
Appendix C

Standard Results for Vectors

C1. Summary

This appendix summarises some basic results relating to vectors, in particular for
different coordinate systems. Many of these will be familiar, but it is worth stating
them in detail.

C2. Vector Identities for Cartesian Coordinate
Systems

Consider a Cartesian coordinate sys-
tem (x, y, z) as shown in the figure.

In the following, ı̂, ̂ and k̂ are unit vectors in the x, y and z directions. Vectors A
and B are resolved into their components as

A = Ax ı̂ + Ay ̂ + Az k̂ and B = Bx ı̂ + By ̂ + Bz k̂ .

The following results apply to any vectors A and B.
The dot product (scalar product) is

A.B = AxBx + AyBy + AzBz

The cross product (vector product) is

A × B = (AyBz − AzBy) ı̂ + (AzBx − AxBz) ̂ + (AxBy − AyBx) k̂

The gradient of a scalar field f is
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The divergence of a vector is
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The curl of a vector is
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The Laplacian of a scalar function f is

∇2f ≡ ∇. (∇f) =
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C3. Vector Identities for Spherical Polar Coordinate

Systems

Consider a spherical polar coordi-
nate system (r, θ, φ) as shown in the
figure.
Note the definition of the angles θ
and φ here: these definitions are
used in the results below. Some au-
thors choose to switch the definitions
of θ and φ. We define θ and φ in this
way here because the angle φ can be
compared directly with the angle φ
in the cylindrical coordinate system.
The Cartesian (x, y, z) axes are also
shown for comparison.

In the following, êr, êθ and êφ are unit vectors in the r, θ and φ directions. Vectors
A and B are resolved into their components as

A = Ar êr + Aθ êθ + Aφ êφ

and B = Br êr + Bθ êθ + Bφ êφ

The following results apply to any vectors A and B.
The dot product (scalar product) is

A.B = ArBr + AθBθ + AφBφ

The cross product (vector product) is

A × B = (AθBφ − AφBθ) êr + (AφBr − ArBφ) êθ + (ArBθ − AθBr) êφ

The gradient of a scalar field f is
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The divergence of a vector is
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The curl of a vector is

∇ × A = êr
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The Laplacian of a scalar function f is
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C4. Vector Identities for Cylindrical Polar Coord-

inate Systems

Consider a cylindrical polar coordi-
nate system (R, φ, z) as shown in the
figure.
The Cartesian (x, y, z) axes are also
shown for comparison.
The coordinate angle is called φ
here, although some authors prefer
to call it θ.

In the following, ê
R

, êφ and êz are unit vectors in the R, φ and z directions. Vectors
A and B are resolved into their components as

A = AR ê
R

+ Aφ êφ + Az êz

and B = BR ê
R

+ Bφ êφ + Bz êz

The following results apply to any vectors A and B.
The dot product (scalar product) is

A.B = ARBR + AφBφ + AzBz .

The cross product (vector product) is

A × B = (AφBz − AzBφ) êR
+ (AzBR − ARBz) êφ + (ARBφ − AφBR) êz .

The gradient of a scalar field f is
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The divergence of a vector is
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The curl of a vector is

∇ × A = ê
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The Laplacian of a scalar field f is

∇2f ≡ ∇. (∇f) = ∇2f ≡ 1
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C5. Position Vectors, Velocity Vectors and Acceler-

ation Vectors

In a Cartesian coordinate system (x, y, z) with unit vectors ı̂, ̂ and k̂, the position
vector r, the velocity vector v and the acceleration vector a are

r = x ı̂ + y ̂ + z k̂
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for any position, velocity and acceleration.
(Note that these expressions apply whatever the velocity and acceleration are, and
whatever forces drive the acceleration.)

In a spherical polar coordinate system (r, θ, φ) with unit vectors êr, êθ and êφ, we
have
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+ êθ r

dθ

dt
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+ êφ

(

r sin θ
d2φ

dt2
+ 2 sin θ

dr

dt

dφ

dt
+ 2r cos θ

dθ

dt

dφ

dt

)



for any position, velocity and acceleration.
(Note that êr, êθ and êφ are unit vectors in the r, θ and φ directions at any time and
that they change direction as the particle moves. These expressions for r, v, and a
apply whatever the velocity and acceleration are, and whatever forces drive the accel-
eration.)

In a cylindrical coordinate system (R, φ, z) with unit vectors ê
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, êφ and êz, we have
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for any position, velocity and acceleration.

C6. Some General Vector Identities

The product rule for differentiating the scalar product of two vectors is

d(a.b)

dt
≡ da

dt
.b + a.

db

dt
,

for any vectors a and b that are functions of a scalar variable t.

C7. Gauss’s Theorem (the Divergence Theorem)

Gauss’s Theorem (the Divergence Theorem) states that

∫

V

(∇.A) dV ≡
∫

S

A. dS

for any continuous vector field A over any volume V , where S is the surface that
bounds the volume V .


