L
. (8.3)

[Note that we have neglected the n = 0 term in (8.2), for the sake of con-

venience.] The expression (8.2) automatically satisfies the periodicity con-

straint (8.1), since cos(θ + n2π) = cos θ and sin(θ + n2π) = sin θ for all θ

and n (with the proviso that n is integer). The so-called Fourier coefficients,

Cn and Sn, appearing in (8.2), can be determined from the function F(x) by

means of the following easily demonstrated results (see Exercise 1):

2

L

∫L/2

−L/2

cos(nδk x) cos(n ′ δk x)dx = δn,n′ , (8.4)

2

L

∫L/2

−L/2

sin(nδk x) sin(n ′ δk x)dx = δn,n′ , (8.5)

2

L

∫L/2

−L/2

cos(nδk x) sin(n ′ δk x)dx = 0, (8.6)

where n, n ′ are positive integers. Here, δn,n′ = 1 if n = n ′, and δn,n′ = 0

otherwise. In fact (see Exercise 1),

Cn =
2

L

∫L/2

−L/2

F(x) cos(nδk x)dx, (8.7)

Sn =
2

L

∫L/2

−L/2

F(x) sin(nδk x)dx. (8.8)
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Note, finally, that any periodic function of x can be represented as a Fourier

series.

Suppose, however, that we are dealing with a function F(x) which is not

periodic in x. Actually, we can think of such a function as one which is

periodic in x with a period L that tends to infinity. Does this mean that we

can still represent F(x) as a Fourier series? Consider what happens to the

series (8.2) in the limit that L → ∞, or, equivalently, δk → 0. Now, the series

is basically a weighted sum of sinusoidal functions whose wavenumbers take

the quantized values kn = nδk. Moreover, as δk → 0, these values become

more and more closely spaced. In fact, we can write

F(x) =
∑

n=1,∞

Cn

δk
cos(nδk x) δk+

∑

n=1,∞

Sn

δk
sin(nδk x) δk. (8.9)

In the continuum limit, δk → 0, the summations in the above expression

become integrals, and we obtain

F(x) =

∫∞

−∞
C(k) cos(k x)dk+

∫∞

−∞
S(k) sin(k x)dk, (8.10)

where k = nδk, C(k) = C(−k) = Cn/(2 δk), and S(k) = −S(−k) =

Sn/(2 δk). Thus, for the case of an aperiodic function, the Fourier series

(8.2) morphs into the so-called Fourier transform (8.10). This transform

can be inverted using the continuum limit (i.e., the limit δk → 0) of Equa-

tions (8.7) and (8.8), which are easily be shown to be

C(k) =
1

2π

∫∞

−∞
F(x) cos(k x)dx, (8.11)

S(k) =
1

2π

∫∞

−∞
F(x) sin(k x)dx. (8.12)

Incidentally, it is clear, from the above equations, that C(−k) = C(k) and

S(−k) = −S(k). The Fourier space (i.e., k-space) functions C(k) and S(k)

are known as the cosine Fourier transform and the sine Fourier transform of

the real space (i.e., x-space) function F(x), respectively. Furthermore, since

we already know that any periodic function can be represented as a Fourier

series, it seems plausible that any aperiodic function can be represented as

a Fourier transform. This is indeed the case. Note that Equations (8.10)–

(8.12) effectively enable us to represent a general function as a linear super-

position of sine and cosine functions. Let us now consider some examples.
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Figure 8.1: Fourier transform of a square-wave function.

Consider the square-wave function (see Figure 8.1)

F(x) =

{
1 |x| ≤ l/2
0 |x| > l/2

. (8.13)

Now, given that cos(−k x) = cos(k x) and sin(−k x) = − sin(k x), it is ap-

parent, from (8.11) and (8.12), that if F(x) is even in x, so that F(−x) =

F(x), then S(k) = 0, and if F(x) is odd in x, so that F(−x) = −F(x), then

C(k) = 0. Hence, since the square-wave function (8.13) is clearly even in

x, its sine Fourier transform is automatically zero. On the other hand, its

cosine Fourier transform takes the form

C(k) =
1

2π

∫ l/2

−l/2

cos(k x)dx =
l

2π

sin(k l/2)

k l/2
. (8.14)

Figure 8.1 shows the function F(x), together with its associated cosine trans-

form, C(k).

As a second example, consider the Gaussian function

F(x) = exp

(

−
x2

2 σ2
x

)

. (8.15)

As illustrated in Figure 8.2, this is a smoothly varying even function of x

which attains its peak value 1 at x = 0, and becomes completely negligible

when |x| >
∼
3 σx. Thus, σx is a measure of the “width” of the function in

real space. By symmetry, the sine Fourier transform of the above function is
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Figure 8.2: A Gaussian function.

zero. On the other hand, the cosine Fourier transform is easily shown to be

(see Exercise 2)

C(k) =
1

(2πσ2
k)1/2

exp

(

−
k2

2 σ2
k

)

, (8.16)

where

σk =
1

σx
. (8.17)

Note that this function is a Gaussian in Fourier space of characteristic width

σk = 1/σx. In fact, the Gaussian is the only mathematical function which

is its own Fourier transform. Now, the original function F(x) can be recon-

structed from its Fourier transform using

F(x) =

∫∞

−∞
C(k) cos(k x)dk. (8.18)

This reconstruction is simply a linear superposition of cosine waves of dif-

fering wavenumbers. Moreover, C(k) can be interpreted as the amplitude

of waves of wavenumber k within this superposition. The fact that C(k) is a

Gaussian of characteristic width σk = 1/σx [which means that C(k) is negli-

gible for |k| >
∼
3 σk] implies that in order to reconstruct a real space function

whose width in real space is approximately σx it is necessary to combine si-

nusoidal functions with a range of different wavenumbers which is approx-

imately σk = 1/σx in extent. To be slightly more exact, the real-space Gaus-

sian function F(x) falls to half of its peak value when |x| ≃
√

π/2σx. Hence,
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the full width at half maximum of the function is ∆x = 2
√

π/2σx =
√
2πσx.

Likewise, the full width at half maximum of the Fourier space Gaussian

function C(k) is ∆k =
√
2 πσk. Thus,

∆x∆k = 2π, (8.19)

since σkσx = 1. Thus, a function which is highly localized in real space

has a transform which is highly delocalized in Fourier space, and vice versa.

Note, finally, that (see Exercise 3)

∫∞

−∞

1

(2πσ2
k)1/2

exp

(

−
k2

2 σ2
k

)

dk = 1. (8.20)

In other words, a Gaussian function in real space, of unit height and char-

acteristic width σx, has a cosine Fourier transform which is a Gaussian in

Fourier space, of characteristic width σk = 1/σx, whose integral over all

k-space is unity.

Consider what happens to the above mentioned real space Gaussian, and

its Fourier transform, in the limit σx → ∞, or, equivalently, σk → 0. There

is no difficulty in seeing, from Equation (8.15), that

F(x) → 1. (8.21)

In other words, the real space Gaussian morphs into a function which takes

the constant value unity everywhere. The Fourier transform is more prob-

lematic. In the limit σk → 0, Equation (8.16) yields a k-space function

which is zero everywhere apart from k = 0 (since the function is negli-

gible for |k| >
∼
σk), where it is infinite [since the function takes the value

(2πσk)−1/2 at k = 0]. Moreover, according to Equation (8.20), the integral

of the function over all k remains unity. Thus, the Fourier transform of the

uniform function F(x) = 1 is a sort of integrable “spike” located at k = 0.

This strange function is known as the Dirac delta function, and is denoted

δ(k). Thus, one definition of a delta function is

δ(k) ≡ lim
σk→0

1

(2πσ2
k)1/2

exp

(

−
k2

2 σ2
k

)

. (8.22)

As has already been mentioned, δ(k) = 0 for k 6= 0, and δ(0) = ∞. More-

over, ∫∞

−∞
δ(k)dk = 1. (8.23)
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Consider the integral
∫∞

−∞
F(k) δ(k)dk, (8.24)

where F(k) is an arbitrary function. Because of the peculiar properties of the

delta function, the only contribution to the above integral comes from the

region in k-space in the immediate vicinity of k = 0. Furthermore, provided

F(k) is well-behaved in this region, we can write
∫∞

−∞
F(k) δ(k)dk =

∫∞

−∞
F(0) δ(k)dk = F(0)

∫∞

−∞
δ(k)dk = F(0), (8.25)

where use has been made of Equation (8.23).

A simple change of variables allows us to define δ(k − k ′), which is a

“spike” function centered on k = k ′. The above result can easily be general-

ized to give ∫∞

−∞
F(k) δ(k− k ′)dk = F(k ′), (8.26)

for all F(k). Indeed, this expression can be thought of as an alternative

definition of a delta function.

Now, we have seen that the delta function δ(k) is the cosine Fourier

transform of the uniform function F(x) = 1. It, thus, follows from (8.11)

that

δ(k) =
1

2π

∫∞

−∞
cos(k x)dx. (8.27)

This result represents yet another definition of the delta function. By sym-

metry, we also have

0 =
1

2π

∫∞

−∞
sin(k x)dx. (8.28)

It follows that

1

2π

∫∞

−∞
cos(k x) cos(k ′ x)dx =

1

4π

∫∞

−∞

{
cos

[

(k− k ′) x
]

+

cos
[

(k+ k ′) x
]
}
dx

=
1

2

[

δ(k− k ′) + δ(k+ k ′)
]

, (8.29)

where use has been made of (8.27) and a standard trigonometric identity.

Likewise (see Exercise 4),

1

2π

∫∞

−∞
sin(k x) sin(k ′ x)dx =

1

2

[

δ(k− k ′) − δ(k+ k ′)
]

, (8.30)
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1

2π

∫∞

−∞
cos(k x) sin(k ′ x)dx = 0. (8.31)

Incidentally, Equations (8.29)–(8.31) can be used to derive Equations (8.11)–

(8.12) directly from Equation (8.10) (see Exercise 5).

8.2 General Solution of the Wave Equation

Consider the one dimensional wave equation

∂2ψ

∂t2
= v2 ∂

2ψ

∂x2
, (8.32)

where ψ(x, t) is the wave amplitude, and v the characteristic phase velocity.

We have seen a number of particular solutions of this equation. For instance,

ψ(x, t) = A cos(k x−ωt− φ) (8.33)

represents a traveling wave of amplitude A, wavenumber k, angular fre-

quency ω, and phase angle φ, which propagates in the positive x-direction.

The above expression is a solution of the wave equation (8.32) provided

that it satisfies the dispersion relation

ω = k v : (8.34)

i.e., provided that the wave propagates with the fixed phase velocity v. We

can also write the solution (8.33) as

ψ(x, t) = C+ cos[k (x− v t)] + S+ sin[k (x− v t)], (8.35)

where C+ = A cosφ, S+ = A sinφ, and we have explicitly incorporated the

dispersion relation ω = k v into the solution. The above expression can be

regarded as the most general form for a traveling wave of wavenumber k

propagating in the positive x-direction. Likewise, the most general form for

a traveling wave of wavenumber k propagating in the negative x-direction

is

ψ(x, t) = C− cos[k (x+ v t)] + S− sin[k (x+ v t)]. (8.36)

Of course, we have also encountered standing wave solutions of (8.32).

However, as we have seen, these can be regarded as linear superpositions

of traveling waves, of equal amplitude and wavenumber, propagating in

opposite directions. In other words, standing waves are not fundamentally

different to traveling waves.
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Now, the wave equation (8.32) is linear. This suggests that its most

general solution can be written as a linear superposition of all of its valid

wavelike solutions. In the absence of specific boundary conditions, there is

no restriction on the possible wavenumbers of such solutions. Thus, it is

plausible that the most general solution of (8.32) can be written

ψ(x, t) =

∫∞

−∞
C+(k) cos[k (x− v t)]dk

+

∫∞

−∞
S+(k) sin[k (x− v t)]dk

+

∫∞

−∞
C−(k) cos[k (x+ v t)]dk

+

∫∞

−∞
S−(k) sin[k (x+ v t)]dk : (8.37)

i.e., as a linear superposition of traveling waves propagating to the right

(i.e., in the positive x-direction) and to the left. Here, C+(k) represents the

amplitude of right-propagating cosine waves of wavenumber k in this su-

perposition. Moreover, S+(k) represents the amplitude of right-propagating

sine waves of wavenumber k, C−(k) the amplitude of left-propagating co-

sine waves, and S−(k) the amplitude of left-propagating sine waves. Since

each of these waves is individually a solution of (8.32), we are guaranteed,

from the linear nature of this equation, that the above superposition is also

a solution.

But, how can we prove that (8.37) is the most general solution of the

wave equation (8.32)? Well, our understanding of Newtonian dynamics

tells us that if we know the initial wave amplitude ψ(x, 0), and its time

derivative ψ̇(x, 0), then this should constitute sufficient information to uniqu-

ely specify the solution of (8.32) at all subsequent times. Hence, if (8.37)

is the most general solution of (8.32) then it must be consistent with any

initial wave amplitude, and any initial wave velocity. In other words, given

any ψ(x, 0) and ψ̇(x, 0), we should be able to uniquely determine the func-

tions C+(k), S+(k), C−(k), and S−(k) appearing in (8.37). Let us see if this

is the case.

Now, from (8.37),

ψ(x, 0) =

∫∞

−∞
[C+(k) + C−(k)] cos(k x)dk

+

∫∞

−∞
[S+(k) + S−(k)] sin(k x)dk. (8.38)
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However, this is just a Fourier transform of the form (8.10). Moreover,

Equations (8.11) and (8.12) allow us to uniquely invert this transform. In

fact,

C+(k) + C−(k) =
1

2π

∫∞

−∞
ψ(x, 0) cos(k x)dx, (8.39)

S+(k) + S−(k) =
1

2π

∫∞

−∞
ψ(x, 0) sin(k x)dx. (8.40)

Equation (8.37) also yields

ψ̇(x, 0) =

∫∞

−∞
k v [C+(k) − C−(k)] sin(k x)dk

−

∫∞

−∞
k v [S+(k) − S−(k)] cos(k x)dk. (8.41)

This is, again, a Fourier transform which can be inverted to give

k v [C+(k) − C−(k)] =
1

2π

∫∞

−∞
ψ̇(x, 0) sin(k x)dx, (8.42)

k v [S−(k) − S+(k)] =
1

2π

∫∞

−∞
ψ̇(x, 0) cos(k x)dx. (8.43)

Hence,

C+(k) =
1

4π

[∫∞

−∞
ψ(x, 0) cos(k x)dx+

∫∞

−∞

ψ̇(x, 0)

k v
sin(k x)dx

]

,

C−(k) =
1

4π

[∫∞

−∞
ψ(x, 0) cos(k x)dx−

∫∞

−∞

ψ̇(x, 0)

k v
sin(k x)dx

]

,

S+(k) =
1

4π

[∫∞

−∞
ψ(x, 0) sin(k x)dx−

∫∞

−∞

ψ̇(x, 0)

k v
cos(k x)dx

]

,

S−(k) =
1

4π

[∫∞

−∞
ψ(x, 0) sin(k x)dx+

∫∞

−∞

ψ̇(x, 0)

k v
cos(k x)dx

]

.

(8.44)

It follows that we can indeed uniquely determine the functionsC+(k), C−(k),

S+(k), and S−(k), appearing in expression (8.37), for anyψ(x, 0) and ψ̇(x, 0).

This proves that (8.37) is the most general solution of the wave equation

(8.32).
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Let us examine our solution in more detail. Equation (8.37) can be

written (see Exercise 6)

ψ(x, t) = F(x− v t) +G(x+ v t), (8.45)

where

F(x) =

∫∞

−∞
[C+(k) cos(k x) + S+(k) sin(k x)]dk, (8.46)

G(x) =

∫∞

−∞
[C−(k) cos(k x) + S−(k) sin(k x)]dk. (8.47)

What does the expression (8.45) signify? Well, F(x− v t) represents a wave

disturbance of arbitrary shape which propagates in the positive x-direction,

at the fixed speed v, without changing shape. This should be clear, since a

point with a given amplitude on the wave, F(x − v t) = c, has an equation

of motion x − v t = F−1(c) = constant, and thus propagates in the positive

x-direction at the velocity v. Moreover, since all points on the wave propa-

gate in the same direction at the same velocity it follows that the wave does

not change shape as it moves. Of course, G(x + v t) represents a wave dis-

turbance of arbitrary shape which propagates in the negative x-direction, at

the fixed speed v, without changing shape. Thus, we conclude that the most

general solution to the wave equation (8.32) is a superposition of two wave

disturbances of arbitrary shapes which propagate in opposite directions, at

the fixed speed v, without changing shape. Such solutions are generally

termed wave pulses. So, what is the relationship between a general wave

pulse and the sinusoidal traveling wave solutions to the wave equation that

we found previously. Well, as is clear from Equations (8.46) and (8.47),

a wave pulse can be thought of as a superposition of sinusoidal traveling

waves propagating in the same direction as the pulse. Moreover, the ampli-

tude of cosine waves of wavenumber k in this superposition is simply equal

to the cosine Fourier transform of the pulse shape evaluated at wavenumber

k. Likewise, the amplitude of sine waves of wavenumber k in the superpo-

sition is equal to the sine Fourier transform of the pulse shape evaluated at

wavenumber k.

For instance, suppose that we have a triangular wave pulse of the form

(see Figure 8.3)

F(x) =

{
1− 2 |x|/l |x| ≤ l/2

0 |x| > l/2
. (8.48)
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Figure 8.3: Fourier transform of a triangular wave pulse.

The sine Fourier transform of this pulse shape is zero by symmetry. However,

the cosine Fourier transform is (see Exercise 7)

C(k) =
1

2π

∫∞

−∞
F(x) cos(k x)dx =

l

4π

sin2(k l/4)

(k l/4)2
. (8.49)

The functions F(x) and C(k) are shown in Figure 8.3. It follows that the

right-propagating triangular wave pulse

ψ(x, t) =

{
1− 2 |x− v t|/l |x− v t| ≤ l/2

0 |x− v t| > l/2
(8.50)

can be written as the following superposition of right-propagating cosine

waves:

ψ(x, t) =
1

4π

∫∞

−∞

sin2(k l/4)

(k l/4)2
cos[k (x− v t)] l dk. (8.51)

Likewise, the left-propagating triangular wave pulse

ψ(x, t) =

{
1− 2 |x+ v t|/l |x+ v t| ≤ l/2

0 |x+ v t| > l/2
(8.52)

becomes

ψ(x, t) =
1

4π

∫∞

−∞

sin2(k l/4)

(k l/4)2
cos[k (x+ v t)] l dk. (8.53)
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8.3 Bandwidth

It is possible to Fourier transform in time, as well as in space. Thus, a gen-

eral temporal waveform F(t) can be written as a superposition of sinusoidal

waveforms of various angular frequencies, ω: i.e.,

F(t) =

∫∞

−∞
C(ω) cos(ωt)dω+

∫∞

−∞
S(ω) sin(ωt)dω, (8.54)

where C(ω) and S(ω) are the temporal cosine and sine Fourier transforms

of the waveform, respectively. By analogy with Equations (8.10)–(8.12), we

can invert the above expression to give

C(ω) =
1

2π

∫∞

−∞
F(t) cos(ωt)dt, (8.55)

S(ω) =
1

2π

∫∞

−∞
F(t) sin(ωt)dt. (8.56)

These equations make it clear that C(−ω) = C(ω), and S(−ω) = −S(ω).

Moreover, it is apparent that if F(t) is an even function of t then S(ω) = 0,

but if it is an odd function then C(ω) = 0.

The current in the antenna of an amplitude-modulated (AM) radio trans-

mitter is driven by a voltage signal which oscillates sinusoidally at a fre-

quency, ω0, which is known as the carrier frequency. In fact, in commercial

(medium wave) AM radio, each station is assigned a single carrier frequency

which lies somewhere between about 500 kHz and 1600 kHz. However,

the voltage signal fed to the antenna does not have a constant amplitude.

Rather, it has a modulated amplitude which can be expressed, somewhat

schematically, as a Fourier series:

A(t) = A0 +
∑

n>0

An cos(ωn t− φn), (8.57)

where A(t) − A0 represents the information being transmitted. Typically,

this information is speech or music which is picked up by a microphone,

and converted into an electrical signal. Note that the constant amplitude

A0 is present even when the transmitter is transmitting no information. The

remaining terms in the above expression are due to the signal picked up by

the microphone. The modulation frequencies, ωn, are thus the frequencies

of audible sound waves: i.e., they are so-called audio frequencies lying be-

tween about 20 Hz and 20 kHz. Of course, this implies that the modulation

frequencies are much smaller than the carrier frequency: i.e., ωn ≪ ω0 for
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all n > 0. Furthermore, the modulation amplitudes An are all generally

smaller than the carrier amplitude A0.

The signal transmitted by an AM station, and received by an AM receiver,

is an amplitude modulated sinusoidal oscillation of the form

ψ(t) = A(t) cos(ω0 t)

= A0 cos(ω0 t) +
∑

n>0

An cos(ωn t− φn) cos(ω0 t), (8.58)

which, with the help of some standard trigonometric identities, can also be

written

ψ(t) = A0 cos(ω0 t) +
1

2

∑

n>0

An cos[(ω0 +ωn) t− φn)]

+
1

2

∑

n>0

An cos[(ω0 −ωn) t+ φn)]

= A0 cos(ω0 t) +
1

2

∑

n>0

An cosφn cos[(ω0 +ωn) t]

+
1

2

∑

n>0

An sinφn sin[(ω0 +ωn) t]

+
1

2

∑

n>0

An cosφn cos[(ω0 −ωn) t]

−
1

2

∑

n>0

An sinφn sin[(ω0 −ωn) t]. (8.59)

We can calculate the cosine and sine Fourier transforms of the signal,

C(ω) =
1

2π

∫∞

−∞
ψ(t) cos(ωt)dt, (8.60)

S(ω) =
1

2π

∫∞

−∞
ψ(t) sin(ωt)dt, (8.61)

by making use of the standard results [cf., (8.29)–(8.31)]

1

2π

∫∞

−∞
cos(ωt) cos(ω ′ t)dt =

1

2

[

δ(ω−ω ′) + δ(ω+ω ′)
]

,

(8.62)



144 OSCILLATIONS AND WAVES

1

2π

∫∞

−∞
sin(ωt) sin(ω ′ t)dt =

1

2

[

δ(ω−ω ′) − δ(ω+ω ′)
]

,

(8.63)

1

2π

∫∞

−∞
cos(ωt) sin(ω ′ t)dt = 0. (8.64)

It thus follows that

C(ω > 0) =
1

2
A0δ(ω−ω0) (8.65)

+
1

4

∑

n>0

An cosφn [δ(ω−ω0 −ωn) + δ(ω−ω0 +ωn)] ,

S(ω > 0) =
1

4

∑

n>0

An sinφn [δ(ω−ω0 −ωn) − δ(ω−ω0 +ωn)] .

(8.66)

Here, we have only shown the positive frequency components of C(ω) and

S(ω), since we know that C(−ω) = C(ω) and S(−ω) = −S(ω).

The AM frequency spectrum specified in Equations (8.65) and (8.66)

is shown, somewhat schematically, in Figure 8.4. The spectrum consists

of a series of delta function spikes. The largest spike corresponds to the

carrier frequency, ω0. However, this spike carries no information. Indeed,

the signal information is carried in so-called sidebands which are equally

spaced on either side of the carrier frequency. The upper sidebands corre-

spond to the frequencies ω0 +ωn, whereas the lower sidebands correspond

to the frequencies ω0 −ωn. Thus, in order for an AM radio signal to carry

all of the information present in audible sound, for which the appropriate

modulation frequencies, ωn, range from about 0 Hz to about 20 kHz, the

signal would have to consist of a superposition of sinusoidal oscillations

with frequencies which range from the carrier frequency minus 20 kHz to

the carrier frequency plus 20 kHz. In other words, the signal would have to

occupy a range of frequencies from ω0 −ωN to ω0 +ωN, where ωN is the

largest modulation frequency. This is an important result. An AM radio sig-

nal which only consists of a single frequency, such as the carrier frequency,

transmits no information. Only a signal which occupies a finite range of fre-

quencies, centered on the carrier frequency, is capable of transmitting useful

information. The difference between the highest and the lowest frequency

components of an AM radio signal, which is twice the maximum modula-

tion frequency, is called the bandwidth of the signal. Thus, to transmit all
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S(ω)

ω →

ω →

lower sideband

carrier frequency

upper sideband

C(ω)

Figure 8.4: Frequency spectrum of an AM radio signal.
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Figure 8.5: A digital bit transmitted over AM radio.

the information present in audible sound an AM signal would need to have

a bandwidth of 40 kHz. In fact, commercial AM radio signals are only al-

lowed to broadcast a bandwidth of 10 kHz, in order to maximize the number

of available stations. (Obviously, two different stations cannot broadcast in

frequency ranges which overlap.) This means that commercial AM radio

can only carry audible information in the range 0 to about 5 kHz. This is

perfectly adequate for ordinary speech, but only barely adequate for music.

Let us now consider how we might transmit a digital signal over AM

radio. Suppose that each data “bit” in the signal takes the form of a Gaus-

sian envelope, of characteristic duration σt, superimposed on a carrier wave

whose frequency is ω0: i.e.,

ψ(t) = exp

(

−
t2

2 σ2
t

)

cos(ω0 t). (8.67)

Of course, we must haveω0σt ≫ 1: i.e., the period of the carrier wave must

be much less than the duration of the bit. Figure 8.5 illustrates a digital bit

calculated for ω0σt = 20.

The sine Fourier transform of the signal (8.67) is zero by symmetry.

However, its cosine Fourier transform takes the form

C(k) =
1

2π

∫∞

−∞
exp

(

−
t2

2 σ2
t

)

cos(ω0 t) cos(ωt)dt, (8.68)
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=
1

4π

∫∞

−∞
exp

(

−
t2

2 σ2
t

)

{cos[(ω−ω0) t] + cos[(ω+ω0) t]}dt.

A comparison with Equations (8.15)–(8.18) reveals that

C(ω > 0) =
1

2 (2πσ2
ω)1/2

exp

(

−
(ω−ω0)

2

2 σ2
ω

)

, (8.69)

where

σω =
1

σt
. (8.70)

In other words, the Fourier transform of the signal takes the form of a Gaus-

sian in ω-space, which is centered on the carrier frequency, ω0, and is of

characteristic width σω = 1/σt. Thus, the bandwidth of the signal is of or-

der σω. Note that the shorter the signal duration the higher the bandwidth.

This is a general rule. A signal of full width at half maximum temporal du-

ration ∆t =
√
2πσt generally has a Fourier transform of full width at half

maximum bandwidth ∆ω =
√
2πσω, so that

∆ω∆t ∼ 2π. (8.71)

This can also be written

∆f∆t ∼ 1, (8.72)

where ∆f = ∆ω/2π is the bandwidth in Hertz. The above result is known

as the bandwidth theorem. Of course, the duration of a digital bit is closely

related to the maximum rate with which information can be transmitted

in a digital signal. Obviously, the individual bits cannot overlap in time,

so the maximum number of bits per second which can be transmitted in a

digital signal is of order 1/∆t: i.e., it is of order the bandwidth. Thus, digital

signals which transmit information at a rapid rate require large bandwidths:

i.e., they occupy a wide range of frequency space.

An old-fashioned black and white TV screen consists of a rectangular

grid of black and white spots. A given spot is “white” if the phosphorescent

TV screen was recently (i.e., within about 1/50 th of a second) struck by

the electron beam at that location. The spot separation is about 1 mm. A

typical screen is 50 cm × 50 cm, and thus has 500 lines with 500 spots per

line, or 2.5× 105 spots. Each spot is renewed every 1/30 th of a second. (Ev-

ery other horizontal line is skipped during a given traversal of the electron

beam over the screen. The skipped lines are renewed on the next traver-

sal. This technique is known as interlacing. Consequently, a given region
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of the screen, that includes many horizontal lines, has a flicker rate of 60

Hz.) Thus, the rate at which the instructions “turn on” and “turn off” must

be sent to the electron beam is 30 × 2.5 × 105 or 8 × 106 times a second.

The transmitted TV signal must therefore have about 107 on-off instruction

blips per second. If temporal overlap is to be avoided, each blip can be no

longer than ∆t ∼ 10−7 seconds in duration. Thus, the required bandwidth

is ∆f ∼ 1/∆t ∼ 107 Hz = 10MHz. The carrier wave frequencies used for

conventional broadcast TV lie in the so-called VHF band, and range from

about 55 to 210 MHz. Our previous discussion of AM radio might lead us

to think that the 10 MHz bandwidth represents the combined extents of an

upper and a lower sideband of modulation frequencies. In practice, the car-

rier wave and one of the sidebands are suppressed: i.e., they are filtered

out, and never applied to the antenna. However, they are regenerated in

the receiver from the information contained in the single sideband which

is broadcast. This technique, which is called single sideband transmission,

halves the bandwidth requirement to about 5MHz. Thus, between 55 and

210MHz there is room for about 30 TV channels, each using a 5 MHz band-

width. (Actually, there are far fewer TV channels than this in the VHF band,

because part of this band is reserved for FM radio, air traffic control, air

navigation beacons, marine communications, etc.)

8.4 Exercises

1. Verify Equations (8.4)–(8.6). Derive Equations (8.7) and (8.8) from Equa-
tion (8.2) and Equations (8.4)–(8.6).

2. Suppose that

F(x) = exp

(

−
x2

2 σ 2
x

)

.

Demonstrate that

F̄(k) ≡ 1

2π

∫∞

−∞

F(x) e i k x dx =
1

√

2πσ 2
k

exp

(

−
k2

2 σ 2
k

)

,

where i is the square-root of minus one, and σk = 1/σx. [Hint: You will
need to complete the square of the exponent of e, transform the variable of

integration, and then make use of the standard result that
∫∞

−∞
e−y2

dy =√
π.] Hence, show from de Moive’s theorem, exp( ik x) ≡ cos x+ i sin x, that

C(k) ≡ 1

2π

∫∞

−∞

F(x) cos(k x)dx =
1

√

2πσ 2
k

exp

(

−
k2

2 σ 2
k

)

,
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S(k) ≡ 1

2π

∫∞

−∞

F(x) sin(k x)dx = 0.

3. Demonstrate that

∫∞

−∞

1
√

2πσ 2
k

exp

(

−
k2

2 σ 2
k

)

dk = 1.

4. Verify Equations (8.30) and (8.31).

5. Derive Equations (8.11) and (8.12) directly from Equation (8.10) using the
results (8.29)–(8.31).

6. Verify directly that (8.45) is a solution of the wave equation (8.32), for arbi-
trary pulse shapes F(x) and G(x).

7. Verify Equation (8.49).

8. Consider a function F(t) which is zero for negative t, and takes the value
exp(−t/2 τ) for t ≥ 0. Find its Fourier transforms, C(ω) and S(ω), defined
in

F(t) =

∫∞

−∞

C(ω) cos(ωt)dω+

∫∞

−∞

S(ω) sin(ωt)dω.

9. Suppose that F(t) is zero, except in the interval from t = −∆t/2 to t = ∆t/2.
Suppose that in this interval F(t) makes exactly one sinusoidal oscillation at
the angular frequency ω0 = 2π/∆t, starting and ending with the value zero.
Find the above defined Fourier transforms C(ω) and S(ω).

10. Demonstrate that
∫∞

−∞

F2(t)dt = 2π

∫∞

−∞

[C2(ω) + S2(ω)]dω,

where the relation between F(t), C(ω), and S(ω) is defined above. This
result is known as Parseval’s theorem.

11. Suppose that F(t) and G(t) are both even functions of t with the cosine trans-
forms F̄(ω) and Ḡ(ω), so that

F(t) =

∫∞

−∞

F̄(ω) cos(ωt)dω,

G(t) =

∫∞

−∞

Ḡ(ω) cos(ωt)dω.

Let H(t) = F(t)G(t), and let H̄(ω) be the cosine transform of this even
function, so that

H(t) =

∫∞

−∞

H̄(ω) cos(ωt)dω.
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Demonstrate that

H̄(ω) =
1

2

∫∞

−∞

F̄(ω ′)
[

Ḡ(ω ′ +ω) + Ḡ(ω ′ −ω)
]

dω ′.

This result is known as the convolution theorem, since the above type of in-
tegral is known as a convolution integral. Suppose that F(t) = cos(ω0 t).
Show that

H̄(ω) =
1

2

[

Ḡ(ω−ω0) + Ḡ(ω+ω0)
]

.
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9 Dispersive Waves

9.1 Pulse Propagation

Consider a one dimensional wave pulse,

ψ(x, t) =

∫∞

−∞
C(k) cos(k x−ωt)dk, (9.1)

made up of a linear superposition of cosine waves, with a range of dif-

ferent wavenumbers, all traveling in the positive x-direction. The angular

frequency, ω, of each of these waves is related to its wavenumber, k, via the

so-called dispersion relation, which can be written schematically as

ω = ω(k). (9.2)

In general, this relation is derivable from the wave disturbance’s equation of

motion. Up to now, we have only considered sinusoidal waves which have

linear dispersion relations of the form

ω = k v, (9.3)

where v is a constant. The above expression immediately implies that the

waves all have the same phase velocity,

vp =
ω

k
= v. (9.4)

Substituting (9.3) into (9.1), we obtain

ψ(x, t) =

∫∞

−∞
C(k) cos[k (x− v t)]dk, (9.5)

which is clearly the equation of a wave pulse that propagates in the positive

x-direction, at the fixed speed v, without changing shape (see Chapter 8).

The above analysis would seem to suggest that arbitrarily shaped wave

pulses generally propagate at the same speed as sinusoidal waves, and do so

without dispersing or, otherwise, changing shape. In fact, these statements

are only true of pulses made up of superpositions of sinusoidal waves with

linear dispersion relations. There are, however, many types of sinusoidal
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wave whose dispersion relations are nonlinear. For instance, the disper-

sion relation of sinusoidal electromagnetic waves propagating through an

unmagnetized plasma is (see Section 9.2)

ω =
√

k2 c2 +ω2
p, (9.6)

where c is the speed of light in vacuum, and ωp is a constant, known as

the plasma frequency, which depends on the properties of the plasma [see

Equation (9.28)]. Moreover, the dispersion relation of sinusoidal surface

waves in deep water is (see Section 9.4)

ω =

√

gk+
T

ρ
k3, (9.7)

where g is the acceleration due to gravity, T the surface tension, and ρ the

mass density. Sinusoidal waves which satisfy nonlinear dispersion relations,

such as (9.6) and (9.7), are known as dispersive waves, as opposed to waves

which satisfy linear dispersion relations, such as (9.3), which are known as

non-dispersive waves. As we saw above, a wave pulse made up of a linear

superposition of non-dispersive sinusoidal waves, all traveling in the same

direction, propagates at the common phase velocity of these waves, without

changing shape. But, how does a wave pulse made up of a linear superposi-

tion of dispersive sinusoidal waves evolve in time?

Suppose that

C(k) =
1

√

2πσ2
k

exp

(

−
(k− k0)

2

2 σ2
k

)

: (9.8)

i.e., the function C(k) in (9.1) is a Gaussian, of characteristic width σk,

centered on wavenumber k = k0. It follows, from the properties of the

Gaussian function, that C(k) is negligible for |k − k0|
>
∼
3 σk. Thus, the only

significant contributions to the wave integral

ψ(x, t) =

∫∞

−∞

1
√

2πσ2
k

exp

(

−
(k− k0)

2

2 σ2
k

)

cos(k x−ωt)dk (9.9)

come from a small region of k-space centered on k = k0. Let us Taylor

expand the dispersion relation,ω = ω(k), about k = k0. Neglecting second-

order terms in the expansion, we obtain

ω ≃ ω(k0) + (k− k0)
dω(k0)

dk
. (9.10)
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It follows that

k x−ωt ≃ k0x−ω0 t+ (k− k0) (x− vg t), (9.11)

where ω0 = ω(k0), and

vg =
dω(k0)

dk
(9.12)

is a constant with the dimensions of velocity. Now, if σk is sufficiently small

then the neglect of second-order terms in the expansion (9.11) is a good

approximation, and expression (9.9) becomes

ψ(x, t) ≃ cos(k0x−ω0 t)
√

2πσ2
k

∫∞

−∞
exp

(

−
(k− k0)

2

2 σ2
k

)

cos[(k− k0) (x− vg t)]dk

−
sin(k0x−ω0 t)

√

2πσ2
k

∫∞

−∞
exp

(

−
(k− k0)

2

2 σ2
k

)

sin[(k− k0) (x− vg t)]dk,

(9.13)

where use has been made of a standard trigonometric identity. The inte-

gral involving sin[(k − k0) (x − vg t)] is zero, by symmetry. Moreover, an

examination of Equations (8.15)–(8.18) reveals that

1
√

2πσ2
k

∫∞

−∞
exp

(

−
k2

2 σ2
k

)

cos(k x)dk = exp

(

−
x2

2 σ2
x

)

, (9.14)

where σx = 1/σk. Hence, by analogy with the above expression, (9.13)

reduces to

ψ(x, t) ≃ exp

(

−
(x− vg t)

2

2 σ2
x

)

cos(k0x−ω0 t). (9.15)

This is clearly the equation of a wave pulse, of wavenumber k0 and angular

frequency ω0, with a Gaussian envelope, of characteristic width σx, whose

peak (which is located by setting the argument of the exponential to zero)

has the equation of motion

x = vg t. (9.16)

In other words, the pulse peak—and, hence, the pulse itself—propagates

at the velocity vg, which is known as the group velocity. Of course, in the

case of non-dispersive waves, the group velocity is the same as the phase
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velocity (since, if ω = k v then ω/k = dω/dk = v). However, for the case

of dispersive waves, the two velocities are, in general, different.

Equation (9.15) indicates that, as the wave pulse propagates, its en-

velope remains the same shape. Actually, this result is misleading, and is

only obtained because of the neglect of second-order terms in the expan-

sion (9.11). If we keep more terms in this expansion then we can show

that the wave pulse does actually change shape as it propagates. How-

ever, this demonstration is most readily effected by means of the following

simple argument. The pulse extends in Fourier space from k0 − ∆k/2 to

k0+∆k/2, where ∆k ∼ σk. Thus, part of the pulse propagates at the velocity

vg(k0 − ∆k/2), and part at the velocity vg(k0 + ∆k/2). Consequently, the

pulse spreads out as it propagates, since some parts of it move faster than

others. Roughly speaking, the spatial extent of the pulse in real space grows

as

∆x ∼ (∆x)0 + [vg(k0 + ∆k/2) − vg(k0 − ∆k/2)] t ∼ (∆x)0 +
dvg(k0)

dk
∆k t,

(9.17)

where (∆x)0 ∼ σx = σ−1
k is the extent of the pulse at t = 0. Hence, from

(9.12),

∆x ∼ (∆x)0 +
d2ω(k0)

dk2

t

(∆x)0

. (9.18)

We, thus, conclude that the spatial extent of the pulse grows linearly in

time, at a rate proportional to the second derivative of the dispersion rela-

tion with respect to k (evaluated at the pulse’s central wavenumber). This

effect is known as pulse dispersion. In summary, a wave pulse made up of a

linear superposition of dispersive sinusoidal waves, with a range of different

wavenumbers, propagates at the group velocity, and also gradually disperses

as time progresses.

9.2 Electromagnetic Wave Propagation in Plasmas

Consider a point particle of mass m and electric charge q interacting with

a sinusoidal electromagnetic wave propagating in the z-direction. Provided

that the wave amplitude is not sufficiently large to cause the particle to

move at relativistic speeds, the electric component of the wave exerts a

much greater force on the particle than the magnetic component. (This

follows, from standard electrodynamics, because the ratio of the magnetic

to the electric force is of order B0 v/E0, where E0 is the amplitude of the

wave electric field-strength, B0 = E0/c the amplitude of the wave magnetic
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field-strength, v the particle velocity, and c the velocity of light in vacuum.

Hence, the ratio of the forces is approximately v/c.) Suppose that the elec-

tric component of the wave oscillates in the x-direction, and takes the form

Ex(z, t) = E0 cos(k z−ωt), (9.19)

where k is the wavenumber, and ω the angular frequency. The equation of

motion of the particle is thus

m
d2x

dt2
= qEx, (9.20)

where x measures its wave-induced displacement in the x-direction. The

above equation can easily be solved to give

x = −
qE0

mω2
cos(k z−ωt). (9.21)

Thus, the wave causes the particle to execute sympathetic simple harmonic

oscillations, in the x-direction, with an amplitude which is directly propor-

tional to its charge, and inversely proportional to its mass.

Suppose that the wave is actually propagating through an unmagne-

tized electrically neutral plasma consisting of free electrons, of massme and

charge −e, and free ions, of mass mi and charge +e. Since the plasma is

assumed to be electrically neutral, each species must have the same equi-

librium number density, ne. Now, given that the electrons are much less

massive than the ions (i.e., me ≪ mi), but have the same charge (mod-

ulo a sign), it follows from (9.21) that the wave-induced oscillations of the

electrons are of much higher amplitude than those of the ions. In fact,

to a first approximation, we can say that the electrons oscillate whilst the

ions remain stationary. Assuming that the electrons and ions are evenly

distributed throughout the plasma, the wave-induced displacement of an

individual electron generates an effective electric dipole moment in the x-

direction of the form px = −e x (the other component of the dipole is a

stationary ion of charge +e located at x = 0). Hence, the x-directed electric

dipole moment per unit volume is

Px = nepx = −nee x. (9.22)

Given that all of the electrons oscillate according to Equation (9.21) (with

q = −e and m = me), we obtain

Px = −
nee

2E0

meω2
cos(k z−ωt). (9.23)
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Now, we saw earlier, in Section 7.7, that the z-directed propagation of

an electromagnetic wave, polarized in the x-direction (i.e., with its electric

component oscillating in the x-direction), through a dielectric medium is

governed by

∂Ex

∂t
= −

1

ǫ0

(

∂Px

∂t
+
∂Hy

∂z

)

, (9.24)

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
. (9.25)

Thus, writing Ex in the form (9.19), Hy in the form

Hy(z, t) = Z−1E0 cos(k z−ωt), (9.26)

where Z is the effective impedance of the plasma, and Px in the form (9.23),

Equations (9.24) and (9.25) can easily be shown to yield the nonlinear dis-

persion relation (see Exercise 1)

ω2 = k2 c2 +ω2
p, (9.27)

where c = 1/
√
ǫ0µ0 is the velocity of light in vacuum, and the so-called

plasma frequency,

ωp =

(

nee
2

ǫ0me

)1/2

, (9.28)

is the characteristic frequency of collective electron oscillations in the plasma.

Equations (9.24) and (9.25) also yield

Z =
Z0

n
, (9.29)

where Z0 =
√

µ0/ǫ0 is the impedance of free space, and

n =
k c

ω
=

(

1−
ω2

p

ω2

)1/2

(9.30)

the effective refractive index of the plasma. We, thus, conclude that sinu-

soidal electromagnetic waves propagating through a plasma have a nonlin-

ear dispersion relation. Moreover, it is clear that this nonlinearity arises

because the effective refractive index of the plasma is frequency dependent.

The expression (9.30) for the refractive index of a plasma has some

rather unusual properties. For wave frequencies lying above the plasma
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frequency (i.e., ω > ωp), it yields a real refractive index which is less than

unity. On the other hand, for wave frequencies lying below the plasma

frequency (i.e., ω < ωp), it yields an imaginary refractive index. Neither

of these results makes much sense. The former result is problematic be-

cause if the refractive index is less than unity then the wave phase velocity,

vp = ω/k = c/n, becomes superluminal (i.e., vp > c), and superluminal

velocities are generally thought to be unphysical. The latter result is prob-

lematic because an imaginary refractive index implies an imaginary phase

velocity, which seems utterly meaningless. Let us investigate further.

Consider, first of all, the high frequency limit, ω > ωp. According to

(9.30), a sinusoidal electromagnetic wave of angular frequency ω > ωp

propagates through the plasma at the superluminal phase velocity

vp =
ω

k
=
c

n
=

c

(1−ω2
p/ω

2)1/2
. (9.31)

But, is this really unphysical? As is well-known, Einstein’s theory of rel-

ativity forbids information from traveling faster than the velocity of light

in vacuum, since this would violate causality (i.e., it would be possible to

transform to a valid frame of reference in which an effect occurs prior to its

cause.) However, a sinusoidal wave with a unique frequency, and an infinite

spatial extent, does not transmit any information. (Recall, for instance, from

Section 8.3, that the carrier wave in an AM radio signal transmits no infor-

mation.) So, at what speed do electromagnetic waves in a plasma transmit

information? Well, the most obvious way of using such waves to transmit

information would be to send a message via Morse code. In other words, we

could transmit a message by means of short wave pulses, of varying lengths

and interpulse spacings, which are made to propagate through the plasma.

The pulses in question would definitely transmit information, so the velocity

of information propagation must be the same as that of the pulses: i.e., the

group velocity, vg = dω/dk. Differentiating the dispersion relation (9.27)

with respect to k, we obtain

2ω
dω

dk
= 2 k c2, (9.32)

or
ω

k

dω

dk
= vpvg = c2. (9.33)

Thus, it follows, from (9.31), that the group velocity of high frequency elec-

tromagnetic waves in a plasma is

vg = nc = (1−ω2
p/ω

2)1/2 c. (9.34)



158 OSCILLATIONS AND WAVES

Note that the group velocity is subluminal (i.e., vg < c). Hence, as long as

we accept that high frequency electromagnetic waves transmit information

through a plasma at the group velocity, rather than the phase velocity, then

there is no problem with causality. Incidentally, it should be clear, from

this discussion, that the phase velocity of dispersive waves has very little

physical significance. It is the group velocity which matters. For instance,

according to Equations (7.120), (9.29), (9.30), and (9.34), the mean flux of

electromagnetic energy in the z-direction due to a high frequency sinusoidal

wave propagating through a plasma is given by

〈I〉 =
1

2
ǫ0E

2
0 nc =

1

2
ǫ0E

2
0 vg, (9.35)

since Z0 =
√

µ0/ǫ0 and c = 1/
√
ǫ0µ0. Thus, if the group velocity is zero, as

is the case when ω = ωp, then there is zero energy flux associated with the

wave.

The fact that the energy flux and the group velocity of a sinusoidal wave

propagating through a plasma both go to zero when ω = ωp suggests that

the wave ceases to propagate at all in the low frequency limit,ω < ωp. This

observation leads us to search for spatially decaying standing wave solutions

to (9.24) and (9.25) of the form,

Ex(z, t) = E0 e−kz cos(ωt), (9.36)

Hy(z, t) = Z−1E0 e−kz sin(ωt). (9.37)

It follows from (9.20) and (9.22) that

Px = −
nee

2E0

meω2
e−kz cos(ωt). (9.38)

Substitution into Equations (9.24) and (9.25) reveals that (9.36) and (9.37)

are indeed the correct solutions when ω < ωp (see Exercise 2), and also

yields

k c =
√

ω2
p −ω2, (9.39)

as well as

Z = Z0
ω

kc
= Z0 (ω2

p/ω
2 − 1)−1/2. (9.40)

Furthermore, the mean z-directed electromagnetic energy flux becomes

〈I〉 = 〈ExHy〉 = E2
0 Z

−1 e−2kz 〈cos(ωt) sin(ωt)〉 = 0. (9.41)
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The above analysis demonstrates that a sinusoidal electromagnetic wave

cannot propagate through a plasma when its frequency lies below the plasma

frequency. Instead, the amplitude of the wave decays exponentially into the

plasma. Moreover, the electric and magnetic components of the wave oscil-

late in phase quadrature (i.e., π/2 radians out of phase), and the wave con-

sequentially has zero associated net energy flux. This suggests that a plasma

reflects, rather than absorbs, an incident electromagnetic wave whose fre-

quency is less than the plasma frequency (since if the wave were absorbed

then there would be a net flux of energy into the plasma). Let us investi-

gate what happens when a low frequency electromagnetic wave is normally

incident on a plasma in more detail.

Suppose that the region z < 0 is a vacuum, and the region z > 0 is

occupied by a plasma of plasma frequency ωp. Let the wave electric and

magnetic fields in the vacuum region take the form

Ex(z, t) = Ei cos[(ω/c) (z− c t)] + Er cos[(ω/c) (z+ c t) + φr], (9.42)

Hy(z, t) = EiZ
−1
0 cos[(ω/c) (z− c t)] − ErZ

−1
0 cos[(ω/c) (z+ c t) + φr].

(9.43)

Here, Ei is the amplitude of an electromagnetic wave of frequency ω < ωp

which is incident on the plasma, whereas Er is the amplitude of the reflected

wave, and φr the phase of this wave with respect to the incident wave.

Moreover, we have made use of the vacuum dispersion relation ω = k c.

The wave electric and magnetic fields in the plasma are written

Ex(z, t) = Et e−(ω/c)αz cos(ωt+ φt), (9.44)

Hy(z, t) = EtZ
−1
0 α e−(ω/c)αz sin(ωt+ φt), (9.45)

where Et is the amplitude of the decaying wave which penetrates into the

plasma, φt is the phase of this wave with respect to the incident wave, and

α =

(

ω2
p

ω2
− 1

)1/2

. (9.46)

The appropriate matching conditions are the continuity of Ex and Hy at

z = 0: i.e.,

Ei cos(ωt) + Er cos(ωt+ φr) = Et cos(ωt+ φt), (9.47)

Ei cos(ωt) − Er cos(ωt+ φr) = Etα sin(ωt+ φt). (9.48)
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These two equations, which must be satisfied at all times, can be solved to

give (see Exercise 3)

Er = Ei, (9.49)

tanφr =
2α

1− α2
, (9.50)

Et =
2 Ei

(1+ α2)1/2
, (9.51)

tanφt = α. (9.52)

Thus, the coefficient of reflection,

R =

(

Er

Ei

)2

= 1, (9.53)

is unity, which implies that all of the incident wave energy is reflected by

the plasma, and there is no energy absorption. The relative phase of the

reflected wave varies from 0 (when ω = ωp) to π (when ω≪ ωp) radians.

The outer regions of the Earth’s atmosphere consist of a tenuous gas

which is partially ionized by ultraviolet and X-ray radiation from the Sun,

as well as by cosmic rays incident from outer space. This region, which is

known as the ionosphere, acts like a plasma as far as its interaction with

radio waves is concerned. The ionosphere consists of many layers. The two

most important, as far as radio wave propagation is concerned, are the E

layer, which lies at an altitude of about 90 to 120 km above the Earth’s

surface, and the F layer, which lies at an altitude of about 120 to 400 km.

The plasma frequency in the F layer is generally larger than that in the E

layer, because of the greater density of free electrons in the former (recall

that ωp ∝ √
ne). The free electron number density in the E layer drops

steeply after sunset, due to the lack of solar ionization combined with the

gradual recombination of free electrons and ions. Consequently, the plasma

frequency in the E layer also drops steeply after sunset. Recombination in

the F layer occurs at a much slower rate, so there is nothing like as great

a reduction in the plasma frequency of this layer at night. Very High Fre-

quency (VHF) radio signals (i.e., signals with frequencies greater than 30

MHz), which include FM radio and TV signals, have frequencies well in ex-

cess of the plasma frequencies of both the E and the F layers, and thus pass

straight through the ionosphere. Short Wave (SW) radio signals (i.e., signals

with frequencies in the range 3 to 30 MHz) have frequencies in excess of the

plasma frequency of the E layer, but not of the F layer. Hence, SW signals



Dispersive Waves 161

EEarth

day

night

SW

VHF

MW F

Figure 9.1: Reflection and transmission of radio waves by the ionosphere.

pass through the E layer, but are reflected by the F layer. Finally, Medium

Wave (MW) radio signals (i.e., signals with frequencies in the range 0.5 to 3

MHz) have frequencies which lie below the plasma frequency of the F layer,

and also lie below the plasma frequency of the E layer during daytime, but

not during nighttime. Thus, MW signals are reflected by the E layer during

the day, but pass through the E layer, and are reflected by the F layer, during

the night.

The reflection and transmission of the various different types of radio

wave by the ionosphere is shown schematically in Figure 9.1. This diagram

explains many of the features of radio reception. For instance, due to the

curvature of the Earth’s surface, VHF reception is only possible when the

receiving antenna is in the line of sight of the transmitting antenna, and

is consequently fairly local in nature. MW reception is possible over much

larger distances, because the signal is reflected by the ionosphere back to-

wards the Earth’s surface. Moreover, long range MW reception improves at

night, since the signal is reflected at a higher altitude. Finally, SW radio re-

ception is possible over very large distances, because the signal is reflected

at extremely high altitudes.

9.3 Electromagnetic Wave Propagation in Conductors

A so-called Ohmic conductor is a medium that satisfies Ohm’s law, which can

be written in the form

j = σE, (9.54)
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where j is the current density (i.e., the current per unit area), E the electric

field-strength, and σ a constant known as the conductivity of the medium in

question. (Of course, the current generally flows in the same direction as

the electric field.) The z-directed propagation of an electromagnetic wave,

polarized in the x-direction, through an Ohmic conductor of conductivity σ

is governed by

∂Ex

∂t
+
σ

ǫ0

Ex = −
1

ǫ0

∂Hy

∂z
, (9.55)

∂Hy

∂t
= −

1

µ0

∂Ex

∂z
, (9.56)

For a so-called good conductor, which satisfies the inequality σ ≫ ǫ0ω, the

first term on the left-hand side of Equation (9.55) is negligible with respect

to the second term, and the above two equations can be shown to reduce to

∂Ex

∂t
=

1

µ0σ

∂2Ex

∂z2
, (9.57)

∂Hy

∂t
=

1

µ0

∂Ex

∂z
. (9.58)

These equations can be solved to give (see Exercise 4)

Ex(z, t) = E0 e−z/d cos(ωt− z/d), (9.59)

Hy(z, t) = E0Z
−1 e−z/d cos(ωt− z/d− π/4), (9.60)

where

d =

(

2

µ0σω

)1/2

, (9.61)

and

Z =

(

ωµ0

σ

)1/2

=

(

ωǫ0

σ

)1/2

Z0. (9.62)

Equations (9.59) and (9.60) indicate that the amplitude of an electromag-

netic wave propagating through a conductor decays exponentially on a char-

acteristic lengthscale, d, which is known as the skin-depth. Consequently, an

electromagnetic wave cannot penetrate more than a few skin-depths into a

conducting medium. Note that the skin-depth is smaller at higher frequen-

cies. This implies that high frequency waves penetrate a shorter distance

into a conductor than low frequency waves.
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Consider a typical metallic conductor such as copper, whose electrical

conductivity at room temperature is about 6 × 107 (Ωm)−1. Copper, there-

fore, acts as a good conductor for all electromagnetic waves of frequency

below about 1018 Hz. The skin-depth in copper for such waves is thus

d =

√

2

µ0σω
≃ 6
√

f(Hz)
cm. (9.63)

It follows that the skin-depth is about 6 cm at 1 Hz, but only about 2 mm at

1 kHz. This gives rise to the so-called skin-effect in copper wires, by which an

oscillating electromagnetic signal of increasing frequency, transmitted along

such a wire, is confined to an increasingly narrow layer (whose thickness is

of order the skin-depth) on the surface of the wire.

The conductivity of sea-water is only about σ ≃ 5 (Ωm)−1. However,

this is still sufficiently high for sea-water to act as a good conductor for

all radio frequency electromagnetic waves (i.e., f = ω/2π < 1GHz). The

skin-depth at 1 MHz (λ ∼ 2 km) is about 0.2m, whereas that at 1 kHz (λ ∼

2000 km) is still only about 7 m. This obviously poses quite severe restric-

tions for radio communication with submerged submarines. Either the sub-

marines have to come quite close to the surface to communicate (which is

dangerous), or the communication must be performed with extremely low

frequency (ELF) waves (i.e., f < 100Hz). Unfortunately, such waves have

very large wavelengths (λ > 20, 000 km), which means that they can only be

efficiently generated by gigantic antennas.

According to Equation (9.60), the phase of the magnetic component of

an electromagnetic wave propagating through a good conductor lags that of

the electric component by π/4 radians. It follows that the mean energy flux

into the conductor takes the form

〈I〉 = 〈ExHy〉 = |Ex|
2Z−1 〈cos(ωt− z/d) cos(ωt− z/d− π/4)〉

=
|Ex|

2

√
8Z
, (9.64)

where |Ex| = E0 e−z/d is the amplitude of the electric component of the

wave. The fact that the mean energy flux is positive indicates that part of

the wave energy is absorbed by the conductor. In fact, the absorbed energy

corresponds to the energy lost due to Ohmic heating in the conductor (see

Exercise 5).

Note, from (9.62), that the impedance of a good conductor is far less

than that of a vacuum (i.e., Z ≪ Z0). This implies that the ratio of the
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magnetic to the electric components of an electromagnetic wave propagat-

ing through a good conductor is far larger than that of a wave propagating

through a vacuum.

Suppose that the region z < 0 is a vacuum, and the region z > 0 is

occupied by a good conductor of conductivity σ. Let the wave electric and

magnetic fields in the vacuum region take the form of the incident and re-

flected waves specified in (9.42) and (9.43). The wave electric and magnetic

fields in the conductor are written

Ex(z, t) = Et e−z/d cos(ωt− z/d+ φt), (9.65)

Hy(z, t) = EtZ
−1
0 α−1 e−z/d cos(ωt− z/d− π/4+ φt), (9.66)

where Et is the amplitude of the decaying wave which penetrates into the

conductor, φt is the phase of this wave with respect to the incident wave,

and

α =
Z

Z0

=

(

ǫ0ω

σ

)1/2

≪ 1. (9.67)

The appropriate matching conditions are the continuity of Ex and Hy at

z = 0: i.e.,

Ei cos(ωt) + Er cos(ωt+ φr) = Et cos(ωt+ φt), (9.68)

α [Ei cos(ωt) − Er cos(ωt+ φr)] = Et cos(ωt− π/4+ φt).

(9.69)

Equations (9.68) and (9.69), which must be satisfied at all times, can be

solved, in the limit α≪ 1, to give (see Exercise 6)

Er ≃ −(1−
√
2α)Ei, (9.70)

φr ≃ −
√
2α, (9.71)

Et ≃ 2αEi, (9.72)

φt ≃ π/4. (9.73)

Hence, the coefficient of reflection becomes

R ≃
(

Er

Ei

)2

≃ 1− 2
√
2α = 1−

(

8 ǫ0ω

σ

)1/2

. (9.74)

According to the above analysis, a good conductor reflects a normally

incident electromagnetic wave with a phase shift of almost π radians (i.e.,



Dispersive Waves 165

Er ≃ −Ei). The coefficient of reflection is just less than unity, indicating

that, whilst most of the incident energy is reflected by the conductor, a small

fraction of it is absorbed.

High-quality metallic mirrors are generally coated in silver, whose con-

ductivity is 6.3×107 (Ωm)−1. It follows, from (9.74), that at optical frequen-

cies (ω = 4× 1015 rad./s) the coefficient of reflection of a silvered mirror is

R ≃ 93.3%. This implies that about 7% of the light incident on the mirror

is absorbed, rather than being reflected. This rather severe light loss can be

problematic in instruments, such as astronomical telescopes, which are used

to view faint objects.

9.4 Surface Wave Propagation in Water

Consider a stationary body of water, of uniform depth d, located on the sur-

face of the Earth. Let us find the dispersion relation of a wave propagating

across the water’s surface. Suppose that the Cartesian coordinate x mea-

sures horizontal distance, whilst the coordinate z measures vertical height,

with z = 0 corresponding to the unperturbed surface of the water. Let there

be no variation in the y-direction: i.e., let the wavefronts of the wave all be

parallel to the y-axis. Finally, let vx(x, z, t) and vz(x, z, t) be the perturbed

horizontal and vertical velocity fields of the water due to the wave. It is

assumed that there is no motion in the y-direction.

Now, water is essentially incompressible. Thus, any wave disturbance

in water is constrained to preserve the volume of a co-moving volume el-

ement. Equivalently, the inflow rate of water into a stationary volume el-

ement must match the outflow rate. Consider a stationary cubic volume

element lying between x and x + dx, y and y + dy, and z and z + dz. The

element has two faces, of area dydz, perpendicular to the x-axis, located

at x and x + dx. Water flows into the element through the former face at

the rate vx(x, z, t)dydz (i.e., the product of the area of the face and the

normal velocity), and out of the element though the latter face at the rate

vx(x + dx, z, t)dydz. The element also has two faces perpendicular to the

y-axis, but there is no flow through these faces, since vy = 0. Finally, the

element has two faces, of area dxdy, perpendicular to the z-axis, located at

z and z + dz. Water flows into the element through the former face at the

rate vz(x, z, t)dxdy, and out of the element though the latter face at the

rate vz(x, z + dz, t)dxdy. Thus, the net rate at which water flows into the

element is vx(x, z, t)dydz+vz(x, z, t)dxdy. Likewise, the net rate at which

water flows out of the element is vx(x+dx, z, t)dydz+vz(x, z+dz, t)dxdy.
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If the water is to remain incompressible then the inflow and outflow rates

must match: i.e.,

vx(x, z, t)dydz+vz(x, z, t)dxdy = vx(x+dx, z, t)dydz+vz(x, z+dz, t)dxdy,

(9.75)

or
(

vx(x+ dx, z, t) − vx(x, z, t)

dx
+
vz(x, z+ dz, t) − vz(x, z, t)

dz

)

dxdydz = 0.

(9.76)

Hence, the incompressibility constraint reduces to

∂vx

∂x
+
∂vz

∂z
= 0. (9.77)

Consider the equation of motion of a small volume element of water ly-

ing between x and x + dx, y and y + dy, and z and z + dz. The mass of

this element is ρdxdydz, where ρ is the uniform mass density of water.

Suppose that p(x, z, t) is the pressure in the water, which is assumed to be

isotropic. The net horizontal force on the element is p(x, z, t)dydz− p(x +

dx, z, t)dydz (since force is pressure times area, and the external pressure

forces acting on the element act inward across its surface). Hence, the ele-

ment’s horizontal equation of motion is

ρdxdydz
∂vx(x, z, t)

∂t
= −

(

p(x+ dx, z, t) − p(x, z, t)

dx

)

dxdydz, (9.78)

which reduces to

ρ
∂vx

∂t
= −

∂p

∂x
. (9.79)

The vertical equation of motion is similar, except that the element is subject

to a downward acceleration, g, due to gravity. Hence, we obtain

ρ
∂vz

∂t
= −

∂p

∂z
− ρg. (9.80)

Now, we can write

p = p0 − ρg z+ p1, (9.81)

where p0 is atmospheric pressure (i.e., the pressure at the surface of the

water), and p1 is the pressure perturbation due to the wave. Of course, in

the absence of the wave, the water pressure at a depth h below the surface

is p0 + ρgh. Substitution into (9.79) and (9.80) yields

ρ
∂vx

∂t
= −

∂p1

∂x
, (9.82)

ρ
∂vz

∂t
= −

∂p1

∂z
. (9.83)
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It follows that

ρ
∂2vx

∂z ∂t
− ρ

∂2vz

∂x ∂t
= −

∂2p1

∂z ∂x
+
∂2p1

∂x ∂z
= 0, (9.84)

which implies that

ρ
∂

∂t

(

∂vx

∂z
−
∂vz

∂x

)

= 0, (9.85)

or
∂vx

∂z
−
∂vz

∂x
= 0. (9.86)

(Actually, the above quantity could be non-zero and constant in time, but

this is not consistent with an oscillating wave-like solution.)

Equation (9.86) is automatically satisfied if

vx =
∂φ

∂x
, (9.87)

vz =
∂φ

∂z
. (9.88)

Equation (9.77) then gives

∂2φ

∂x2
+
∂2φ

∂z2
= 0. (9.89)

Finally, Equations (9.82) and (9.83) yield

p1 = −ρ
∂φ

∂t
. (9.90)

As we have just seen, surface waves in water are governed by Equation

(9.89), which is known as Laplace’s equation. We next need to derive the

physical constraints which must be satisfied by the solution to this equation

at the water’s upper and lower boundaries. Now, the water is bounded from

below by a solid surface located at z = −d. Assuming that the water always

remains in contact with this surface, the appropriate physical constraint at

the lower boundary is vz(x,−d, t) = 0 (i.e., there is no vertical motion of

the water at the lower boundary), or

∂φ

∂z

∣

∣

∣

∣

z=−d

= 0. (9.91)

The physical constraint at the water’s upper boundary is a little more compli-

cated, since this boundary is a free surface. Let ζ(x, t) represent the vertical

displacement of the water’s surface. It follows that

∂ζ

∂t
= vz|z=0 =

∂φ

∂z

∣

∣

∣

∣

z=0

. (9.92)
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Now, the physical constraint at the surface is that the water pressure be

equal to atmospheric pressure, since there cannot be a pressure discontinu-

ity across a free surface. Thus, it follows from (9.81) that

p0 = p0 − ρg ζ(x, t) + p1(x, 0, t). (9.93)

Finally, differentiating with respect to t, and making use of Equations (9.90)

and (9.92), we obtain

∂φ

∂z

∣

∣

∣

∣

z=0

= −g−1 ∂
2φ

∂t2

∣

∣

∣

∣

∣

z=0

. (9.94)

Hence, the problem boils down to solving Laplace’s equation, (9.89), subject

to the physical constraints (9.91) and (9.94).

Let us search for a propagating wave-like solution of (9.89) of the form

φ(x, z, t) = F(z) cos(k x−ωt). (9.95)

Substitution into (9.89) yields

d2F

dz2
− k2 F = 0, (9.96)

whose independent solutions are exp(+k z) and exp(−k z). Hence, the most

general wavelike solution to Laplace’s equation takes the form

φ(x, z, t) = A ekz cos(k x−ωt) + B e−kz cos(k x−ωt), (9.97)

where A and B are arbitrary constants. The boundary condition (9.91) is

satisfied provided that B = A exp(−2 kd), giving

φ(x, z, t) = A
[

ekz + e−k(z+2d)
]

cos(k x−ωt), (9.98)

The boundary condition (9.94) yields

Ak
[

1− e−2kd
]

cos(k x−ωt) = A
ω2

g

[

1+ e−2kd
]

cos(k x−ωt), (9.99)

which reduces to the dispersion relation

ω2 = gk tanh(kd), (9.100)

where the function

tanh x ≡ ex − e−x

ex + e−x
(9.101)
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is known as a hyperbolic tangent.

In shallow water (i.e., kd ≪ 1), Equation (9.100) reduces to the linear

dispersion relation

ω = k
√

gd. (9.102)

Here, use has been made of the small argument expansion tanh x ≃ x for

|x| ≪ 1. We, thus, conclude that surface waves in shallow water are non-

dispersive in nature, and propagate at the phase velocity
√
gd. On the other

hand, in deep water (i.e., kd≫ 1), Equation (9.100) reduces to the nonlin-

ear dispersion relation

ω =
√

kg. (9.103)

Here, use has been made of the large argument expansion tanh x ≃ 1 for

x ≫ 1. Hence, we conclude that surface waves in deep water are dispersive

in nature. The phase velocity of the waves is vp = ω/k =
√

g/k, whereas

the group velocity is vg = dω/dk = (1/2)
√

g/k = vp/2. In other words, the

group velocity is half the phase velocity, and is largest for long wavelength

(i.e., small k) waves.

Water in contact with air actually possesses a surface tension T ≃ 7 ×
10−2 N m−1 which allows there to be a small pressure discontinuity across a

free surface that is curved. In fact,

[p]
z=0+

z=0−
= −T

∂2ζ

∂x2
. (9.104)

Here, (∂ζ/∂x2)−1 is the radius of curvature of the surface. Thus, in the pres-

ence of surface tension, the boundary condition (9.93) takes the modified

form

− T
∂2ζ

∂x2
= −ρg ζ+ p1|z=0 , (9.105)

which reduces to

∂φ

∂z

∣

∣

∣

∣

z=0

=
T

ρ g

∂3φ

∂x2∂z

∣

∣

∣

∣

∣

z=0

−
1

g

∂2φ

∂t2

∣

∣

∣

∣

∣

z=0

. (9.106)

This boundary condition can be combined with the solution (9.98), in the

deep water limit kd ≫ 1, to give the modified deep water dispersion rela-

tion

ω =

√

gk+
T

ρ
k3. (9.107)

Hence, the phase velocity of the waves takes the form

vp =
ω

k
=

√

g

k
+
T

ρ
k, (9.108)
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and the ratio of the group velocity to the phase velocity can be shown to be

vg

vp
=
1

2

[

1+ 3 T k2/(ρg)

1+ T k2/(ρg)

]

. (9.109)

Thus, the phase velocity attains a minimum value of
√
2 (g T/ρ)1/4 ∼ 0.2m s−1

when k = k0 ≡ (ρg/T)1/2, which corresponds to λ ∼ 2 cm. The group veloc-

ity equals the phase velocity at this wavelength. For long wavelength waves

(i.e., k ≪ k0), gravity dominates surface tension, the phase velocity scales

as k−1/2, and the group velocity is half the phase velocity. On the other

hand, for short wavelength waves (i.e., k≫ k0), surface tension dominates

gravity, the phase velocity scales as k1/2, and the group velocity is 3/2 times

the phase velocity. The fact that the phase velocity and the group veloc-

ity both attain minimum values when λ ∼ 2 cm means that when a wave

disturbance containing a wide spectrum of wavelengths, such as might be

generated by throwing a rock into the water, travels across the surface of

a lake, and reaches the shore, the short and long wavelength components

of the disturbance generally arrive before the components of intermediate

wavelength.

9.5 Exercises

1. Derive expressions (9.27) and (9.29) for propagating electromagnetic waves
in a plasma from Equations (9.20), (9.22), (9.24), and (9.25).

2. Derive expressions (9.39) and (9.40) for evanescent electromagnetic waves
in a plasma from Equations (9.20), (9.22), (9.24), and (9.25).

3. Derive Equations (9.49)–(9.52) from Equations (9.47) and (9.48).

4. Derive Equations (9.59)–(9.62) from Equations (9.57) and (9.58).

5. Consider an electromagnetic wave propagating in the positive z-direction
through a conducting medium of conductivity σ. Suppose that the wave
electric field is

Ex(z, t) = E0 e−z/d cos(ωt− z/d),

where d is the skin-depth. Demonstrate that the mean electromagnetic en-
ergy flux across the plane z = 0 matches the mean rate at which electromag-
netic energy is dissipated, per unit area, due to Ohmic heating in the region
z > 0. (The rate of ohmic heating per unit volume is σE 2

x ).

6. Derive Equations (9.70)–(9.73) from Equations (9.68) and (9.69), in the
limit α≪ 1.



Dispersive Waves 171

7. Demonstrate that the phase velocity of traveling waves on an infinitely long
beaded string is

vp = v0

sin(ka/2)

(ka/2)
,

where v0 =
√

T a/m, T is the tension in the string, a the spacing between
the beads, m the mass of the beads, and k the wavenumber of the wave.
What is the group velocity?

8. The number density of free electrons in the ionosphere, ne, as a function
of vertical height, z, is measured by timing how long it takes a radio pulse
launched vertically upward from the ground (z = 0) to return to ground level
again, after reflection by the ionosphere, as a function of the pulse frequency,
ω. It is conventional to define the equivalent height, h(ω), of the reflection
layer as the height it would need to have off the ground if the pulse always
traveled at the velocity of light in vacuum. Demonstrate that

h(ω) =

∫z0

0

dz

[1−ω 2
p(z)/ω2]1/2

,

where ω 2
p(z) = ne(z) e2/(ǫ0me), and ω 2

p(z0) = ω2. Show that if ne ∝ zp

then h ∝ ω2/p.

9. A uniform rope of mass per unit length ρ and length L hangs vertically. De-
termine the tension T in the rope as a function of height from the bottom of
the rope. Show that the time required for a transverse wave pulse to travel
from the bottom to the top of the rope is 2

√

L/g.

10. The aluminium foil used in cooking has an electrical conductivity σ = 3.5 ×
107 (Ωm)−1, and a typical thickness δ = 2× 10−4 m. Show that such foil can
be used to shield a region from electromagnetic waves of a given frequency,
provided that the skin-depth of the waves in the foil is less than about a
third of its thickness. Since skin-depth increases as frequency decreases, it
follows that the foil can only shield waves whose frequency exceeds a critical
value. Estimate this critical frequency (in Hertz). What is the corresponding
wavelength?

11. A sinusoidal surface wave travels from deep water toward the shore. Does its
wavelength increase, decrease, or stay the same, as it approaches the shore?
Explain.

12. Demonstrate that the dispersion relation (9.107) for surface water waves
generalizes to

ω2 =

(

gk+
T

ρ
k3

)

tanh(kd)

in water of arbitrary depth.
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13. Demonstrate that a small amplitude surface wave, of angular frequency ω
and wavenumber k, traveling over the surface of a lake of uniform depth d
causes an individual water volume element located at a depth h below the
surface to execute a non-propagating elliptical orbit whose major and mi-
nor axes are horizontal and vertical, respectively. Show that the variation of
the major and minor radii of the orbit with depth is A cosh[k (d − h)] and
A sinh[k (d − h)], respectively, where A is a constant. Demonstrate that the
volume elements are moving horizontally in the same direction as the wave
at the top of their orbits, and in the opposite direction at the bottom. Show
that a surface wave traveling over the surface of a very deep lake causes wa-
ter volume elements to execute non-propagating circular orbits whose radii
decrease exponentially with depth.
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10 Multi-Dimensional Waves

10.1 Plane Waves

As we have already seen, a sinusoidal wave of amplitude ψ0 > 0, wavenum-

ber k > 0, and angular frequency ω > 0, propagating in the positive x-

direction, can be represented by a wavefunction of the form

ψ(x, t) = ψ0 cos(k x−ωt). (10.1)

Now, the above type of wave is conventionally termed a one-dimensional

plane wave. It is one-dimensional because its associated wavefunction only

depends on a single Cartesian coordinate. Furthermore, it is a plane wave

because the wave maxima, which are located at

k x−ωt = j 2π, (10.2)

where j is an integer, consist of a series of parallel planes, normal to the

x-axis, which are equally spaced a distance λ = 2π/k apart, and propagate

along the x-axis at the fixed speed v = ω/k. These conclusions follow

because Equation (10.2) can be re-written in the form

x = d, (10.3)

where d = j λ + v t. Moreover, (10.3) is clearly the equation of a plane,

normal to the x-axis, whose distance of closest approach to the origin is d.

The previous equation can also be written in the coordinate-free form

n · r = d, (10.4)

where n = (1, 0, 0) is a unit vector directed along the x-axis, and r =

(x, y, z) represents the vector displacement of a general point from the ori-

gin. Since there is nothing special about the x-direction, it follows that if n is

re-interpreted as a unit vector pointing in an arbitrary direction then (10.4)

can be re-interpreted as the general equation of a plane. As before, the

plane is normal to n, and its distance of closest approach to the origin is d.

See Figure 10.1. This observation allows us to write the three-dimensional

equivalent to the wavefunction (10.1) as

ψ(x, y, z, t) = ψ0 cos(k · r −ωt), (10.5)
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d
plane

r

origin

n

Figure 10.1: The solution of n · r = d is a plane.

where the constant vector k = (kx, ky, kz) = kn is called the wavevector.

The wave represented above is conventionally termed a three-dimensional

plane wave. It is three-dimensional because its wavefunction, ψ(x, y, z, t),

depends on all three Cartesian coordinates. Moreover, it is a plane wave

because the wave maxima are located at

k · r −ωt = j 2π, (10.6)

or

n · r = j λ+ v t, (10.7)

where λ = 2π/k, and v = ω/k. Note that the wavenumber, k, is the mag-

nitude of the wavevector, k: i.e., k ≡ |k|. It follows, by comparison with

Equation (10.4), that the wave maxima consist of a series of parallel planes,

normal to the wavevector, which are equally spaced a distance λ apart, and

propagate in the k-direction at the fixed speed v. See Figure 10.2. Hence,

the direction of the wavevector specifies the wave propagation direction,

whereas its magnitude determines the wavenumber, k, and, thus, the wave-

length, λ = 2π/k. Actually, the most general expression for the wavefunc-

tion of a plane wave is ψ = ψ0 cos(φ + k · r −ωt), where φ is a constant

phase angle. As is easily appreciated, the inclusion of a non-zero phase angle

in the wavefunction merely shifts all the wave maxima a distance −(φ/2π) λ

in the k-direction. In the following, whenever possible, φ is set to zero, for

the sake of simplicity.
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k

λ

Figure 10.2: Wave maxima associated with a plane wave.

10.2 Three-Dimensional Wave Equation

As is readily demonstrated (see Exercise 1), the one-dimensional plane wave

solution (10.1) satisfies the one-dimensional wave equation,

∂2ψ

∂t2
= v2 ∂

2ψ

∂x2
. (10.8)

Likewise, the three-dimensional plane wave solution (10.5) satisfies the

three-dimensional wave equation (see Exercise 1),

∂2ψ

∂t2
= v2

(

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)

ψ. (10.9)

Note that both of these equations are linear, and, thus, have superposable

solutions.

10.3 Laws of Geometric Optics

Suppose that the region z < 0 is occupied by a transparent dielectric medium

of refractive index n1, whereas the region z > 0 is occupied by a second

transparent dielectric medium of refractive index n2. Let a plane light wave

be launched, toward positive z, from a light source of angular frequency ω

located at large negative z. Suppose that this so-called incident wave has
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a wavevector ki. Now, we would expect the incident wave to be partially

reflected and partially transmitted at the interface between the two dielectric

media. Let the reflected and transmitted waves have the wavevectors kr and

kt, respectively. See Figure 10.3. Hence, we can write

ψ(x, y, z, t) = ψi cos(ki · r −ωt) +ψr cos(kr · r −ωt) (10.10)

in the region z < 0, and

ψ(x, y, z, t) = ψt cos(kt · r −ωt) (10.11)

in the region z > 0. Here, ψ(x, y, z, t) represents the magnetic component of

the resultant light wave, ψi the amplitude of the incident wave, ψr the am-

plitude of the reflected wave, and ψt the amplitude of the transmitted wave.

Note that all of the component waves have the same angular frequency, ω,

since this property is ultimately determined by the wave source. Note, fur-

ther, that, according to standard electromagnetic theory, if the magnetic

component of an electromagnetic wave is specified then the electric compo-

nent of the wave is fully determined, and can easily be calculated, and vice

versa.

In general, the wavefunction, ψ, must be continuous at z = 0, since, ac-

cording to standard electromagnetic theory, there cannot be a discontinuity

in either the normal or the tangential component of a magnetic field across

an interface between two (non-magnetic) dielectric media. (Incidentally,

the same is not true of an electric field, which can have a normal disconti-

nuity across an interface between two dielectric media. This explains why

we have chosen ψ to represent the magnetic, rather than the electric, com-

ponent of the resultant light wave.) Thus, the matching condition at z = 0

takes the form

ψi cos(kixx+ kiyy−ωt) (10.12)

+ψr cos(krxx+ kryy−ωt) = ψt cos(ktxx+ ktyy−ωt).

Moreover, this condition must be satisfied at all values of x, y, and t. Clearly,

this is only possible if

kix = krx = ktx, (10.13)

and

kiy = kry = kty. (10.14)

Suppose that the direction of propagation of the incident wave lies in

the x-z plane, so that kiy = 0. It immediately follows, from (10.14), that
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Figure 10.3: Reflection and refraction of a plane wave at a plane boundary.

kry = kty = 0. In other words, the directions of propagation of the reflected

and the transmitted waves also lie in the x-z plane. This means that ki, kr

and kt are co-planar vectors. Note that this constraint is implicit in the well-

known laws of geometric optics.

Assuming that the above mentioned constraint is satisfied, let the inci-

dent, reflected, and transmitted waves subtend angles θi, θr, and θt with

the z-axis, respectively. See Figure 10.3. It follows that

ki = n1k0 (sin θi, 0, cos θi), (10.15)

kr = n1k0 (sin θr, 0,− cosθr), (10.16)

kt = n2k0 (sin θt, 0, cos θt), (10.17)

where k0 = ω/c is the vacuum wavenumber, and c the velocity of light

in vacuum. Here, we have made use of the fact that wavenumber (i.e.,

the magnitude of the wavevector) of a light wave propagating through a

dielectric medium of refractive index n is nk0.

Now, according to Equation (10.13), kix = krx, which yields

sin θi = sin θr, (10.18)

and kix = ktx, which reduces to

n1 sin θi = n2 sin θt. (10.19)
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The first of these relations states that the angle of incidence, θi, is equal to

the angle of reflection, θr. Of course, this is the familiar law of reflection.

Moreover, the second relation corresponds to the equally familiar law of

refraction, otherwise known as Snell’s law.

Incidentally, the fact that a plane wave propagates through a uniform

medium with a constant wavevector, and, therefore, a constant direction of

propagation, is equivalent to the well known law of rectilinear propagation,

which states that light propagates through a uniform medium in a straight-

line.

It is clear, from the above discussion, that the laws of geometric optics

(i.e., the law of rectilinear propagation, the law of reflection, and the law of

refraction) are fully consistent with the wave properties of light, despite the

fact that they do not appear to explicitly depend on these properties.

10.4 Waveguides

As we saw in Section 7.5, transmission lines (e.g., ethernet cables) are used

to carry high frequency electromagnetic signals over distances which are

long compared to the signal wavelength, λ = c/f, where c is the veloc-

ity of light and f the signal frequency (in Hertz). Unfortunately, conven-

tional transmission lines are subject to radiative losses (since the lines ef-

fectively act as antennas) which increase as the fourth power of the signal

frequency. Above a certain critical frequency, which typically lies in the mi-

crowave band, the radiative losses become intolerably large. Under these

circumstances, the transmission line must be replaced by a device known as

a waveguide. A waveguide is basically a long hollow metal box within which

electromagnetic signals propagate. Moreover, if the walls of the box are

much thicker than the skin-depth (see Section 9.3) in the wall material then

the signal is essentially isolated from the outside world, and the radiative

losses are consequently negligible.

Consider an evacuated waveguide of rectangular cross-section which

runs along the z-direction, and is enclosed by perfectly conducting (i.e.,

infinite conductivity) metal walls located at x = 0, x = a, y = 0, and y = b.

Suppose that an electromagnetic wave propagates along the waveguide in

the z-direction. For the sake of simplicity, let there be no y-variation of

the wave electric or magnetic fields. Now, the wave propagation inside the

waveguide is governed by the two-dimensional wave equation [cf., Equa-
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tion (10.9)]
∂2ψ

∂t2
= c2

(

∂2

∂x2
+
∂2

∂z2

)

ψ, (10.20)

where ψ(x, z, t) represents the electric component of the wave, which is as-

sumed to be everywhere parallel to the y-axis, and c is the velocity of light

in vaccum. The appropriate boundary conditions are

ψ(0, z, t) = 0, (10.21)

ψ(a, z, t) = 0, (10.22)

since the electric field inside a perfect conductor is zero (otherwise, an infi-

nite current would flow), and, according to standard electromagnetic theory,

there cannot be a tangential discontinuity in the electric field at a conduc-

tor/vacuum boundary. (There can, however, be a normal discontinuity. This

allows ψ to be non-zero at y = 0 and y = b.)

Let us search for a separable solution of (10.20) of the form

ψ(x, z, t) = ψ0 sin(kxx) cos(k z−ωt), (10.23)

where k represents the z-component of the wavevector (rather than its mag-

nitude), and is the effective wavenumber for propagation along the waveg-

uide. The above solution automatically satisfies the boundary condition

(10.21). The second boundary condition (10.22) is satisfied provided

kx = j
π

a
, (10.24)

where j is a positive integer. Suppose that j takes its smallest possible value

1. (Of course, j cannot be zero, since, in this case, ψ = 0 everywhere.)

Substitution of expression (10.23) into the wave equation (10.20) yields

the dispersion relation

ω2 = k2 c2 +ω2
0 , (10.25)

where

ω0 =
π c

a
. (10.26)

Note that this dispersion relation is analogous in form to the dispersion

relation (9.27) for an electromagnetic wave propagating through a plasma,

with the cut-off frequency, ω0, playing the role of the plasma frequency, ωp.

The cut-off frequency is so-called because for ω < ω0 the wavenumber is

imaginary (i.e., k2 < 0), which implies that the wave does not propagate

along the waveguide, but, instead, decays exponentially with increasing z.
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On the other hand, for wave frequencies above the cut-off frequency the

phase velocity,

vp =
ω

k
=

c
√

1−ω2
0/ω

2
, (10.27)

is superluminal. This is not a problem, however, since the group velocity,

vg =
dω

dk
= c

√

1−ω2
0/ω

2, (10.28)

which is the true signal velocity, remains subluminal. (Recall, from Sec-

tion 9.2, that a high frequency electromagnetic wave propagating through a

plasma exhibits similar behavior.) Not surprisingly, the signal velocity goes

to zero asω → ω0, since the signal ceases to propagate at all whenω = ω0.

It turns out that waveguides support many distinct modes of propaga-

tion. The type of mode discussed above is termed a TE (for transverse

electric-field) mode, since the electric field is transverse to the direction

of propagation. There are many different sorts of TE mode, corresponding,

for instance, to different choices of the mode number, j. However, the j = 1

mode has the lowest cut-off frequency. There are also TM (for transverse

magnetic-field) modes, and TEM (for transverse electric- and magnetic-

field) modes. TM modes also only propagate when the wave frequency

exceeds a cut-off frequency. On the other hand, TEM modes (which are the

same type of mode as that supported by a conventional transmission line)

propagate at all frequencies. Note, however, that TEM modes are only pos-

sible when the waveguide possesses an internal conductor running along its

length.

10.5 Cylindrical Waves

Consider a cylindrically symmetric wavefunctionψ(ρ, t), where ρ =
√

x2 + y2

is a conventional cylindrical polar coordinate. Assuming that this func-

tion satisfies the three-dimensional wave equation (10.9), which can be re-

written (see Exercise 3)

∂2ψ

∂t2
= v2

(

∂2ψ

∂ρ2
+
1

ρ

∂ψ

∂ρ

)

, (10.29)

it is easily demonstrated that a sinusoidal cylindrical wave of phase angle φ,

wavenumber k, and angular frequencyω = k v, takes the form (see Exercise

3)

ψ(ρ, t) ≃ ψ0

ρ1/2
cos(φ+ k ρ−ωt) (10.30)
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Figure 10.4: A cylindrical wave.

in the limit k ρ ≫ 1. Here, ψ0/ρ
1/2 is the amplitude of the wave. In this

case, the associated wavefronts (i.e., surfaces of constant phase) are a set of

concentric cylinders which propagate radially outward, from their common

axis (ρ = 0), at the phase velocity v = ω/k. See Figure 10.4. Note that the

wave amplitude attenuates as ρ−1/2. Such behavior can be understood as a

consequence of energy conservation, which requires the power flowing across

the various ρ = const. surfaces to be constant. (The areas of such surfaces

scale as A ∝ ρ. Moreover, the power flowing across them is proportional to

ψ2A, since the energy flux associated with a wave is generally proportional

to ψ2, and is directed normal to the wavefronts.) The cylindrical wave

specified in expression (10.30) is such as would be generated by a uniform

line source located at ρ = 0. See Figure 10.4.

10.6 Exercises

1. Show that the one-dimensional plane wave (10.1) is a solution of the one-
dimensional wave equation (10.8) provided that

ω = k v.
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Likewise, demonstrate that the three-dimensional plane wave (10.5) is a so-
lution of the three-dimensional wave equation (10.9) as long as

ω = |k| v.

2. Consider a square waveguide of internal dimensions 5 × 10 cm. What is the
frequency (in MHz) of the lowest frequency TE mode which will propagate
along the waveguide without attenuation? What are the phase and group
velocities (expressed as multiples of c) for a TE mode whose frequency is 5/4
times this cut-off frequency?

3. Demonstrate that for a cylindrically symmetric wavefunction ψ(ρ, t), where

ρ =
√

x2 + y2, the three-dimensional wave equation (10.9) can be re-written

∂2ψ

∂t2
= v2

(

∂2ψ

∂ρ2
+
1

ρ

∂ψ

∂ρ

)

.

Show that

ψ(ρ, t) ≃ ψ0

ρ1/2
cos(φ+ k ρ−ωt)

is an approximate solution of this equation in the limit k ρ ≫ 1, where v =

ω/k.

4. Demonstrate that for a spherically symmetric wavefunction ψ(r, t), where

r =
√

x2 + y2 + z2, the three-dimensional wave equation (10.9) can be re-
written

∂2ψ

∂t2
= v2

(

∂2ψ

∂r2
+
2

r

∂ψ

∂r

)

.

Show that

ψ(r, t) =
ψ0

r
cos(φ+ k r−ωt)

is a solution of this equation, where v = ω/k. Explain why the wave am-
plitude attenuates as r−1. What sort of wave source would be most likely to
generate the above type of wave solution?
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11 Wave Optics

11.1 Introduction

Visible light is a type of electromagnetic radiation whose wavelength lies in

a relatively narrow band extending from about 400 to 700 nm. The branch

of physics which is concerned with the properties of light is known as op-

tics. This chapter is devoted to those optical phenomena which depend

explicitly on the ultimate wave nature of light, and cannot be accounted

for using the well-known laws of geometric optics (see Section 10.3). The

branch of optics which deals with such phenomena is called wave optics.

The two most important topics in wave optics are interference and diffrac-

tion. Interference occurs when beams of light from multiple sources (but

with similar frequencies), or multiple beams from the same source, inter-

sect one another. Diffraction takes place, for instance, when a single beam

of light passes through an opening in an opaque screen whose spatial ex-

tent is comparable to the wavelength of the light. It should be noted that

interference and diffraction depend on the same underlying physical mech-

anisms, so that the distinction which is conventionally made between them

is somewhat arbitrary.

In the following, for the sake of simplicity, we shall only deal with light

emitted from uniform line sources interacting with uniform slits which run

parallel to these sources, since, under such circumstances, the problem re-

mains essentially two-dimensional.

11.2 Two-Slit Interference

Consider a monochromatic plane light wave, propagating in the x-direction,

through a transparent dielectric medium of refractive index unity (e.g., a

vacuum). (Such a wave might be produced by a uniform line source, run-

ning parallel to the z-axis, which is located at x = −∞.) Let the associated

wavefunction take the form

ψ(x, t) = ψ0 cos(φ+ k x−ωt). (11.1)

Here, ψ represents the electric component of the wave, ψ0 > 0 the wave

amplitude, φ the phase angle, k > 0 the wavenumber, ω = k c the angular

frequency, and c the velocity of light in vacuum. Let the wave be normally
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Figure 11.1: Two-slit interference at normal incidence.

incident on an opaque screen that is coincident with the plane x = 0. See

Figure 11.1. Suppose that the screen has two identical slits of width δ cut

in it. Let the slits run parallel to the z-axis, be a perpendicular distance d

apart, and be located at y = d/2 and y = −d/2. Suppose that the light

which passes through the two slits travels to a cylindrical projection screen

of radius R whose axis is the line x = y = 0. In the following, it is assumed

that there is no variation of wave quantities in the z-direction.

Now, provided that the two slits are much narrower than the wave-

length, λ = 2π/k, of the light (i.e., δ≪ λ), we expect any light which passes

through them to be strongly diffracted. See Section 11.6. Diffraction is a

fundamental wave phenomenon by which waves bend around small (com-

pared to the wavelength) obstacles, and spread out from narrow (compared

to the wavelength) openings, whilst maintaining the same wavelength and

frequency. The laws of geometric optics do not take diffraction into ac-

count, and are, therefore, restricted to situations in which light interacts

with objects whose physical dimensions greatly exceed its wavelength. The

assumption of strong diffraction suggests that each slit acts like a uniform

line source which emits light isotropically in the forward direction (i.e., to-

ward the region x > 0), but does not emit light in the backward direction



Wave Optics 185

(i.e., toward the region x < 0). (It is actually possible to demonstrate that

this is, in fact, the case using advanced electromagnetic theory, but such a

demonstration lies well beyond the scope of this course.) As discussed in

Section 10.5, we would expect a uniform line source to emit a cylindrical

wave. It follows that each slit emits a half-cylindrical light wave in the for-

ward direction. See Figure 11.1. Moreover, these waves are emitted with

equal amplitude and phase, since the incident plane wave has the same am-

plitude (i.e., ψ0) and phase (i.e., φ −ωt) at both of the slits, and the slits

are identical. Finally, we expect the cylindrical waves emitted by the two

slits to interfere with one another (see Section 7.3), and to, thus, generate

a characteristic interference pattern on the cylindrical projection screen. Let

us now determine the nature of this pattern.

Consider the wave amplitude at a point on the projection screen which

lies an angular distance θ from the plane y = 0. See Figure 11.1. The

wavefunction at this particular point is written

ψ(θ, t) ∝ cos(φ+ k ρ1 −ωt)

ρ
1/2
1

+ O
(

1

k ρ
3/2
1

)

+
cos(φ+ k ρ2 −ωt)

ρ
1/2
2

+ O
(

1

k ρ
3/2
2

)

, (11.2)

assuming that k ρ1, k ρ2 ≫ 1. In other words, the overall wavefunction

in the region x > 0 is the superposition of cylindrical wavefunctions [see

Equation (10.30)] of equal amplitude (i.e., ρ−1/2) and phase (i.e., φ+ k ρ−

ωt) emanating from each slit. Here, ρ1 and ρ2 are the distances which the

cylindrical waves emitted by the first and second slits (located at y = d/2

and y = −d/2, respectively) have travelled by the time they reach the point

on the projection screen under discussion.

Standard trigonometry (i.e., the law of cosines) reveals that

ρ1 = R

(

1−
d

R
sin θ+

1

4

d2

R2

)1/2

= R

[

1−
1

2

d

R
sin θ+ O

(

d2

R2

)]

. (11.3)

Likewise,

ρ2 = R

[

1+
1

2

d

R
sin θ+ O

(

d2

R2

)]

. (11.4)

Hence, expression (11.2) yields

ψ(θ, t) ∝ cos(φ+ k ρ1 −ωt) + cos(φ+ k ρ2 −ωt)

+O
(

1

kR

)

+ O
(

d

R

)

, (11.5)
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Figure 11.2: Two-slit far-field interference pattern calculated for d/λ = 5 with

normal incidence and narrow slits.

which, making use of the trigonometric identity cos x + cosy ≡ 2 cos[(x +

y)/2] cos[(x− y)/2], gives

ψ(θ, t) ∝ cos

[

φ+
1

2
k (ρ1 + ρ2) −ωt

]

cos

[

1

2
k (ρ1 − ρ2)

]

+O
(

1

kR

)

+ O
(

d

R

)

, (11.6)

or

ψ(θ, t) ∝ cos

[

φ+ kR−ωt+ O
(

kd2

R

)]

cos

[

−
1

2
kd sin θ+ O

(

kd2

R

)]

+O
(

1

kR

)

+ O
(

d

R

)

. (11.7)

Finally, assuming that

kd2

R
,
1

kR
,
d

R
,≪ 1, (11.8)

the above expression reduces to

ψ(θ, t) ∝ cos(φ+ kR−ωt) cos

(

1

2
kd sin θ

)

. (11.9)
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Figure 11.3: Two-slit far-field interference pattern calculated for d/λ = 1 with

normal incidence and narrow slits.

Now, the orderings (11.8), which can also be written in the form,

R≫ d, λ,
d2

λ
, (11.10)

are satisfied provided that the projection screen is located sufficiently far

away from the slits. Consequently, the type of interference described in this

section is known as far-field interference. The characteristic features of far-

field interference are that the amplitudes of the cylindrical waves emitted

by the two slits are approximately equal to one another when they reach

a given point on the projection screen (i.e., |ρ1 − ρ2|/ρ1 ≪ 1), whereas

the phases are, in general, significantly different (i.e., k |ρ1 − ρ2|
>
∼
π). In

other words, the interference pattern generated on the projection screen is

entirely due to the phase difference between the cylindrical waves emitted by

the two slits when they reach the screen. This phase difference is produced

by the slight difference in path length between the slits and a given point on

the projection screen. (Recall, that the two waves are in phase when they

are emitted by the slits.)

The mean energy flux, or intensity, of the light striking the projection

screen at angular position θ is

I(θ) ∝ 〈ψ(θ, t)2〉

∝ 〈cos2(φ+ kR−ωt)〉 cos2

(

1

2
kd sin θ

)
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Figure 11.4: Two-slit far-field interference pattern calculated for d/λ = 0.1

with normal incidence and narrow slits.

∝ cos2

(

1

2
kd sin θ

)

, (11.11)

where 〈· · ·〉 denotes an average over a wave period. (The above expression

follows from the standard result I = E2/Z0, for an electromagnetic wave,

where E is the electric component of the wave, and Z0 the impedance of

free space. See Section 7.7. Recall, also, that ψ ∝ E.) Here, we have made

use of the easily established result 〈cos2(φ + kR −ωt)〉 = 1/2. Note that,

given the very high oscillation frequency of a light wave (i.e., f ∼ 1014 Hz),

it is the intensity of light, rather than the rapidly oscillating amplitude of

its electric component, which is typically detected experimentally (e.g., by a

photographic film, or photo-multiplier tube). Hence, for the case of two-slit

far-field interference, assuming normal incidence and narrow slits, the in-

tensity of the characteristic interference pattern appearing on the projection

screen is specified by

I(θ) ∝ cos2

(

π
d

λ
sin θ

)

. (11.12)

Figure 11.2 shows the intensity of the typical two-slit far-field interfer-

ence pattern produced when the slit spacing, d, greatly exceeds the wave-

length, λ, of the light. It can be seen that the pattern consists of multiple

bright and dark fringes. A bright fringe is generated whenever the cylindri-

cal waves emitted by the two slits interfere constructively at given point on
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the projection screen. This occurs if the path lengths between the two slits

and the point in question differ by an integer number of wavelengths: i.e.,

ρ2 − ρ1 = d sin θ = j λ, (11.13)

where j is an integer, since this ensures that the phases of the two waves

differ by an integer multiple of 2π, and, hence, that the effective phase dif-

ference is zero. Likewise, a dark fringe is generated whenever the cylindrical

waves emitted by the two slits interfere destructively at a given point on the

projection screen. This occurs if the path lengths between the two slits and

the point in question differ by a half-integer number of wavelengths: i.e.,

ρ2 − ρ1 = d sin θ = (j+ 1/2) λ, (11.14)

since this ensures that the effective phase difference between the two waves

is π. We conclude that the innermost (i.e., low j, small θ) bright fringes are

approximately equally-spaced, with a characteristic angular width ∆θ ≃ λ/d.

This result, which follows from Equation (11.13), and the small angle ap-

proximation sin θ ≃ θ, can be used experimentally to determine the wave-

length of a monochromatic light source (see Exercise 11.4).

Figure 11.3 shows the intensity of the interference pattern generated

when the slit spacing is equal to the wavelength of the light. It can be seen

that the width of the central (i.e., j = 0, θ = 0) bright fringe has expanded to

such an extent that the fringe occupies almost half of the projection screen,

leaving room for just two dark fringes on either side of it.

Finally, Figure 11.4 shows the intensity of the interference pattern gen-

erated when the slit spacing is much less than the wavelength of the light. It

can be seen that the width of the central bright fringe has expanded to such

an extent that the band occupies the whole projection screen, and there are

no dark fringes. Indeed, I(θ) becomes constant in the limit that d/λ ≪ 1,

in which case the interference pattern entirely disappears.

It is clear, from Figures 11.2–11.3, that the two-slit far-field interference

apparatus shown in Figure 11.1 only generates an interesting interference

patten when the slit spacing, d, is greater than the wavelength, λ, of the

light.

Suppose, now, that the plane wave which illuminates the interference

apparatus is not normally incident on the slits, but instead propagates at an

angle θ0 to the x-axis, as shown in Figure 11.5. In this case, the incident

wavefunction (11.1) becomes

ψ(x, y, t) = ψ0 cos(φ+ k x cos θ0 + ky sin θ0 −ωt). (11.15)
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Figure 11.5: Two-slit interference at oblique incidence.

Thus, the phase of the light incident on the first slit (located at x = 0, y =

d/2) is φ+ (1/2)kd sin θ0 −ωt, whereas the phase of the light incident on

the second slit (located at x = 0, y = −d/2) is φ−(1/2)kd sin θ0−ωt. As-

suming that the cylindrical waves emitted by each slit have the same phase

(at the slits) as the plane wave which illuminates them, Equation (11.2)

generalizes to

ψ(θ, t) ∝ cos(φ1 + k ρ1 −ωt)

ρ
1/2
1

+
cos(φ2 + k ρ2 −ωt)

ρ
1/2
2

, (11.16)

where φ1 = φ + (1/2)kd sin θ0 and φ2 = φ − (1/2)kd sin θ0. Hence,

making use of the far-field orderings (11.10), and a standard trigonometric

identity, we obtain

ψ(θ, t) ∝ cos

[

1

2
(φ1 + φ2) + kR−ωt

]

cos

[

1

2
(φ1 − φ2) −

1

2
kd sin θ

]

∝ cos(φ+ kR−ωt) cos

[

1

2
kd (sin θ− sin θ0)

]

. (11.17)

For the sake of simplicity, let us concentrate on the limit d≫ λ in which

the innermost (i.e., low j) interference fringes are located at small θ. (Note



Wave Optics 191

that the projection screen is approximately planar in this limit, as indicated

in Figure 11.5, since a sufficiently small section of a cylindrical surface looks

like a plane.) Assuming that θ0 is also small, the above expression reduces

to

ψ(θ, t) ∝ cos(φ+ kR−ωt) cos

[

1

2
kd (θ− θ0)

]

, (11.18)

and Equation (11.12) becomes

I(θ) ∝ cos2

[

π
d

λ
(θ− θ0)

]

. (11.19)

Thus, the bright fringes in the interference pattern are located at

θ = θ0 + j
λ

d
, (11.20)

where j is an integer. We conclude that if the slits in a two-slit interfer-

ence apparatus, such as that shown in Figure 11.5, are illuminated by an

obliquely incident plane wave then the consequent phase difference be-

tween the cylindrical waves emitted by each slit produces an angular shift

in the interference pattern appearing on the projection screen. To be more

exact, the angular shift is equal to the angle of incidence, θ0, of the plane

wave, so that the central (j = 0) bright fringe in the interference pattern is

located at θ = θ0—see Figure 11.5. Of course, this is equivalent to saying

that the position of the central bright fringe can be determined via the rules

of geometric optics. (Futhermore, this conclusion holds even when θ0 is not

small.)

11.3 Coherence

A practical monochromatic light source consists of a collection of similar

atoms which are continually excited by collisions, and then spontaneously

decay back to their electronic ground states, in the process emitting photons

of characteristic angular frequency ω = ∆E/h̄, where ∆E is the difference

in energy between the excited state and the ground state, and h̄ = 1.055 ×
10−34 J s−1 is Planck’s constant divided by 2π. Now, an excited electronic

state of an atom has a characteristic lifetime, τ, which can be calculated

from quantum mechanics, and is typically 10−8 s. It follows that when an

atom in an excited state decays back to its ground state it emits a burst of

electromagnetic radiation of duration τ and angular frequencyω. However,
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according to the bandwidth theorem (see Section 8.3), a sinusoidal wave of

finite duration τ has a finite bandwidth

∆ω ∼
2π

τ
. (11.21)

In other words, if the emitted wave is Fourier transformed in time then it

is found to consist of a linear superposition of sinusoidal waves of infinite

duration whose frequencies lie in the approximate range ω− ∆ω/2 to ω+

∆ω/2. We conclude that there is no such thing as a truly monochromatic

light source. In reality, all such sources have a small, but finite, bandwidths

which are inversely proportional to the lifetimes, τ, of the associated excited

atomic states.

So, how do we take the finite bandwidth of a practical “monochromatic”

light source into account in our analysis? Actually, all we need to do is to as-

sume that the phase angle, φ, appearing in Equations (11.1) and (11.15), is

only constant on timescales much less that the lifetime, τ, of the associated

excited atomic state, and is subject to abrupt random changes on timescales

much greater than τ. We can understand this phenomenon as due to the fact

that the radiation emitted by a single atom has a fixed phase angle, φ, but

only lasts a finite time period, τ, combined with the fact that there is gen-

erally no correlation between the phase angles of the radiation emitted by

different atoms. Alternatively, we can account for the variation in the phase

angle in terms of the finite bandwidth of the light source: i.e., since the

light emitted by the source consists of a superposition of sinusoidal waves

of frequencies extending over the range ω−∆ω/2 to ω+∆ω/2 then, even

if all the component waves start off in phase, the phases will be completely

scrambled after a time period 2π/∆ω = τ has elapsed. What we are, in

effect, saying is that a practical monochromatic light source is temporally

coherent on timescales much less than its characteristic coherence time, τ

(which, for visible light, is typically of order 10−8 seconds), and temporally

incoherent on timescales much greater than τ. Incidentally, two waves are

said to be coherent if their phase difference is constant in time, and incoher-

ent if their phase difference varies significantly in time. In this case, the two

waves in question are the same wave observed at two different times.

So, what effect does the temporal incoherence of a practical monochro-

matic light source on timescales greater than τ ∼ 10−8 seconds have on the

two-slit interference patterns discussed in the previous section? Consider

the case of oblique incidence. According to Equation (11.16), the phase

angles, φ1 = φ+(1/2)kd sin θ0, and φ2 = φ−(1/2)kd sin θ0, of the cylin-

drical waves emitted by each slit are subject to abrupt random changes on
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Figure 11.6: Two-slit interference with two line sources.

timescales much greater than τ, since the phase angle, φ of the plane wave

which illuminates the two slits is subject to the same changes. Nevertheless,

the relative phase angle, φ1 − φ2 = kd sin θ0, between the two cylindrical

waves remains constant. Moreover, as is clear from Equation (11.17), the

interference pattern appearing on the projection screen is generated by the

phase difference (1/2) (φ1−φ2)−(1/2)kd sin θ between the two cylindrical

waves at a given point on the screen, and this phase difference only depends

on the relative phase angle. Indeed, the intensity of the interference pattern

is I(θ) ∝ cos2[(1/2) (φ1 − φ2) − (1/2)kd sin θ]. Hence, the fact that the

relative phase angle, φ1 − φ2, between the two cylindrical waves emitted

by the slits remains constant on timescales much longer than the charac-

teristic coherence time, τ, of the light source implies that the interference

pattern generated in a conventional two-slit interference apparatus is gener-

ally unaffected by the temporal incoherence of the source. Strictly speaking,

however, the preceding conclusion is only accurate when the spatial extent

of the light source is negligible. Let us now broaden our discussion to take

spatially extended light sources into account.

Up until now, we have assumed that our two-slit interference apparatus

is illuminated by a single plane wave, such as might be generated by a line

source located at infinity. Let us now consider a more realistic situation in
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which the light source is located a finite distance from the slits, and also has

a finite spatial extent. Figure 11.6 shows the simplest possible case. Here,

the slits are illuminated by two identical line sources, A and B, which are

a distance D apart, and a perpendicular distance L from the opaque screen

containing the slits. Assuming that L ≫ D, d, the light incident on the slits

from source A is effectively a plane wave whose direction of propagation

subtends an angle θ0/2 ≃ D/2L with the x-axis. Likewise, the light incident

on the slits from source B is a plane wave whose direction of propagation

subtends an angle −θ0/2 with the x-axis. Moreover, the net interference

pattern (i.e., wavefunction) appearing on the projection screen is the linear

superposition of the patterns generated by each source taken individually

(since light propagation is ultimately governed by a linear wave equation

with superposable solutions—see Section 10.2.). Let us determine whether

these patterns reinforce one another, or interfere with one another.

The light emitted by source A has a phase angle, φA, which is constant

on timescales much less than the characteristic coherence time of the source,

τ, but is subject to abrupt random changes on timescale much longer than τ.

Likewise, the light emitted by source B has a phase angle, φB, which is con-

stant on timescales much less than τ, and varies significantly on timescales

much greater than τ. Furthermore, there is, in general, no correlation be-

tween φA and φB. In other words, our composite light source, consisting of

the two line sources A and B, is both temporally and spatially incoherent on

timescales much longer than τ.

Again working in the limit d ≫ λ, with θ, θ0 ≪ 1, Equation (11.18)

yields the following expression for the wavefunction on the projection screen:

ψ(θ, t) ∝ cos(φA + kR−ωt) cos

[

1

2
kd (θ− θ0/2)

]

+ cos(φB + kR−ωt) cos

[

1

2
kd (θ+ θ0/2)

]

. (11.22)

Hence, the intensity of the interference pattern is

I(θ) ∝ 〈ψ2〉 ∝ 〈 cos2(φA + kR−ωt)〉 cos2

[

1

2
kd (θ− θ0/2)

]

+2 〈cos(φA + kR−ωt) cos(φB + kR−ωt)〉

× cos

[

1

2
kd (θ− θ0/2)

]

cos

[

1

2
kd (θ+ θ0/2)

]

+〈 cos2(φB + kR−ωt)〉 cos2

[

1

2
kd (θ+ θ0/2)

]

.
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(11.23)

However, 〈cos2(φA + kR − ωt)〉 = 〈cos2(φB + kR − ωt)〉 = 1/2, and

〈cos(φA + kR − ωt) cos(φB + kR − ωt)〉 = 0, since the phase angles φA

and φB are uncorrelated. Hence, the above expression reduces to

I(θ) ∝ cos2

[

1

2
kd (θ− θ0/2)

]

+ cos2

[

1

2
kd (θ+ θ0/2)

]

= 1+ cos

(

2π
d

λ
θ

)

cos

(

π
d

λ
θ0

)

, (11.24)

where use has been made of the trigonometric identities cos2θ ≡ (1 +

cos 2θ)/2, and cos x + cosy ≡ 2 cos[(x + y)/2] cos((x − y)/2]. Note that

if θ0 = λ/2d then cos[π (d/λ) θ0] = 0 and I(θ) ∝ 1. In this case, the bright

fringes of the interference pattern generated by source A exactly overlay

the dark fringes of the pattern generated by source B, and vice versa, and

the net interference pattern is completely washed out. On the other hand,

if θ0 ≪ λ/d then cos[π (d/λ) θ0] = 1 and I(θ) ∝ 1 + cos[2π (d/λ) θ] =

2 cos2[π (d/λ) θ]. In this case, the two interference patterns reinforce one

another, and the net interference pattern is the same as that generated by a

light source of negligible spatial extent.

Suppose, now, that our light source consists of a regularly spaced array

of very many identical incoherent line sources, filling the region between

sources A and B in Figure 11.6. In other words, suppose that our light

source is a uniform incoherent source of angular extent θ0. It is, hopefully,

clear, from the linear nature of the problem, that the associated interference

pattern can be obtained by averaging expression (11.24) over all θ0 values in

the range 0 to θ0: i.e., by operating on this expression with θ−1
0

∫θ0

0
· · · dθ0.

In this manner, we obtain

I(θ) ∝ 1+ cos

(

2π
d

λ
θ

)

sinc

(

π
d

λ
θ0

)

, (11.25)

where sinc(x) ≡ sin x/x. Now, we can conveniently parameterize the visibil-

ity of the interference pattern, appearing on the projection screen, in terms

of the quantity

V =
Imax − Imin

Imax + Imin
, (11.26)

where the maximum and minimum values of the intensity are taken with

respect to variation in θ (rather than θ0). Of course, V = 1 corresponds to a
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Figure 11.7: Visibility of a two-slit far-field interference pattern generated by

an extended incoherent light source.

sharply defined pattern, and V = 0 to a pattern which is completely washed

out. It follows from (11.25) that

V =

∣

∣

∣

∣

sinc

(

π
d

λ
θ0

)∣

∣

∣

∣

. (11.27)

The predicted visibility, V, of a two-slit interference pattern generated by

an extended incoherent light source is plotted as a function of the angular

extent, θ0, of the source in Figure 11.7. It can be seen that the pattern is

highly visible (i.e., V ∼ 1) when θ0 ≪ λ/d, but becomes washed out (i.e.,

V ∼ 0) when θ0
>
∼
λ/d.

We conclude that a spatially extended incoherent light source only gen-

erates a visible interference pattern in a conventional two-slit interference

apparatus when the angular extent of the source is sufficiently small: i.e.,

when

θ0 ≪ λ

d
. (11.28)

Equivalently, if the source is of linear extent D, and located a distance L

from the slits, then the source only generates a visible interference pattern

when it is sufficiently far away from the slits: i.e., when

L≫ dD

λ
. (11.29)

This follows because θ0 ≃ D/L.
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The whole of the above discussion is premised on the assumption that

an extended light source is both temporally and spatially incoherent on

timescales much longer than a typical atomic coherence time, which is about

10−8 seconds. This is, indeed, generally the case. However, there is one type

of light source—namely, a laser—for which this is not necessarily the case.

In a laser (in single-mode operation), excited atoms are stimulated in such

a manner that they emit radiation which is both temporally and spatially co-

herent on timescales much longer than the relevant atomic coherence time.

Let us, briefly, consider the two-slit far-field interference pattern gen-

erated by an extended coherent light source. Suppose that the two line

sources, A and B, in Figure 11.6 are mutually coherent (i.e., φA = φB). In

this case, as is easily demonstrated, Equation (11.24) is replaced by

I(θ) ∝
(

cos

[

1

2
kd (θ− θ0/2)

]

+ cos

[

1

2
kd (θ+ θ0/2)

])2

= 4 cos2

(

π
d

λ
θ

)

cos2

(

π

2

d

λ
θ0

)

= 2 cos2

(

π
d

λ
θ

)[

1+ cos

(

π
d

λ
θ0

)]

. (11.30)

Moreover, when this expression is averaged over θ0, in order to generate the

interference pattern produced by a uniform coherent light source of angular

extent θ0, we obtain

I(θ) ∝ 2 cos2

(

π
d

λ
θ

)[

1+ sinc

(

π
d

λ
θ0

)]

. (11.31)

It follows, from (11.26), that the visibility of the interference pattern is

unity: i.e., the pattern is sharply defined irrespective of the angular extent,

θ0, of the light source, as long as the source is spatially coherent. It is hardly

surprising, then, that lasers generally produce much clearer interference

patterns than conventional incoherent light sources.

11.4 Multi-Slit Interference

Suppose that the interference apparatus pictured in Figure 11.1 is modified

such that N identical slits of width δ≪ λ, running parallel to the z-axis, are

cut in the opaque screen which occupies the plane x = 0. Let the slits be

located at y = yn, for n = 1,N. For the sake of simplicity, the arrangement

of slits is assumed to be symmetric with respect to the plane y = 0: i.e.,
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if there is a slit at y = yn then there is also a slit at y = −yn. Now, the

path length between a point on the projection screen which is an angular

distance θ from the plane y = 0 and the nth slit is [cf., Equation (11.3)]

ρn = R

[

1−
yn

R
sin θ+ O

(

y2
n

R2

)]

. (11.32)

Thus, making use of the far-field orderings (11.10), where d now repre-

sents the typical spacing between neighboring slits, and assuming normally

incident collimated light, Equation (11.5) generalizes to

ψ(θ, t) ∝
∑

n=1,N

cos(φ+ kR−ωt− kyn sin θ), (11.33)

which can also be written

ψ(θ, t) ∝ cos(φ+ kR−ωt)
∑

n=1,N

cos(kyn sin θ)

+ sin(φ+ kR−ωt)
∑

n=1,N

sin(kyn sin θ), (11.34)

or

ψ(θ, t) ∝ cos(φ+ kR−ωt)
∑

n=1,N

cos(kyn sin θ). (11.35)

Here, we have made use of the fact that arrangement of slits is symmetric

with respect to the plane y = 0 (which implies that
∑

n=1,N sin(kyn sin θ) =

0). We have also employed the standard identity cos(x − y) ≡ cos x cosy +

sin x siny. It follows that the intensity of the interference pattern appearing

on the projection screen is specified by

I(θ) ∝ 〈ψ(θ, t)2〉 ∝




∑

n=1,N

cos

(

2π
yn

λ
sin θ

)





2

, (11.36)

since 〈cos2(φ + kR − ωt)〉 = 1/2. The above expression is a generalized

version of Equation (11.12).

Suppose that the slits are evenly spaced a distance d apart, so that

yn = [n− (N+ 1)/2]d (11.37)

for n = 1,N. It follows that

I(θ) ∝




∑

n=1,N

cos

(

2π [n− (N+ 1)/2]
d

λ
sin θ

)





2

, (11.38)
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Figure 11.8: Multi-slit far-field interference pattern calculated for N = 10 and

d/λ = 5 with normal incidence and narrow slits.

which can be summed to give (see Exercise 11.1)

I(θ) ∝ sin2[πN (d/λ) sin θ]

sin2[π (d/λ) sin θ)]
. (11.39)

Now, the multi-slit interference function, (11.39), exhibits strong max-

ima in situations in which its numerator and denominator are simultaneously

zero: i.e., when

sin θ = j
λ

d
, (11.40)

where j is an integer. In this situation, application of L’Hopital’s rule yields

I = N2. The heights of these so-called principal maxima in the interference

function are very large, being proportional to N2, because there is construc-

tive interference of the light from all N slits. This occurs because the path

lengths between neighboring slits and the point on the projection screen

at which a given maximum is located differ by an integer number of wave-

lengths: i.e., ρn − ρn−1 = d sin θ = j λ. Note, incidentally, that all of the

principle maxima have the same height.

The multi-slit interference function (11.39) is zero when its numerator

is zero but its denominator non-zero: i.e., when

sin θ =
l

N

λ

d
, (11.41)
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where l is an integer which is not an integer multiple of N. It follows that

there are N− 1 zeros between neighboring principle maxima. It can also be

demonstrated that there areN−2 secondary maxima between the said zeros.

However, these maxima are much lower in height, by a factor of order N2,

than the primary maxima.

Figure 11.8 shows the typical far-field interference pattern produced

by a system of ten identical equally-spaced parallel slits, assuming nor-

mal incidence and narrow slits, when the slit spacing, d, greatly exceeds

the wavelength, λ, of the light (which, as we saw in Section 11.2, is the

most interesting case). It can be seen that the pattern consists of a se-

ries of bright fringes of equal height, separated by much wider (relatively)

dark fringes. Of course, the bright fringes correspond to the principal max-

ima discussed above. As is the case for two-slit interference, the innermost

(i.e., low j, small θ) principal maxima are approximately equally-spaced,

with a characteristic angular spacing ∆θ ≃ λ/d. [This result follows from

Equation (11.40), and the small angle approximation sin θ ≃ θ.] How-

ever, the typical angular width of a principal maximum (i.e., the angular

distance between the maximum and the closest zeroes on either side of it)

is δθ ≃ (1/N) (λ/d). [This result follows from Equation (11.41), and the

small angle approximation]. The ratio of the angular width of a principal

maximum to the angular spacing between successive maxima is thus

δθ

∆θ
≃ 1

N
. (11.42)

Hence, we conclude that, as the number of slits increases, the bright fringes

in a multi-slit interference pattern become progressively sharper.

The most common practical application of multi-slit interference is the

transmission diffraction grating. Such a device consists ofN identical equally-

spaced parallel scratches on one side of a thin uniform transparent glass or

plastic film. When the film is illuminated the scratches strongly scatter the

incident light, and effectively constitute N identical equally-spaced parallel

line sources. Hence, the grating generates the type of N-slit interference

pattern discussed above, with one major difference: i.e., the central (j = 0)

principal maximum has contributions not only from the scratches, but also

from all the transparent material between the scratches. Thus, the central

principal maximum is considerably brighter than the other (j 6= 0) principal

maxima.

Diffraction gratings are often employed in spectroscopes, which are in-

struments used to decompose light that is made up of a mixture of different

wavelengths into its constituent wavelengths. As a simple example, suppose
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that a spectroscope contains an N-line diffraction grating which is illumi-

nated, at normal incidence, by a mixture of light of wavelength λ, and light

of wavelength λ + ∆λ, where ∆λ ≪ λ. As always, the overall interference

pattern (i.e., the overall wavefunction at the projection screen) produced by

the grating is a linear superposition of the pattern generated by the light of

wavelength λ, and the pattern generated by the light of wavelength λ+∆λ.

Consider the jth-order principal maximum associated with the wavelength

λ interference pattern, which is located at θj, where sin θj = j (λ/d)—see

Equation (11.40). Here, d is the spacing between neighboring lines on the

diffraction grating, which is assumed to be greater than λ. (Incidentally,

the width of the lines is assumed to be much less than λ.) Of course, the

maximum in question has a finite angular width. We can determine this

width by locating the zeros in the interference pattern on either side of the

maximum. Let the zeros be located at θj ± δθj. Now, the maximum itself

corresponds to πN (d/λ) sin θj = πN j. Hence, the zeros correspond to

πN (d/λ) sin(θj ± δθj) = π (Nj ± 1) [i.e., they correspond to the first ze-

ros of the function sin[πN (d/λ) sin θ] on either side of the zero at θj—see

Equation (11.39)]. Taylor expanding to first-order in δθj, we obtain

δθj =
tan θj

Nj
. (11.43)

Hence, the maximum in question effectively extends from θj − δθj to θj +

δθj. Consider, now, the jth-order principal maximum associated with the

wavelength λ+∆λ interference pattern, which is located at θj +∆θj, where

sin(θj + ∆θj) = j (λ + ∆λ)/d—see Equation (11.40). Taylor expanding to

first-order in ∆θj, we obtain

∆θj = tan θj
∆λ

λ
. (11.44)

Clearly, in order for the spectroscope to resolve the incident light into its two

constituent wavelengths, at the jth spectral order, the angular spacing, ∆θj,

between the jth-order maxima associated with these two wavelengths must

be greater than the angular widths, δθj, of the maxima themselves. If this

is the case then the overall jth-order maximum will consist of two closely

spaced maxima, or “spectral lines” (centered at θj and θj + ∆θj). On the

other hand, if this is not the case then the two maxima will merge to form

a single maximum, and it will consequently not be possible to tell that the

incident light consists of a mixture of two different wavelengths. Thus, the

condition for the spectroscope to be able to resolve the spectral lines at the
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jth spectral order is ∆θj > δθj, or

∆λ

λ
>

1

N j
. (11.45)

We conclude that the resolving power of a diffraction grating spectroscope

increases as the number of illuminated lines (i.e., N) increases, and also as

the spectral order (i.e., j) increases. Note, incidentally, that there is no re-

solving power at the lowest (i.e., j = 0) spectral order, since the correspond-

ing principal maximum is located at θ = 0 irrespective of the wavelength of

the incident light. Moreover, there is a limit to how large j can become (i.e.,

a given diffraction grating, illuminated by light of a given wavelength, has a

finite number of principal maxima). This follows since sinθj cannot exceed

unity, so, according to (11.40), j cannot exceed d/λ.

11.5 Fourier Optics

Up to now, we have only considered the interference of monochromatic light

produced when a plane wave is incident on an opaque screen, coincident

with the plane x = 0, which has a number of narrow (i.e., δ ≪ λ, where δ

is the slit width) slits, running parallel to the z-axis, cut in it. Let us now

generalize our analysis to take slits of finite width (i.e., δ >
∼
λ) into account.

In order to achieve this goal, it is convenient to define the so-called aperture

function, F(y), of the screen. This function takes the value zero if the screen

is opaque at position y, and some constant positive value if it is transparent,

and is normalized such that
∫∞

−∞ F(y)dy = 1. Thus, for the case of a screen

with N identical slits of negligible width, located at y = yn, for n = 1,N,

the appropriate aperture function is

F(y) =
1

N

∑

y=1,N

δ(y− yn), (11.46)

where δ(y) is a Dirac delta function.

The wavefunction at the projection screen, generated by the above men-

tioned arrangement of slits, when the opaque screen is illuminated by a

plane wave of phase angle φ, wavenumber k, and angular frequency ω,

whose direction of propagation subtends an angle θ0 with the x-axis, is (see

the analysis in Sections 11.2 and 11.4)

ψ(θ, t) ∝ cos(φ+ kR−ωt)
∑

n=1,N

cos[kyn (sin θ− sin θ0)]. (11.47)
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Here, for the sake of simplicity, we have assumed that the arrangement of

slits is symmetric with respect to the plane y = 0, so that
∑

n=1,N sin(αyn) =

0 for any α. Now, using the well-known properties of the delta function [see

Equation (8.26)], expression (11.47) can also be written

ψ(θ, t) ∝ cos(φ+ kR−ωt) F̄(θ), (11.48)

where

F̄(θ) =

∫∞

−∞
F(y) cos[k (sin θ− sin θ0)y]dy. (11.49)

In the following, we shall assume that Equation (11.48) is a general result,

and is valid even when the slits in the opaque screen are of finite width (i.e.,

δ >
∼
λ). This assumption is equivalent to the assumption that each unblocked

section of the screen emits a cylindrical wave in the forward direction that

is in phase with the plane wave which illuminates it from behind. The latter

assumption is known as Huygen’s principle. (Huygen’s principle can actu-

ally be justified using advanced electromagnetic theory, but such a proof lies

well beyond the scope of this course.) Note that the interference/diffraction

function, F̄(θ), is just the Fourier transform of the aperture function, F(y).

This is an extremely powerful result. It implies that we can work out the

far-field interference/diffraction pattern associated with any arrangement

of parallel slits, of arbitrary width, by simply Fourier transforming the asso-

ciated aperture function. Of course, once we have calculated the interfer-

ence/diffraction function, F̄(θ), the intensity of the interference/diffraction

pattern appearing on the projection screen is readily obtained from

I(θ) ∝
[

F̄(θ)
]2
. (11.50)

11.6 Single-Slit Diffraction

Suppose that the opaque screen contains a single slit of finite width. In fact,

let the slit in question be of width δ, and extend from y = −δ/2 to y = δ/2.

Thus, the associated aperture function is

F(y) =

{
1/δ |y| ≤ δ/2
0 |y| > δ/2

. (11.51)

It follows from (11.49) that

F̄(θ) =
1

δ

∫δ/2

−δ/2

cos[k (sin θ− sin θ0)y]dy = sinc

[

π
δ

λ
(sin θ− sin θ0)

]

,

(11.52)
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Figure 11.9: Single-slit far-field diffraction pattern calculated for δ/λ = 20.

where sinc(x) ≡ sin(x)/x. Finally, assuming, for the sake of simplicity, that

θ, θ0 ≪ 1, which is most likely to be the case when δ ≫ λ, the diffraction

pattern appearing on the projection screen is specified by

I(θ) ∝ sinc2

[

π
δ

λ
(θ− θ0)

]

. (11.53)

Note, from L’Hopital’s rule, that sinc(0) = limx→0 sin x/x = limx→ 0 cos x/1 =

1. Furthermore, it is easily demonstrated that the zeros of the sinc(x) func-

tion occur at x = j π, where j is a non-zero integer.

Figure 11.9 shows a typical single-slit diffraction pattern calculated for

a case in which the slit width greatly exceeds the wavelength of the light.

Note that the pattern consists of a dominant central maximum, flanked by

subsidiary maxima of negligible amplitude. The situation is shown schemat-

ically in Figure 11.10. When the incident plane wave, whose direction of

motion subtends an angle θ0 with the x-axis, passes through the slit it is

effectively transformed into a divergent beam of light (where the beam cor-

responds to the central peak in Figure 11.9) that is centered on θ = θ0. The

angle of divergence of the beam, which is obtained from the first zero of the

single-slit diffraction function (11.53), is

δθ =
λ

δ
: (11.54)

i.e., the beam effectively extends from θ0 − δθ to θ0 + δθ. Thus, if the slit

width, δ, is very much greater than the wavelength, λ, of the light then the
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Figure 11.10: Single-slit diffraction at oblique incidence.

beam divergence is negligible, and the beam is, thus, governed by the laws

of geometric optics (according to which there is no beam divergence). On

the other hand, if the slit width is comparable with the wavelength of the

light then the beam divergence is significant, and the behavior of the beam

is, consequently, very different than that predicted by the laws of geometric

optics.

The diffraction of light is a very important physical phenomenon, since

it sets a limit on the angular resolution of optical instruments. For instance,

consider a telescope whose objective lens is of diameter D. When a plane

wave from a distant light source of negligible angular extent (e.g., a star)

enter the lens it is diffracted, and forms a divergent beam of angular width

λ/D. Thus, instead of being a point, the resulting image of the star is a disk

of finite angular width λ/D. Such a disk is known as an Airy disk. Suppose

that two stars are an angular distance ∆θ apart in the sky. As we have just

seen, when viewed through the telescope, each star appears as a disk of

angular extent δθ = λ/D. Clearly, if ∆θ > δθ then the two stars appear as

separate disks. On the other hand, if ∆θ < δθ then the two disks merge to

form a single disk, and it becomes impossible to tell that there are, in fact,

two stars. It follows that the maximum angular resolution of a telescope
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whose objective lens is of diameter D is

δθ ≃ λ

D
. (11.55)

This result is usually called the Rayleigh criterion. Note that the angular

resolution of the telescope increases (i.e., δθ decreases) as the diameter of

its objective lens increases.

11.7 Multi-Slit Diffraction

Suppose, finally, that the opaque screen in our interference/diffraction ap-

paratus contains N identical equally-spaced parallel slits of finite width. Let

the slit spacing be d, and the slit width δ, where δ < d. It follows that the

aperture function for the screen is written

F(y) =
1

N

∑

n=1,N

F2(y− yn), (11.56)

where

yn = [n− (N+ 1)/2]d, (11.57)

and

F2(y) =

{
1/δ |y| ≤ δ/2
0 |y| > δ/2

. (11.58)

Of course, F2(y) is the aperture function for a single slit, of finite width δ,

which is centered on θ = 0—see Equation (11.51).

Assuming normal incidence (i.e., θ0 = 0), the interference/diffraction

function, which is the Fourier transform of the aperture function, takes the

form [see Equation (11.49)]

F̄(θ) =

∫∞

−∞
F(y) cos(k sin θy)dy. (11.59)

Hence,

F̄(θ) =
1

N

∑

n=1,N

∫∞

−∞
F2(y− yn) cos(k sin θy)dy

=
1

N

∑

n=1,N

[

cos(k sin θyn)

∫∞

−∞
F2(y

′) cos(k sin θy ′)dy ′
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− sin(k sin θyn)

∫∞

−∞
F2(y

′) sin(k sin θy ′)dy ′

]

(11.60)

=





1

N

∑

n=1,N

cos(k sin θyn)





∫∞

−∞
F2(y

′) cos(k sin θy ′)dy ′,

where y ′ = y−yn. Here, we have made use of
∫∞

−∞ F2(y
′) sin(αy ′)dy ′ = 0,

for any α, which follows because F2(y
′) is even in y ′, whereas sin(αy ′) is

odd. We have also employed the standard identity cos(x−y) ≡ cos x cosy−

sin x siny. The above expression reduces to

F̄(θ) = F̄1(θ) F̄2(θ). (11.61)

Here [cf., Equation (11.39)],

F̄1(θ) =

∫∞

−∞
F1(y) cos(k sin θy)dy =

1

N

∑

n=1,N

cos(k sin θyn)

=
1

N

sin[πN (d/λ) sin θ]

sin[π (d/λ) sin θ]
, (11.62)

where

F1(y) =
1

N

∑

n=1,N

δ(y− yn), (11.63)

is the interference/diffraction function for N identical parallel slits of neg-

ligible width which are equally-spaced a distance d apart, and F1(y) is the

corresponding aperture function. Furthermore [cf., Equation (11.52)],

F̄2(θ) =

∫∞

−∞
F2(y) cos(k sin θy)dy = sinc[π (δ/λ) sin θ], (11.64)

is the interference/diffraction function for a single slit of width δ.

We conclude, from the above analysis, that the interference/diffraction

function for N identical equally-spaced parallel slits of finite width is the

product of the interference/diffraction function forN identical equally-spac-

ed parallel slits of negligible width, F̄1(θ), and the interference/diffraction

function for a single slit of finite width, F̄2(θ). We have already encountered

both of these functions. The former function (see Figure 11.8, which shows

[F̄1(θ)]
2) consists of a series of sharp maxima of equal amplitude located at

[see Equation (11.40)]

θj = sin−1

(

j
λ

d

)

, (11.65)
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Figure 11.11: Multi-slit far-field interference pattern calculated for N = 10,

d/λ = 10, and δ/λ = 2, assuming normal incidence.

where j is an integer. The latter function (see Figure 11.9, which shows

[F̄2(θ − θ0)]
2) is of order unity for |θ| <

∼
sin−1(λ/δ), and much less than

unity for |θ| >
∼

sin−1(λ/δ). It follows that the intensity of the interfer-

ence/diffraction pattern associated with N identical equally-spaced parallel

slits of finite width, which is given by

I(θ) ∝
[

F̄1(θ) F̄2(θ)
]2

∝
[

F̄1(θ)
]2 [

F̄1(θ)
]2
, (11.66)

is similar to that for N identical equally-spaced parallel slits of negligible

width, [F̄1(θ)]
2, except that the heights of the various maxima in the pattern

are modulated by [F̄2(θ)]
2. Hence, those maxima lying in the angular range

|θ| < sin−1(λ/δ) are of similar height, whereas those lying in the range |θ| >

sin−1(λ/δ) are of negligible height. This is illustrated in Figure 11.11, which

shows the multi-slit interference/diffraction pattern calculated for N = 10,

d/λ = 20, and δ/λ = 2. As expected, the maxima lying in the angular range

|θ| < sin−1(0.5) = π/6 have relatively large amplitudes, whereas those lying

in the range |θ| > π/6 have negligibly small amplitudes.

11.8 Exercises

1. (a) Consider the geometric series

S =
∑

n=0,N−1

zn,
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where z is a complex number. Demonstrate that

S =
1− zN

1− z
.

(b) Suppose that z = e i θ, where θ is real. Employing the well-known
identity

sin θ ≡ 1

2 i

(

e i θ − e−i θ
)

,

show that

S = e i (N−1) θ/2 sin(Nθ/2)

sin(θ/2)
.

(c) Finally, making use of de Moivre’s theorem,

e i n θ ≡ cos(nθ) + i sin(nθ),

demonstrate that
C =

∑

n=1,N

cos(αyn),

where
yn = [n− (N+ 1)/2]d,

evaluates to

C =
sin(Nαd/2)

sin(αd/2)
.

2. An interference experiment employs two narrow parallel slits of separation
0.25mm, and monochromatic light of wavelength λ = 500nm. Estimate the
minimum distance that the projection screen must be placed behind the slits
in order to obtain a far-field interference pattern.

3. A double-slit of slit separation 0.5mm is illuminated at normal incidence by
a parallel beam from a helium-neon laser that emits monochromatic light
of wavelength 632.8nm. A projection screen is located 5m behind the slit.
What is the separation of the central interference fringes on the screen?

4. Consider a double-slit interference experiment in which the slit spacing is
0.1mm, and the projection screen is located 50 cm behind the slits. Assuming
monochromatic illumination at normal incidence, if the observed separation
between neighboring interference maxima at the center of the projection
screen is 2.5mm, what is the wavelength of the light illuminating the slits?

5. What is the mean length of the classical wavetrain (wave packet) correspond-
ing to the light emitted by an atom whose excited state has a mean lifetime
τ ∼ 10−8 s? In an ordinary gas-discharge source, the excited atomic states do
not decay freely, but instead have an effective lifetime τ ∼ 10−9 s, due to col-
lisions and Doppler effects. What is the length of the corresponding classical
wavetrain?
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6. If a “monochromatic” incoherent “line” source of visible light is not really a
line, but has a finite width of 1mm, estimate the minimum distance it can be
placed in front of a double-slit, of slit separation 0.5mm, if the light from the
slit is to generate a clear interference pattern.

7. The visible emission spectrum of a sodium atom is dominated by a yellow line
which actually consists of two closely-spaced lines of wavelength 589.0nm
and 589.6nm. Demonstrate that a diffraction grating must have at least 328
lines in order to resolve this doublet at the third spectral order.

8. Consider a diffraction grating having 5000 lines per centimeter. Find the
angular locations of the principle maxima when the grating is illuminated at
normal incidence by (a) red light of wavelength 700 nm, and (b) violet light
of wavelength 400 nm.

9. Suppose that a monochromatic laser of wavelength 632.8nm emits a diffrac-
tion-limited beam of initial diameter 2 mm. Estimate how large a light spot
the beam would produce on the surface of the Moon (which is a mean dis-
tance 3.76× 105 km from the surface of the Earth). Neglect any effects of the
Earth’s atmosphere.

10. Estimate how far away an automobile is when you can only just barely re-
solve the two headlights with your eyes.

11. Venus has a diameter of about 8000 miles. When it is prominently visible in
the sky, in the early morning or late evening, it is about as far away as the
Sun: i.e., about 93 million miles. Now, Venus commonly appears larger than
a point to the unaided eye. Are we seeing the true size of Venus?

12. The world’s largest steerable radio telescope, at the National Radio Astron-
omy Observatory, Green Bank, West Virginia, consists of a parabolic disk
which is 300 ft in diameter. Estimate the angular resolution (in minutes of
an arc) of the telescope when it is observing the well-known 21-cm radiation
of hydrogen.

13. Estimate how large the lens of a camera carried by an artificial satellite orbit-
ing the Earth at an altitude of 150 miles would have to be in order to resolve
features on the Earth’s surface a foot in diameter.

14. Demonstrate that the secondary maxima in the far-field interference pattern
generated by three identical equally-spaced parallel slits of negligible width
are nine times less intense than the principle maxima.

15. Consider a double-slit interference/diffraction experiment in which the slit
spacing is d, and the slit width δ. Show that the intensity of the far-field
interference pattern, assuming normal incidence by monochromatic light of
wavelength λ, is

I(θ) ∝ cos2

(

π
d

λ
sin θ

)

sinc2

(

π
δ

λ
sin θ

)

.
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Plot the intensity pattern for d/λ = 8 and δ/λ = 2.
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12 Wave Mechanics

12.1 Introduction

According to classical physics (i.e., physics prior to the 20th century), par-

ticles and waves are two completely distinct classes of physical entity that

possess markedly different properties. 1) Particles are discrete: i.e., they

cannot be arbitrarily divided. In other words, it makes sense to talk about

one electron, or two electrons, but not about a third of an electron. Waves,

on the other hand, are continuous: i.e., they can be arbitrarily divided. In

other words, given a wave whose amplitude has a certain value, it makes

sense to talk about a similar wave whose amplitude is one third, or any

other fraction whatsoever, of this value. 2) Particles are highly localized in

space. For example, atomic nuclei have very small radii of order 10−15m,

whilst electrons act like point particles: i.e., they have no discernible spatial

extent. Waves, on the other hand, are non-localized in space. In fact, a wave

is defined to be a disturbance that is periodic in space, with some finite peri-

odicity length: i.e., wavelength. Hence, it is fairly meaningless to talk about

a disturbance being a wave unless it extends over a region of space that is

at least a few wavelengths in dimension.

The classical scenario, described above, in which particles and waves are

completely distinct from one another, had to be significantly modified in the

early decades of the 20th century. During this time period, physicists dis-

covered, much to their surprise, that, under certain circumstances, waves

act as particles, and particles act as waves. This bizarre phenomenon is

known as wave-particle duality. For instance, the photoelectric effect (see Sec-

tion 12.2) indicates that electromagnetic waves sometimes act like swarms

of massless particles called photons. Moreover, the phenomenon of elec-

tron diffraction by atomic lattices (see Section 12.3) implies that electrons

sometimes have wave-like properties. Note, however, that wave-particle

duality usually only manifests itself on atomic and sub-atomic lengthscales

(i.e., on lengthscales less than, or of order, 10−10 m—see Section 12.3). The

classical picture remains valid on significantly longer lengthscales. In other

words, on macroscopic lengthscales, waves only act like waves, particles only

act like particles, and there is no wave-particle duality. However, on mi-

croscopic lengthscales, classical mechanics, which governs the macroscopic

behavior of massive particles, and classical electrodynamics, which governs

the macroscopic behavior of electromagnetic fields—neither of which take
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wave-particle duality into account—must be replaced by new theories. The

theories in question are called quantum mechanics and quantum electrody-

namics, respectively. In the following, we shall discuss a simplified version of

quantum mechanics in which the microscopic dynamics of massive particles

(i.e., particles with finite mass) is described entirely in terms of wavefunc-

tions. This particular theory is known as wave mechanics.

12.2 Photoelectric Effect

The so-called photoelectric effect, by which a polished metal surface emits

electrons when illuminated by visible or ultra-violet light, was discovered

by Heinrich Hertz in 1887. The following facts regarding this effect can be

established via careful observation. First, a given surface only emits elec-

trons when the frequency of the light with which it is illuminated exceeds a

certain threshold value, which is a property of the metal. Second, the cur-

rent of photoelectrons, when it exists, is proportional to the intensity of the

light falling on the surface. Third, the energy of the photoelectrons is in-

dependent of the light intensity, but varies linearly with the light frequency.

These facts are inexplicable within the framework of classical physics.

In 1905, Albert Einstein proposed a radical new theory of light in order

to account for the photoelectric effect. According to this theory, light of fixed

angular frequencyω consists of a collection of indivisible discrete packages,

called quanta,1 whose energy is

E = h̄ω. (12.1)

Here, h̄ = 1.055 × 10−34 J s is a new constant of nature, known as Planck’s

constant. (Strictly speaking, it is Planck’s constant divided by 2π). Inciden-

tally, h̄ is called Planck’s constant, rather than Einstein’s constant, because

Max Planck first introduced the concept of the quantization of light, in 1900,

whilst trying to account for the electromagnetic spectrum of a black body

(i.e., a perfect emitter and absorber of electromagnetic radiation).

Suppose that the electrons at the surface of a piece of metal lie in a po-

tential well of depth W. In other words, the electrons have to acquire an

energy W in order to be emitted from the surface. Here, W is generally

called the work-function of the surface, and is a property of the metal. Sup-

pose that an electron absorbs a single quantum of light, otherwise known

as a photon. Its energy therefore increases by h̄ω. If h̄ω is greater than

1Plural of quantum: Latin neuter of quantus: how much.
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Figure 12.1: Variation of the kinetic energy K of photoelectrons with the wave

angular frequency ω.

W then the electron is emitted from the surface with the residual kinetic

energy

K = h̄ω−W. (12.2)

Otherwise, the electron remains trapped in the potential well, and is not

emitted. Here, we are assuming that the probability of an electron absorb-

ing two or more photons is negligibly small compared to the probability

of it absorbing a single photon (as is, indeed, the case for low intensity il-

lumination). Incidentally, we can determine Planck’s constant, as well as

the work-function of the metal, by plotting the kinetic energy of the emitted

photoelectrons as a function of the wave frequency, as shown in Figure 12.1.

This plot is a straight-line whose slope is h̄, and whose intercept with the

ω axis is W/h̄. Finally, the number of emitted electrons increases with the

intensity of the light because the more intense the light the larger the flux of

photons onto the surface. Thus, Einstein’s quantum theory of light is capable

of accounting for all three of the previously mentioned observational facts

regarding the photoelectric effect. In the following, we shall assume that

the central component of Einstein’s theory—namely, Equation (12.1)—is a

general result which applies to all particles, not just photons.
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12.3 Electron Diffraction

In 1927, George Paget Thomson discovered that if a beam of electrons is

made to pass through a thin metal film then the regular atomic array in the

metal acts as a sort of diffraction grating, so that when a photographic film,

placed behind the metal, is developed an interference pattern is discernible.

Of course, this implies that electrons have wave-like properties. Moreover,

the electron wavelength, λ, or, alternatively, the wavenumber, k = 2π/λ,

can be deduced from the spacing of the maxima in the interference pattern

(see Chapter 11). Thomson found that the momentum, p, of an electron is

related to its wavenumber, k, according to the following simple relation:

p = h̄ k. (12.3)

The associated wavelength, λ = 2π/k, is known as the de Broglie wavelength,

since the above relation was first hypothesized by Louis de Broglie in 1926.

In the following, we shall assume that Equation (12.3) is a general result

which applies to all particles, not just electrons.

It turns out that wave-particle duality only manifests itself on length-

scales less than, or of order, the de Broglie wavelength. Note, however,

that this wavelength is generally pretty small. For instance, the de Broglie

wavelength of an electron is

λe = 1.2× 10−9 [E(eV)]−1/2 m, (12.4)

where the electron energy is conveniently measured in units of electron-

volts (eV). (An electron accelerated from rest through a potential difference

of 1000V acquires an energy of 1000 eV, and so on. Electrons in atoms typ-

ically have energies in the range 10 to 100 eV.) Moreover, the de Broglie

wavelength of a proton is

λp = 2.9× 10−11 [E(eV)]−1/2 m. (12.5)

12.4 Representation of Waves via Complex Numbers

In mathematics, the symbol i is conventionally used to represent the square-

root of minus one: i.e., the solution of i2 = −1. Now, a real number, x (say),

can take any value in a continuum of different values lying between −∞
and +∞. On the other hand, an imaginary number takes the general form

iy, where y is a real number. It follows that the square of a real number
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is a positive real number, whereas the square of an imaginary number is a

negative real number. In addition, a general complex number is written

z = x+ iy, (12.6)

where x and y are real numbers. In fact, x is termed the real part of z, and

y the imaginary part of z. This is written mathematically as x = Re(z) and

y = Im(z). Finally, the complex conjugate of z is defined z∗ = x− iy.

Now, just as we can visualize a real number as a point on an infinite

straight-line, we can visualize a complex number as a point in an infinite

plane. The coordinates of the point in question are the real and imagi-

nary parts of the number: i.e., z ≡ (x, y). This idea is illustrated in Fig-

ure 12.2. The distance, r =
√

x2 + y2, of the representative point from the

origin is termed the modulus of the corresponding complex number, z. This

is written mathematically as |z| =
√

x2 + y2. Incidentally, it follows that

z z∗ = x2 + y2 = |z|2. The angle, θ = tan−1(y/x), that the straight-line

joining the representative point to the origin subtends with the real axis

is termed the argument of the corresponding complex number, z. This is

written mathematically as arg(z) = tan−1(y/x). It follows from standard

trigonometry that x = r cos θ, and y = r sin θ. Hence, z = r cos θ+ i r sin θ.

Complex numbers are often used to represent waves, and wavefunctions.

All such representations depend ultimately on a fundamental mathematical

identity, known as de Moivre’s theorem (see Exercise 12.1), which takes the

form

e i φ ≡ cosφ+ i sinφ, (12.7)

where φ is a real number. Incidentally, given that z = r cosθ + i r sin θ =

r [cosθ + i sin θ], where z is a general complex number, r = |z| its modulus,

and θ = arg(z) its argument, it follows from de Moivre’s theorem that any

complex number, z, can be written

z = r e i θ, (12.8)

where r = |z| and θ = arg(z) are real numbers.

Now, a one-dimensional wavefunction takes the general form

ψ(x, t) = A cos(φ+ k x−ωt), (12.9)

where A > 0 is the wave amplitude, φ the phase angle, k the wavenumber,

and ω the angular frequency. Consider the complex wavefunction

ψ(x, t) = ψ0 e i (kx−ωt), (12.10)
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Figure 12.2: Representation of a complex number as a point in a plane.

where ψ0 is a complex constant. We can write

ψ0 = A e i φ, (12.11)

where A is the modulus, and φ the argument, of ψ0. Hence, we deduce that

Re
[

ψ0 e i (kx−ωt)
]

= Re
[

A e i φ e i (kx−ωt)
]

= Re
[

A e i (φ+kx−ωt)
]

= ARe
[

e i (φ+kx−ωt)
]

. (12.12)

Thus, it follows from de Moirve’s theorem, and Equation (12.9), that

Re
[

ψ0 e i (kx−ωt)
]

= A cos(φ+ k x−ωt) = ψ(x, t). (12.13)

In other words, a general one-dimensional real wavefunction, (12.9), can be

represented as the real part of a complex wavefunction of the form (12.10).

For ease of notation, the “take the real part” aspect of the above expression

is usually omitted, and our general one-dimension wavefunction is simply

written

ψ(x, t) = ψ0 e i (kx−ωt). (12.14)
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The main advantage of the complex representation, (12.14), over the more

straightforward real representation, (12.9), is that the former enables us to

combine the amplitude, A, and the phase angle, φ, of the wavefunction into

a single complex amplitude, ψ0.

12.5 Schrödinger’s Equation

The basic premise of wave mechanics is that a massive particle of energy E

and linear momentum p, moving in the x-direction (say), can be represented

by a one-dimensional complex wavefunction of the form

ψ(x, t) = ψ0 e i (kx−ωt), (12.15)

where the complex amplitude, ψ0, is arbitrary, whilst the wavenumber, k,

and the angular frequency, ω, are related to the particle momentum, p,

and energy, E, via the fundamental relations (12.3) and (12.1), respectively.

Now, the above one-dimensional wavefunction is, presumably, the solution

of some one-dimensional wave equation that determines how the wavefunc-

tion evolves in time. As described below, we can guess the form of this wave

equation by drawing an analogy with classical physics.

A classical particle of mass m, moving in a one-dimensional potential

U(x), satisfies the energy conservation equation

E = K+U, (12.16)

where

K =
p2

2m
(12.17)

is the particle’s kinetic energy. Hence,

Eψ = (K+U)ψ (12.18)

is a valid, but not obviously useful, wave equation.

However, it follows from Equations (12.15) and (12.1) that

∂ψ

∂t
= −iωψ0 e i (kx−ωt) = −i

E

h̄
ψ, (12.19)

which can be rearranged to give

Eψ = i h̄
∂ψ

∂t
. (12.20)



220 OSCILLATIONS AND WAVES

Likewise, from (12.15) and (12.3),

∂2ψ

∂x2
= −k2ψ0 e i (kx−ωt) = −

p2

h̄2
ψ, (12.21)

which can be rearranged to give

p2

2m
ψ = −

h̄2

2m

∂2ψ

∂x2
. (12.22)

Thus, combining Equations (12.18), (12.20), and (12.22), we obtain

i h̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
+U(x)ψ. (12.23)

This equation, which is known as Schrödinger’s equation—since it was first

formulated by Erwin Schrödinder in 1926—is the fundamental equation of

wave mechanics.

Now, for a massive particle moving in free space (i.e., U = 0), the com-

plex wavefunction (12.15) is a solution of Schrödinger’s equation, (12.23),

provided that

ω =
h̄

2m
k2. (12.24)

The above expression can be thought of as the dispersion relation (see Sec-

tion 5.1) for matter waves in free space. The associated phase velocity (see

Section 7.2) is

vp =
ω

k
=
h̄ k

2m
=

p

2m
, (12.25)

where use has been made of (12.3). Note that this phase velocity is only

half the classical velocity, v = p/m, of a massive (non-relativistic) particle.

12.6 Probability Interpretation of the Wavefunction

After many false starts, physicists in the early 20th century came to the

conclusion that the only self-consistent physical interpretation of a particle

wavefunction, which is consistent with experimental observations, is proba-

bilistic in nature. To be more exact, if ψ(x, t) is the complex wavefunction of

a given particle, moving in one-dimension along the x-axis, then the proba-

bility of finding the particle between x and x+ dx at time t is

P(x, t) = |ψ(x, t)|2dx. (12.26)
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A probability is, of course, a real number lying in the range 0 to 1. An event

which has a probability 0 is impossible. On the other hand, an event which

has a probability 1 is certain to occur. An event which has an probability 1/2

(say) is such that in a very large number of identical trials the event occurs

in half of the trials. Now, we can interpret

P(t) =

∫∞

−∞
|ψ(x, t)|2dx (12.27)

as the probability of the particle being found anywhere between x = −∞
and x = +∞ at time t. This follows, via induction, from the fundamental

result in probability theory that the probability of the occurrence of one or

other of two mutually exclusive events (such as the particle being found in

two non-overlapping regions) is the sum (or integral) of the probabilities of

the individual events. (For example, the probability of throwing a 1 on a

six-sided die is 1/6. Likewise, the probability of throwing a 2 is 1/6. Hence,

the probability of throwing a 1 or a 2 is 1/6 + 1/6 = 1/3.) Now, assuming

that the particle exists, it is certain that it will be found somewhere between

x = −∞ and x = +∞ at time t. Since a certain event has probability 1, our

probability interpretation of the wavefunction is only tenable provided that
∫∞

−∞
|ψ(x, t)|2dx = 1 (12.28)

at all times. A wavefunction which satisfies the above condition is said to be

properly normalized.

Suppose that we have a wavefunction, ψ(x, t), which is such that it satis-

fies the normalization condition (12.28) at time t = 0. Furthermore, let the

wavefunction evolve in time according to Schrödinger’s equation, (12.23).

Our probability interpretation of the wavefunction only makes sense if the

normalization condition remains satisfied at all subsequent times. This fol-

lows because if the particle is certain to be found somewhere on the x-axis

(which is the interpretation put on the normalization condition) at time

t = 0 then it is equally certain to be found somewhere on the x-axis at a

later time (since we are not presently dealing with any physical process by

which particles can be created or destroyed). Thus, it is necessary for us to

demonstrate that Schrödinger’s equation preserves the normalization of the

wavefunction.

Taking Schrödinger’s equation, and multiplying it by ψ∗ (the complex

conjugate of the wavefunction), we obtain

i h̄
∂ψ

∂t
ψ∗ = −

h̄2

2m

∂2ψ

∂x2
ψ∗ +U(x) |ψ|2. (12.29)
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The complex conjugate of the above expression yields

− i h̄
∂ψ∗

∂t
ψ = −

h̄2

2m

∂2ψ∗

∂x2
ψ+U(x) |ψ|2. (12.30)

Here, we have made use of the easily demonstrated results (ψ∗)∗ = ψ and

i∗ = −i, as well as the fact that U is real. Taking the difference between the

above two expressions, we obtain

i h̄

(

∂ψ

∂t
ψ∗ +

∂ψ∗

∂t
ψ

)

= −
h̄2

2m

(

∂2ψ

∂x2
ψ∗ −

∂2ψ∗

∂x2
ψ

)

, (12.31)

which can be written

i h̄
∂|ψ|2

∂t
= −

h̄2

2m

∂

∂x

(

∂ψ

∂x
ψ∗ −

∂ψ∗

∂x
ψ

)

. (12.32)

Integrating in x, we get

i h̄
d

dt

∫∞

−∞
|ψ|2dx = −

h̄2

2m

[

∂ψ

∂x
ψ∗ −

∂ψ∗

∂x
ψ

]∞

−∞
. (12.33)

Finally, assuming that the wavefunction is localized in space: i.e.,

|ψ(x, t)| → 0 as |x| → ∞, (12.34)

we obtain
d

dt

∫∞

−∞
|ψ|2dx = 0. (12.35)

It follows, from the above analysis, that if a localized wavefunction is

properly normalized at t = 0 (i.e., if
∫∞

−∞ |ψ(x, 0)|2dx = 1) then it will re-

main properly normalized as it evolves in time according to Schrödinger’s

equation. Incidentally, a wavefunction which is not localized cannot be

properly normalized, since its normalization integral
∫∞

−∞ |ψ|2dx is neces-

sarily infinite. For such a wavefunction, |ψ(x, t)|2dx gives the relative prob-

ability, rather than the absolute probability, of finding the particle between

x and x+ dx at time t: i.e., [cf., Equation (12.26)]

P(x, t) ∝ |ψ(x, t)|2dx. (12.36)
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12.7 Wave Packets

As we have seen, the wavefunction of a massive particle of momentum p

and energy E, moving in free space along the x-axis, can be written

ψ(x, t) = ψ̄ e i (kx−ωt), (12.37)

where k = p/h̄, ω = E/h̄, and ψ̄ is a complex constant. Here, ω and k are

linked via the matter wave dispersion relation (12.24). Expression (12.37)

represents a plane wave which propagates in the x-direction with the phase

velocity vp = ω/k. However, according to (12.25), this phase velocity is

only half of the classical velocity of a massive particle.

Now, according to the discussion in the previous section, the most rea-

sonable physical interpretation of the wavefunction is that |ψ(x, t)|2dx is

proportional to (assuming that the wavefunction is not properly normal-

ized) the probability of finding the particle between x and x + dx at time t.

However, the modulus squared of the wavefunction (12.37) is |ψ̄|2, which is

a constant that depends on neither x nor t. In other words, the above wave-

function represents a particle which is equally likely to be found anywhere on

the x-axis at all times. Hence, the fact that this wavefunction propagates at

a phase velocity which does not correspond to the classical particle velocity

does not have any observable consequences.

So, how can we write the wavefunction of a particle which is localized in

x: i.e., a particle which is more likely to be found at some positions on the

x-axis than at others? It turns out that we can achieve this goal by forming

a linear combination of plane waves of different wavenumbers: i.e.,

ψ(x, t) =

∫∞

−∞
ψ̄(k) e i (kx−ωt)dk. (12.38)

Here, ψ̄(k) represents the complex amplitude of plane waves of wavenum-

ber k within this combination. In writing the above expression, we are

relying on the assumption that matter waves are superposable: i.e., it is pos-

sible to add two valid wave solutions to form a third valid wave solution.

The ultimate justification for this assumption is that matter waves satisfy the

linear wave equation (12.23).

Now, there is a fundamental mathematical theorem, known as Fourier’s

theorem (see Section 8.1 and Exercise 12.2), which states that if

f(x) =

∫∞

−∞
f̄(k) e i kxdk, (12.39)
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then

f̄(k) =
1

2π

∫∞

−∞
f(x) e−i kxdx. (12.40)

Here, f̄(k) is known as the Fourier transform of the function f(x). We can

use Fourier’s theorem to find the k-space function ψ̄(k) which generates any

given x-space wavefunction ψ(x) at a given time.

For instance, suppose that at t = 0 the wavefunction of our particle takes

the form

ψ(x, 0) ∝ exp

[

ik0x−
(x− x0)

2

4 (∆x)2

]

. (12.41)

Thus, the initial probability distribution for the particle’s x-coordinate is

|ψ(x, 0)|2 ∝ exp

[

−
(x− x0)

2

2 (∆x)2

]

. (12.42)

This particular distribution is called a Gaussian distribution (see Section 8.1),

and is plotted in Figure 12.3. It can be seen that a measurement of the par-

ticle’s position is most likely to yield the value x0, and very unlikely to yield

a value which differs from x0 by more than 3∆x. Thus, (12.41) is the wave-

function of a particle which is initially localized in some region of x-space,

centered on x = x0, whose width is of order ∆x. This type of wavefunction

is known as a wave packet. Of course, a wave packet is just another name

for a wave pulse (see Chapter 8).

Now, according to Equation (12.38),

ψ(x, 0) =

∫∞

−∞
ψ̄(k) e i kxdk. (12.43)

Hence, we can employ Fourier’s theorem to invert this expression to give

ψ̄(k) ∝
∫∞

−∞
ψ(x, 0) e−i kxdx. (12.44)

Making use of Equation (12.41), we obtain

ψ̄(k) ∝ e−i (k−k0)x0

∫∞

−∞
exp

[

−i (k− k0) (x− x0) −
(x− x0)

2

4 (∆x)2

]

dx. (12.45)

Changing the variable of integration to y = (x − x0)/(2∆x), the above ex-

pression reduces to

ψ̄(k) ∝ e−i kx0−β2/4

∫∞

−∞
e−(y−y0)2

dy, (12.46)
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Figure 12.3: A one-dimensional Gaussian probability distribution.

where β = 2 (k−k0)∆x and y0 = −iβ/2. The integral in the above equation

is now just a number, as can easily be seen by making the second change of

variable z = y− y0. Hence, we deduce that

ψ̄(k) ∝ exp

[

−ik x0 −
(k− k0)

2

4 (∆k)2

]

, (12.47)

where

∆k =
1

2∆x
. (12.48)

Now, if |ψ(x, 0)|2dx is proportional to the probability of a measurement

of the particle’s position yielding a value in the range x to x + dx at time

t = 0 then it stands to reason that |ψ̄(k)|2dk is proportional to the proba-

bility of a measurement of the particle’s wavenumber yielding a value in the

range k to k + dk. (Recall that p = h̄ k, so a measurement of the particle’s

wavenumber, k, is equivalent to a measurement of the particle’s momentum,

p). According to Equation (12.47),

|ψ̄(k)|2 ∝ exp

[

−
(k− k0)

2

2 (∆k)2

]

. (12.49)

Note that this probability distribution is a Gaussian in k-space—see Equa-

tion (12.42) and Figure 12.3. Hence, a measurement of k is most likely to
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yield the value k0, and very unlikely to yield a value which differs from k0

by more than 3∆k. Incidentally, as was previously mentioned in Section 8.1,

a Gaussian is the only mathematical function in x-space which has the same

form as its Fourier transform in k-space.

We have just seen that a wave packet with a Gaussian probability dis-

tribution of characteristic width ∆x in x-space [see Equation (12.42)] is

equivalent to a wave packet with a Gaussian probability distribution of char-

acteristic width ∆k in k-space [see Equation (12.49)], where

∆x∆k =
1

2
. (12.50)

This illustrates an important property of wave packets. Namely, in order

to construct a packet which is highly localized in x-space (i.e., with small

∆x) we need to combine plane waves with a very wide range of different

k-values (i.e., with large ∆k). Conversely, if we only combine plane waves

whose wavenumbers differ by a small amount (i.e., if ∆k is small) then the

resulting wave packet is highly extended in x-space (i.e., ∆x is large).

Now, according to Section 9.1, a wave packet made up of a superposition

of plane waves that is strongly peaked around some central wavenumber k0

propagates at the group velocity,

vg =
dω(k0)

dk
, (12.51)

rather than the phase velocity, vp = (ω/k)k0
, assuming that all of the con-

stituent plane waves satisfy a dispersion relation of the form ω = ω(k).

Now, for the case of matter waves, the dispersion relation is (12.24). Thus,

the associated group velocity is

vg =
h̄ k0

m
=
p

m
, (12.52)

where p = h̄ k0. Note that this velocity is identical to the classical velocity

of a (non-relativistic) massive particle. We conclude that the matter wave

dispersion relation (12.24) is perfectly consistent with classical physics, as

long as we recognize that particles must be identified with wave packets

(which propagate at the group velocity) rather than plane waves (which

propagate at the phase velocity).

In Section 9.1, it was also demonstrated that the spatial extent of a wave

packet of initial extent (∆x)0 grows, as the packet evolves in time, like

∆x ≃ (∆x)0 +
d2ω(k0)

dk2

t

(∆x)0

, (12.53)
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where k0 is the packet’s central wavenumber. Thus, it follows from the

matter wave dispersion relation, (12.24), that the width of a particle wave

packet grows in time as

∆x ≃ (∆x)0 +
h̄

m

t

(∆x)0

. (12.54)

For example, if an electron wave packet is initially localized in a region

of atomic dimensions (i.e., ∆x ∼ 10−10 m) then the width of the packet

doubles in about 10−16 s. Clearly, particle wave packets spread out very

rapidly indeed (in free space).

12.8 Heisenberg’s Uncertainty Principle

According to the analysis contained in the previous section, a particle wave

packet that is initially localized in x-space, with characteristic width ∆x, is

also localized in k-space, with characteristic width ∆k = 1/(2∆x). However,

as time progresses, the width of the wave packet in x-space increases [see

Equation (12.54)], whilst that of the packet in k-space stays the same [since

ψ̄(k) is given by Equation (12.44) at all times.] Hence, in general, we can

say that

∆x∆k >
∼

1

2
. (12.55)

Furthermore, we can interpret ∆x and ∆k as characterizing our uncertainty

regarding the values of the particle’s position and wavenumber, respectively.

Now, a measurement of a particle’s wavenumber, k, is equivalent to a

measurement of its momentum, p, since p = h̄ k. Hence, an uncertainty

in k of order ∆k translates to an uncertainty in p of order ∆p = h̄ ∆k. It

follows, from the above inequality, that

∆x∆p >
∼

h̄

2
. (12.56)

This is the famous Heisenberg uncertainty principle, first proposed by Werner

Heisenberg in 1927. According to this principle, it is impossible to simulta-

neously measure the position and momentum of a particle (exactly). Indeed,

a good knowledge of the particle’s position implies a poor knowledge of its

momentum, and vice versa. Note that the uncertainty principle is a direct

consequence of representing particles as waves.

It is apparent, from expression (12.54), that a particle wave packet of

initial spatial extent (∆x)0 spreads out in such a manner that its spatial
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extent becomes

∆x ∼
h̄ t

m (∆x)0

(12.57)

at large t. It is easily demonstrated that this spreading of the wave packet

is a consequence of the uncertainty principle. Indeed, since the initial un-

certainty in the particle’s position is (∆x)0, it follows that the uncertainty

in its momentum is of order h̄/(∆x)0. This translates to an uncertainty in

velocity of ∆v = h̄/[m (∆x)0]. Thus, if we imagine that part of the wave

packet propagates at v0 + ∆v/2, and another part at v0 − ∆v/2, where v0

is the mean propagation velocity, then it is clear that the wave packet will

spread out as time progresses. Indeed, at large t, we expect the width of the

wave packet to be

∆x ∼ ∆v t ∼
h̄ t

m (∆x)0

, (12.58)

which is identical to Equation (12.57). Evidently, the spreading of a particle

wave packet, as time progresses, should be interpreted as representing an

increase in our uncertainty regarding the particle’s position, rather than an

increase in the spatial extent of the particle itself.

12.9 Collapse of the Wavefunction

Consider a spatially extended wavefunction, ψ(x, t). According to our usual

interpretation, |ψ(x, t)|2dx is proportional to the probability of a measure-

ment of the particle’s position yielding a value in the range x to x + dx at

time t. Thus, if the wavefunction is extended then there is a wide range

of likely values that such a measurement could give. Suppose, however,

that we make a measurement of the particle’s position, and obtain the value

x0. We now know that the particle is located at x = x0. If we make another

measurement, immediately after the first one, then what value would we ex-

pect to obtain? Well, common sense tells us that we should obtain the same

value, x0, since the particle cannot have shifted position appreciably in an

infinitesimal time interval. Thus, immediately after the first measurement,

a measurement of the particle’s position is certain to give the value x0, and

has no chance of giving any other value. This implies that the wavefunction

must have collapsed to some sort of “spike” function, centered on x = x0.

This idea is illustrated in Figure 12.4. Of course, as soon as the wavefunc-

tion collapses, it starts to expand again, as described in the previous section.

Thus, the second measurement must be made reasonably quickly after the

first one, otherwise the same result will not necessarily be obtained.
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Figure 12.4: Collapse of the wavefunction upon measurement of x.
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The above discussion illustrates an important point in wave mechanics.

Namely, that the wavefunction of a massive particle changes discontinuously

(in time) whenever a measurement of the particle’s position is made. We

conclude that there are two types of time evolution of the wavefunction in

wave mechanics. First, there is a smooth evolution which is governed by

Schrödinger’s equation. This evolution takes place between measurements.

Second, there is a discontinuous evolution which takes place each time a

measurement is made.

12.10 Stationary States

Consider separable solutions to Schrödinger’s equation of the form

ψ(x, t) = ψ(x) e−i ωt. (12.59)

According to (12.20), such solutions have definite energies E = h̄ω. For

this reason, they are usually written

ψ(x, t) = ψ(x) e−i (E/h̄)t. (12.60)

Now, the probability of finding the particle between x and x + dx at time t

is

P(x, t) = |ψ(x, t)|2dx = |ψ(x)|2dx. (12.61)

Note that this probability is time independent. For this reason, wavefunctions

of the form (12.60) are known as stationary states. Moreover, ψ(x) is called

a stationary wavefunction. Substituting (12.60) into Schrödinger’s equation,

(12.23), we obtain the following expression for ψ(x):

−
h̄2

2m

d2ψ

dx2
+U(x)ψ = Eψ. (12.62)

Not surprisingly, the above equation is called the time independent Schröd-

inger equation.

Consider a particle trapped in a one-dimensional square potential well,

of infinite depth, which is such that

U(x) =

{
0 0 ≤ x ≤ a
∞ otherwise

. (12.63)

The particle is obviously excluded from the region x < 0 or x > a, so ψ = 0

in this region (i.e., there is zero probability of finding the particle outside
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the well). Within the well, a particle of definite energy E has a stationary

wavefunction, ψ(x), which satisfies

−
h̄2

2m

d2ψ

dx2
= Eψ. (12.64)

The boundary conditions are

ψ(0) = ψ(a) = 0. (12.65)

This follows because ψ = 0 in the region x < 0 or x > a, and ψ(x) must be

continuous [since a discontinuous wavefunction would generate a singular

term (i.e., the term involving d2ψ/dx2) in the time independent Schrödinger

equation, (12.62), which could not be balanced, even by an infinite poten-

tial].

Let us search for solutions to (12.64) of the form

ψ(x) = ψ0 sin(k x), (12.66)

where ψ0 is a constant. It follows that

h̄2k2

2m
= E. (12.67)

The solution (12.66) automatically satisfies the boundary condition ψ(0) =

0. The second boundary condition, ψ(a) = 0, leads to a quantization of the

wavenumber: i.e.,

k = n
π

a
, (12.68)

where n = 1, 2, 3, etc. (Note that a “quantized” quantity is one which

can only take discrete values.) According to (12.67), the energy is also

quantized. In fact, E = En, where

En = n2 h̄2π2

2ma2
. (12.69)

Thus the allowed wavefunctions for a particle trapped in a one-dimensional

square potential well of infinite depth are

ψn(x, t) = An sin

(

nπ
x

a

)

exp

(

−in2 E1

h̄
t

)

, (12.70)

where n is a positive integer, and An a constant. Note that we cannot have

n = 0, since, in this case, we obtain a null wavefunction: i.e., ψ = 0, every-

where. Furthermore, if n takes a negative integer value then it generates
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exactly the same wavefunction as the corresponding positive integer value

(assuming ψ−n = −ψn).

The constant An, appearing in the above wavefunction, can be deter-

mined from the constraint that the wavefunction be properly normalized.

For the problem presently under consideration, the normalization condition

(12.28) reduces to ∫a

0

|ψ(x)|2dx = 1. (12.71)

It follows from (12.70) that |An|2 = 2/a. Hence, a properly normalized

version of the wavefunction (12.70) is

ψn(x, t) =

(

2

a

)1/2

sin

(

nπ
x

a

)

exp

(

−in2 E1

h̄
t

)

. (12.72)

Figure 12.5 shows the first four properly normalized stationary wavefunc-

tions for a particle trapped in a one-dimensional square potential well of

infinite depth: i.e., ψn(x) =
√

2/a sin(nπx/a), for n = 1 to 4.

Note that the stationary wavefunctions that we have just found are, in

essence, standing wave solutions to Schrödinger’s equation. Indeed, the

wavefunctions are very similar in form to the classical standing wave so-

lutions discussed in Chapters 5 and 6.

At first sight, it seems rather strange that the lowest energy that a par-

ticle trapped in a one-dimensional potential well can have is not zero, as

would be the case in classical mechanics, but rather E1 = h̄2π2/(2ma2).

In fact, as explained in the following, this residual energy is a direct con-

sequence of Heisenberg’s uncertainty principle. Now, a particle trapped in a

one-dimensional well of width a is likely to be found anywhere inside the

well. Thus, the uncertainty in the particle’s position is ∆x ∼ a. It follows

from the uncertainty principle, (12.56), that

∆p >
∼

h̄

2∆x
∼
h̄

a
. (12.73)

In other words, the particle cannot have zero momentum. In fact, the par-

ticle’s momentum must be at least p ∼ h̄/a. However, for a free particle,

E = p2/2m. Hence, the residual energy associated with the particle’s resid-

ual momentum is

E ∼
p2

m
∼
h̄2

ma2
∼ E1. (12.74)

This type of residual energy, which is often found in quantum mechanical

systems, and has no equivalent in classical mechanics, is generally known

as zero point energy.
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Figure 12.5: First four stationary wavefunctions for a particle trapped in a

one-dimensional square potential well of infinite depth.
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12.11 Three-Dimensional Wave Mechanics

Up to now, we have only discussed wave mechanics for a particle moving in

one dimension. However, the generalization to a particle moving in three

dimensions is fairly straightforward. A massive particle moving in three

dimensions has a complex wavefunction of the form [cf., (12.15)]

ψ(x, y, z, t) = ψ0 e i (k·r−ωt), (12.75)

where ψ0 is a complex constant, and r = (x, y, z). Here, the wavevector, k,

and the angular frequency, ω, are related to the particle momentum, p, and

energy, E, according to [cf., (12.3)]

p = h̄ k, (12.76)

and [cf., (12.1)]

E = h̄ω, (12.77)

respectively. Generalizing the analysis of Section 12.5, the three-dimensional

version of Schrödinger’s equation is easily shown to take the form [cf., (12.23)]

i h̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ+U(r)ψ, (12.78)

where the differential operator

∇2 ≡ ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(12.79)

is known as the Laplacian. The interpretation of a three-dimensional wave-

function is that the probability of finding the particle between x and x+ dx,

between y and y+ dy, and between z and z+ dz, at time t is [cf., (12.26)]

P(x, y, z, t) = |ψ(x, y, z, t)|2dxdydz. (12.80)

Moreover, the normalization condition for the wavefunction becomes [cf.,

(12.28)] ∫∞

−∞

∫∞

−∞

∫∞

−∞
|ψ(x, y, z, t)|2dxdydz = 1. (12.81)

Incidentally, it is easily demonstrated that Schrödinger’s equation, (12.78),

preserves the normalization condition, (12.81), of a localized wavefunction.
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Heisenberg’s uncertainty principle generalizes to [cf., (12.56)]

∆x∆px
>
∼

h̄

2
, (12.82)

∆y∆py
>
∼

h̄

2
, (12.83)

∆z∆pz
>
∼

h̄

2
. (12.84)

Finally, a stationary state of energy E is written [cf., (12.60)]

ψ(x, y, z, t) = ψ(x, y, z) e−i (E/h̄)t, (12.85)

where the stationary wavefunction, ψ(x, y, z), satisfies [cf., (12.62)]

−
h̄2

2m
∇2ψ+U(r)ψ = Eψ. (12.86)

As an example of a three-dimensional problem in wave mechanics, con-

sider a particle trapped in a square potential well of infinite depth which is

such that

U(x, y, z) =

{
0 0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a
∞ otherwise

. (12.87)

Within the well, the stationary wavefunction, ψ(x, y, z), satisfies

−
h̄2

2m
∇2ψ = Eψ, (12.88)

subject to the boundary conditions

ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0, (12.89)

and

ψ(a, y, z) = ψ(x, a, z) = ψ(x, y, a) = 0, (12.90)

since ψ = 0 outside the well. Let us try a seperable wavefunction of the

form

ψ(x, y, z) = ψ0 sin(kxx) sin(kyy) sin(kz z). (12.91)

This expression automatically satisfies the boundary conditions (12.89). The

remaining boundary conditions, (12.90), are satisfied provided

kx = nx
π

a
, (12.92)

ky = ny
π

a
, (12.93)

kz = nz
π

a
, (12.94)



236 OSCILLATIONS AND WAVES

where nx, ny, and nz are (independent) positive integers. Substitution of

the wavefunction (12.91) into Equation (12.88) yields

E =
h̄2

2m
(k2

x + k2
y + k2

z ). (12.95)

Thus, it follows from Equations (12.92)–(12.94) that the particle energy is

quantized, and that the allowed energy levels are

Enx,ny,nz =
h̄2

2ma2
(n2

x + n2
y + n2

z ). (12.96)

The properly normalized [see Equation (12.81)] stationary wavefunctions

corresponding to these energy levels are

ψnx,ny,nz(x, y, z) =

(

2

a

)3/2

sin

(

nxπ
x

a

)

sin

(

nyπ
y

a

)

sin

(

nzπ
z

a

)

.

(12.97)

As is the case for a particle trapped in a one-dimensional potential well,

the lowest energy level for a particle trapped in a three-dimensional well is

not zero, but rather

E1,1,1 = 3 E1. (12.98)

Here,

E1 =
h̄2

2ma2
. (12.99)

is the ground state (i.e., the lowest energy state) energy in the one-dimension-

al case. Now, it is clear, from (12.96), that distinct permutations of nx, ny,

and nz which do not alter the value of n2
x + n2

y + n2
z also do not alter the

energy. In other words, in three dimensions it is possible for distinct wave-

functions to be associated with the same energy level. In this situation, the

energy level is said to be degenerate. The ground state energy level, 3 E1, is

non-degenerate, since the only combination of (nx, ny, nz) which gives this

energy is (1, 1, 1). However, the next highest energy level, 6 E1, is degener-

ate, since it is obtained when (nx, ny, ny) take the values (2, 1, 1), or (1, 2,

1), or (1, 1, 2). In fact, it is not difficult to see that a non-degenerate energy

level corresponds to a case where the three mode numbers (i.e., nx, ny, and

nz) all have the same value, whereas a three-fold degenerate energy level

corresponds to a case where only two of the mode numbers have the same

value, and, finally, a six-fold degenerate energy level corresponds to a case

where the mode numbers are all different.
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12.12 Particle in a Finite Potential Well

Consider, now, a particle of mass m trapped in a one-dimensional square

potential well of width a and finite depth V > 0. In fact, suppose that the

potential takes the form

U(x) =

{
−V |x| ≤ a/2
0 otherwise

. (12.100)

Here, we have adopted the standard convention that U(x) → 0 as |x| → ∞.

This convention is useful because, just like in classical mechanics, a particle

whose overall energy, E, is negative is bound in the well (i.e., it cannot

escape to infinity), whereas a particle whose overall energy is positive is

unbound. Since we are interested in bound particles, we shall assume that

E < 0. We shall also assume that E+ V > 0, in order to allow the particle to

have a positive kinetic energy inside the well.

Let us search for a stationary state

ψ(x, t) = ψ(x) e−i (E/h̄)t, (12.101)

whose stationary wavefunction,ψ(x), satisfies the time independent Schröd-

inger equation, (12.62). Now, it is easily appreciated that the solutions to

(12.62) in the symmetric [i.e., U(−x) = U(x)] potential (12.100) must be

either totally symmetric [i.e., ψ(−x) = ψ(x)] or totally antisymmetric [i.e.,

ψ(−x) = −ψ(x)]. Moreover, the solutions must satisfy the boundary condi-

tion

ψ → 0 as |x| → ∞, (12.102)

otherwise they would not correspond to bound states.

Let us, first of all, search for a totally symmetric solution. In the region

to the left of the well (i.e., x < −a/2), the solution of the time independent

Schrödinger equation which satisfies the boundary condition ψ → 0 as x →
−∞ is

ψ(x) = A eqx, (12.103)

where

q =

√

2m (−E)

h̄2
, (12.104)

and A is a constant. By symmetry, the solution in the region to the right of

the well (i.e., x > a/2) is

ψ(x) = A e−qx. (12.105)
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The solution inside the well (i.e., |x| ≤ a/2) which satisfies the symmetry

constraint ψ(−x) = ψ(x) is

ψ(x) = B cos(k x), (12.106)

where

k =

√

2m (V + E)

h̄2
, (12.107)

and B is a constant. The appropriate matching conditions at the edges of the

well (i.e., x = ±a/2) are that ψ(x) and dψ(x)/dx both be continuous [since

a discontinuity in the wavefunction, or its first derivative, would generate a

singular term in the time independent Schrödinger equation (i.e., the term

involving d2ψ/dx2) which could not be balanced]. The matching conditions

yield

q = k tan(ka/2). (12.108)

Let y = ka/2. It follows that

E = E0y
2 − V, (12.109)

where

E0 =
2 h̄2

ma2
. (12.110)

Moreover, Equation (12.108) becomes

√

λ− y2

y
= tany, (12.111)

with

λ =
V

E0

. (12.112)

Here, y must lie in the range 0 < y <
√
λ, in order to ensure that E lies in

the range −V < E < 0.

Now, the solutions of Equation (12.111) correspond to the intersection

of the curve
√

λ− y2/y with the curve tany. Figure 12.6 shows these two

curves plotted for a particular value of λ. In this case, the curves intersect

twice, indicating the existence of two totally symmetric bound states in the

well. Moreover, it is clear, from the figure, that as λ increases (i.e., as the

well becomes deeper) there are more and more bound states. However, it

is also apparent that there is always at least one totally symmetric bound

state, no matter how small λ becomes (i.e., no matter how shallow the well
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Figure 12.6: The curves tany (solid) and
√

λ− y2/y (dashed), calculated for

λ = 1.5 π2. The latter curve takes the value 0 when y >
√
λ.

becomes). In the limit λ≫ 1 (i.e., the limit in which the well is very deep),

the solutions to Equation (12.111) asymptote to the roots of tany = ∞.

This gives y = (2n− 1)π/2, where n is a positive integer, or

k = (2n− 1)
π

a
. (12.113)

These solutions are equivalent to the odd-n infinite-depth potential well

solutions specified by Equation (12.68).

For the case of a totally antisymmetric bound state, similar analysis to

the above yields (see Exercise 12.3)

−
y

√

λ− y2
= tany. (12.114)

The solutions of this equation correspond to the intersection of the curve

tany with the curve −y/
√

λ− y2. Figure 12.7 shows these two curves plot-

ted for the same value of λ as that used in Figure 12.6. In this case, the

curves intersect once, indicating the existence of a single totally antisym-

metric bound state in the well. It is, again, clear, from the figure, that as λ

increases (i.e., as the well becomes deeper) there are more and more bound

states. However, it is also apparent that when λ becomes sufficiently small



240 OSCILLATIONS AND WAVES

Figure 12.7: The curves tany (solid) and −y/
√

λ− y2 (dashed), calculated

for λ = 1.5 π2.

[i.e., λ < (π/2)2] then there is no totally antisymmetric bound state. In

other words, a very shallow potential well always possesses a totally sym-

metric bound state, but does not generally possess a totally antisymmetric

bound state. In the limit λ ≫ 1 (i.e., the limit in which the well becomes

very deep), the solutions to Equation (12.114) asymptote to the roots of

tany = 0. This gives y = nπ, where n is a positive integer, or

k = 2n
π

a
. (12.115)

These solutions are equivalent to the even-n infinite-depth potential well

solutions specified by Equation (12.68).

Probably the most surprising aspect of the bound states that we have just

described is the possibility of finding the particle outside the well: i.e., in the

region |x| > a/2 where U(x) > E. This follows from Equation (12.105) and

(12.106) because the ratio A/B = exp(qa/2) cos(ka/2) is not necessarily

zero. Such behavior is strictly forbidden in classical mechanics, according to

which a particle of energy E is restricted to regions of space where E > U(x).

In fact, in the case of the ground state (i.e., the lowest energy symmetric

state) it is possible to demonstrate that the probability of a measurement
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finding the particle outside the well is (see Exercise 12.4)

Pout ≃ 1− 2 λ (12.116)

for a shallow well (i.e., λ≪ 1), and

Pout ≃
π2

4

1

λ3/2
(12.117)

for a deep well (i.e., λ ≫ 1). It follows that the particle is very likely to be

found outside a shallow well, and there is a small, but finite, probability of

it being found outside a deep well. In fact, the probability of finding the

particle outside the well only goes to zero in the case of an infinitely deep

well (i.e., λ → ∞).

12.13 Square Potential Barrier

Consider a particle of mass m and energy E > 0 interacting with the simple

potential barrier

U(x) =

{
V for 0 ≤ x ≤ a
0 otherwise

, (12.118)

where V > 0. In the regions to the left and to the right of the barrier, the

stationary wavefunction, ψ(x), satisfies

d2ψ

dx2
= −k2ψ, (12.119)

where

k =

√

2mE

h̄2
. (12.120)

Let us adopt the following solution of the above equation to the left of

the barrier (i.e., x < 0):

ψ(x) = e i kx + R e−i kx. (12.121)

This solution consists of a plane wave of unit amplitude traveling to the

right [since the full wavefunction is multiplied by a factor exp(−iE t/h̄)],

and a plane wave of complex amplitude R traveling to the left. We interpret

the first plane wave as an incoming particle, and the second as a particle



242 OSCILLATIONS AND WAVES

reflected by the potential barrier. Hence, |R|2 is the probability of reflection

(see Section 7.6).

Let us adopt the following solution to Equation (12.119) to the right of

the barrier (i.e. x > a):

ψ(x) = T e i kx. (12.122)

This solution consists of a plane wave of complex amplitude T traveling to

the right. We interpret this as a particle transmitted through the barrier.

Hence, |T |2 is the probability of transmission.

Let us consider the situation in which E < V . In this case, according

to classical mechanics, the particle is unable to penetrate the barrier, so the

coefficient of reflection is unity, and the coefficient of transmission zero.

However, this is not necessarily the case in wave mechanics. In fact, inside

the barrier (i.e., 0 ≤ x ≤ a), ψ(x) satisfies

d2ψ

dx2
= q2ψ, (12.123)

where

q =

√

2m (V − E)

h̄2
. (12.124)

The general solution to Equation (12.123) takes the form

ψ(x) = A eqx + B e−qx. (12.125)

Now, continuity of ψ and dψ/dx at the left edge of the barrier (i.e.,

x = 0) yields

1+ R = A+ B, (12.126)

ik (1− R) = q (A− B). (12.127)

Likewise, continuity of ψ and dψ/dx at the right edge of the barrier (i.e.,

x = a) gives

A eqa + B e−qa = T e i ka, (12.128)

q
(

A eqa − B e−qa
)

= ik T e i ka. (12.129)

After considerable algebra (see Exercise 12.5), the above four equations

yield

|T |2 = 1− |R|2 =
4 k2q2

4 k2q2 + (k2 + q2)2 sinh2(qa)
. (12.130)
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Here, sinh x ≡ (1/2) (ex − e−x). The fact that |R|2 + |T |2 = 1 ensures that

the probabilities of reflection and transmission sum to unity, as must be the

case, since reflection and transmission are the only possible outcomes for a

particle incident on the barrier. Note that, according to Equation (12.130),

the probability of transmission is not necessarily zero. This means that,

in wave mechanics, there is a finite probability for a particle incident on

a potential barrier, of finite width, to penetrate through the barrier, and

reach the other side, even when the barrier is sufficiently high to completely

reflect the particle according to the laws of classical mechanics. This strange

phenomenon is known as tunneling. For the case of a very high barrier, such

that V ≫ E, the tunneling probability reduces to

|T |2 ≃ 4 E

V
e−2a/λ, (12.131)

where λ =
√

h̄2/2mV is the de Broglie wavelength inside the barrier. Here,

it is assumed that a≫ λ. Note that, even in the limit in which the barrier is

very high, there is an exponentially small, but nevertheless non-zero, tunnel-

ing probability. Tunneling plays an important role in the physics of α-decay

and electron field emission.

12.14 Exercises

1. Use the standard power law expansions,

ex = 1+ x+
x2

2!
+
x3

3!
+ · · · ,

sin x = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · ,

cos x = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · · ,

which are valid for complex x, to prove de Moivre’s theorem,

e i θ = cos θ+ i sin θ,

where θ is real.

2. Equations (8.27) and (8.28) can be combined with de Moivre’s theorem to
give

δ(k) =
1

2π

∫∞

−∞

e i k x dx,
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where δ(k) is a Dirac delta function. Use this result to prove Fourier’s theo-
rem: i.e., if

f(x) =

∫∞

−∞

f̄(k) e i k x dk,

then

f̄(k) =
1

2π

∫∞

−∞

f(x) e−i k x dx.

3. Derive Equation (12.114).

4. Consider a particle trapped in the finite potential well whose potential is
given by Equation (12.100). Demonstrate that for a totally symmetric state
the ratio of the probability of finding the particle outside to the probability
of finding the particle inside the well is

Pout

Pin
=

cos3 y

siny (y+ siny cosy)
,

where
√

λ− y2 = y tany, and λ = V/E0. Hence, demonstrate that for a
shallow well (i.e., λ≪ 1) Pout ≃ 1− 2 λ, whereas for a deep well (i.e., λ≫ 1)
Pout ≃ (π2/4)/λ3/2.

5. Derive expression (12.130) from Equations (12.126)–(12.129).

6. Show that the coefficient of transmission of a particle of mass m and energy
E, incident on a square potential barrier of height V < E, and width a, is

|T | 2 =
4 k2 q2

4 k2 q2 + (k2 − q2) 2 sin2
(qa)

,

where k =

√

2mE/h̄2 and q =

√

2m (E− V)/h̄2. Demonstrate that the co-

efficient of transmission is unity (i.e., there is no reflection from the barrier)
when qa = nπ, where n is positive integer.

7. A He-Ne laser emits radiation of wavelength λ = 633nm. How many photons
are emitted per second by a laser with a power of 1mW? What force does
such a laser exert on a body which completely absorbs its radiation?

8. The ionization energy of a hydrogen atom in its ground state is Eion = 13.6 eV.
Calculate the frequency (in Hertz), wavelength, and wavenumber of the elec-
tromagnetic radiation which will just ionize the atom.

9. The maximum energy of photoelectrons from aluminium is 2.3 eV for radia-
tion of wavelength 200nm, and 0.90 eV for radiation of wavelength 258nm.
Use this data to calculate Planck’s constant (divided by 2π) and the work
function of aluminium.
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10. Show that the de Broglie wavelength of an electron accelerated across a po-
tential difference V is given by

λ = 1.29× 10−9 V−1/2 m,

where V is measured in volts.

11. If the atoms in a regular crystal are separated by 3 × 10−10 m demonstrate
that an accelerating voltage of about 3 kV would be required to produce an
electron diffraction pattern from the crystal.

12. A particle of mass m has a wavefunction

ψ(x, t) = A exp
[

−a (mx2/h̄+ i t)
]

,

where A and a are positive real constants. For what potential U(x) does
ψ(x, t) satisfy Schrödinger’s equation?

13. Show that the wavefunction of a particle of massm trapped in a one-dimensio-
nal square potential well of of width a, and infinite depth, returns to its
original form after a quantum revival time T = 4ma2/π h̄.

14. Show that the normalization constant for the stationary wavefunction

ψ(x, y, z) = A sin
(

nx π
x

a

)

sin
(

ny π
y

b

)

sin
(

nz π
z

c

)

describing an electron trapped in a three-dimensional rectangular potential
well of dimensions a, b, c, and infinite depth, is A = (8/abc)1/2. Here, nx,
ny, and nz are positive integers.

15. An electron of momentum p passes through a slit of width ∆x. Its diffraction
as a wave can be regarded in terms of a change of its momentum ∆p in a
direction parallel to the plane of the slit (the total momentum remaining
constant). Show that the approximate position of the first maximum of the
diffraction pattern is in accordance with Heisenberg’s uncertainty principle.

16. The probability of a particle of mass m penetrating a distance x into a classi-
cally forbidden region is proportional to e−2 α x, where

α2 = 2m (V − E)/h̄2.

If x = 2 × 10−10 m and V − E = 1 eV show that e−2 α x is equal to 0.1 for an
electron, and 10−43 for a proton.
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A Useful Information

A.1 Physical Constants

Speed of light c 2.998× 108 m s−1

Reduced Planck constant h̄ 1.055× 10−34 J s

Electric constant ǫ0 8.854× 10−12 F m−1

Magnetic constant µ0 1.257× 10−6 N A−2

Elementary charge e 1.602× 10−19 C

Electron mass me 9.109× 10−31 kg

Proton mass mp 1.673× 10−27 kg

A.2 Trigonometric Identities

sin(−α) = − sinα

cos(−α) = + cosα

tan(−α) = − tanα

sin2α+ cos2α = 1

sin(α± β) = sinα cosβ± cosα sinβ

cos(α± β) = cosα cosβ∓ sinα sinβ

sinα+ sinβ = 2 sin

(

α+ β

2

)

cos

(

α− β

2

)

sinα− sinβ = 2 cos

(

α+ β

2

)

sin

(

α− β

2

)

cosα+ cosβ = 2 cos

(

α+ β

2

)

cos

(

α− β

2

)

cosα− cosβ = −2 sin

(

α+ β

2

)

sin

(

α− β

2

)

sinα sinβ =
1

2
[cos(α− β) − cos(α+ β)]

cosα cosβ =
1

2
[cos(α− β) + cos(α+ β)]

sinα cosβ =
1

2
[sin(α− β) + sin(α+ β)]
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sin(2α) = 2 sinα cosα

cos(2α) = cos2α− sin2α = 2 cos2α− 1 = 1− 2 sin2α

sin(3α) = −4 sin3α+ 3 sinα

cos(3α) = 4 cos3α− 3 cosα

sin2α = [1− cos(2α)]/2

cos2α = [1+ cos(2α)]/2

A.3 Calculus

d

dx
xn = nxn−1

d

dx
sin x = cos x

d

dx
cos x = − sin x

d

dx
ex = ex

d

dx
ln x =

1

x

d

dx
(f g) =

df

dx
g+

dg

dx
f

d

dx

(

f

g

)

=
df

dx

1

g
−
dg

dx

f

g2

∫

f
dg

dx
dx = f g−

∫
df

dx
gdx

A.4 Power Series

(1+ x)n = 1+ nx+
n (n− 1)

2!
x2 + · · ·

ex = 1+ x+
x2

2!
+
x3

3!
+ · · ·

ln(1+ x) = x−
x2

2
+
x3

3
−
x4

4
+ · · ·
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sin x = x−
x3

3!
+
x5

5!
−
x7

7!
+ · · ·

cos x = 1−
x2

2!
+
x4

4!
−
x6

6!
+ · · ·

tan x = x+
x3

3
+
2

15
x5 + · · ·

f(a+ x) = f(a) + f ′(a) x+ f ′′(a)
x2

2!
+ f ′′′(a)

x3

3!
+ · · ·
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