Appendix C

Standard Results for Vectors

C1. Summary

This appendix summarises some basic results relating to vectors, in particular for different coordinate systems. Many of these will be familiar, but it is worth stating them in detail.

C2. Vector Identities for Cartesian Coordinate Systems

Consider a Cartesian coordinate sys tem (x, y, z) as shown in the figure.

In the following, $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are unit vectors in the x, y and z directions. Vectors \mathbf{A} and \mathbf{B} are resolved into their components as

$$
\mathbf{A}=A_{x} \hat{\mathbf{\imath}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \quad \text { and } \quad \mathbf{B}=B_{x} \hat{\mathbf{\imath}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} .
$$

The following results apply to any vectors \mathbf{A} and \mathbf{B}.
The dot product (scalar product) is

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

The cross product (vector product) is

$$
\mathbf{A} \times \mathbf{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{\imath}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}
$$

The gradient of a scalar field f is

$$
\boldsymbol{\nabla} f=\hat{\mathbf{i}} \frac{\partial f}{\partial x}+\hat{\mathbf{j}} \frac{\partial f}{\partial y}+\hat{\mathbf{k}} \frac{\partial f}{\partial z}
$$

The divergence of a vector is

$$
\boldsymbol{\nabla} \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} .
$$

The curl of a vector is

$$
\boldsymbol{\nabla} \times \mathbf{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{k}} .
$$

The Laplacian of a scalar function f is

$$
\nabla^{2} f \equiv \boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

C3. Vector Identities for Spherical Polar Coordinate Systems

Consider a spherical polar coordinate system (r, θ, ϕ) as shown in the figure.
Note the definition of the angles θ and ϕ here: these definitions are used in the results below. Some authors choose to switch the definitions of θ and ϕ. We define θ and ϕ in this way here because the angle ϕ can be compared directly with the angle ϕ in the cylindrical coordinate system. The Cartesian (x, y, z) axes are also
 shown for comparison.

In the following, $\hat{\mathbf{e}}_{\boldsymbol{r}}, \hat{\mathbf{e}}_{\boldsymbol{\theta}}$ and $\hat{\mathbf{e}}_{\boldsymbol{\phi}}$ are unit vectors in the r, θ and ϕ directions. Vectors \mathbf{A} and \mathbf{B} are resolved into their components as

$$
\begin{aligned}
\mathbf{A} & =A_{r} \hat{\mathbf{e}}_{r}+A_{\theta} \hat{\mathbf{e}}_{\boldsymbol{\theta}}+A_{\phi} \hat{\mathbf{e}}_{\phi} \\
\text { and } \mathbf{B} & =B_{r} \hat{\mathbf{e}}_{r}+B_{\theta} \hat{\mathbf{e}}_{\boldsymbol{\theta}}+B_{\phi} \hat{\mathbf{e}}_{\phi}
\end{aligned}
$$

The following results apply to any vectors \mathbf{A} and \mathbf{B}.
The dot product (scalar product) is

$$
\mathbf{A .} \mathbf{B}=A_{r} B_{r}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}
$$

The cross product (vector product) is

$$
\mathbf{A} \times \mathbf{B}=\left(A_{\theta} B_{\phi}-A_{\phi} B_{\theta}\right) \hat{\mathbf{e}}_{r}+\left(A_{\phi} B_{r}-A_{r} B_{\phi}\right) \hat{\mathbf{e}}_{\boldsymbol{\theta}}+\left(A_{r} B_{\theta}-A_{\theta} B_{r}\right) \hat{\mathbf{e}}_{\phi}
$$

The gradient of a scalar field f is

$$
\boldsymbol{\nabla} f=\hat{\mathbf{e}}_{\boldsymbol{r}} \frac{\partial f}{\partial r}+\hat{\mathbf{e}}_{\boldsymbol{\theta}} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{\mathbf{e}}_{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} .
$$

The divergence of a vector is

$$
\boldsymbol{\nabla} \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(A_{\theta} \sin \theta\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}
$$

The curl of a vector is

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{A}= & \hat{\mathbf{e}}_{r} \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right)+ \\
& +\hat{\mathbf{e}}_{\boldsymbol{\theta}} \frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r A_{\phi}\right)\right)+\hat{\mathbf{e}}_{\boldsymbol{\phi}} \frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right)
\end{aligned}
$$

The Laplacian of a scalar function f is

$$
\nabla^{2} f \equiv \boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

C4. Vector Identities for Cylindrical Polar Coordinate Systems

Consider a cylindrical polar coordinate system (R, ϕ, z) as shown in the figure.
The Cartesian (x, y, z) axes are also shown for comparison.
The coordinate angle is called ϕ here, although some authors prefer to call it θ.

In the following, $\hat{\mathbf{e}}_{\mathbf{R}}, \hat{\mathbf{e}}_{\boldsymbol{\phi}}$ and $\hat{\mathbf{e}}_{\mathbf{z}}$ are unit vectors in the R, ϕ and z directions. Vectors \mathbf{A} and \mathbf{B} are resolved into their components as

$$
\begin{aligned}
\mathbf{A} & =A_{R} \hat{\mathbf{e}}_{\mathbf{R}}+A_{\phi} \hat{\mathbf{e}}_{\phi}+A_{z} \hat{\mathbf{e}}_{\mathbf{z}} \\
\text { and } \mathbf{B} & =B_{R} \hat{\mathbf{e}}_{\mathbf{R}}+B_{\phi} \hat{\mathbf{e}}_{\phi}+B_{z} \hat{\mathbf{e}}_{\mathbf{z}}
\end{aligned}
$$

The following results apply to any vectors \mathbf{A} and \mathbf{B}.
The dot product (scalar product) is

$$
\mathbf{A . B}=A_{R} B_{R}+A_{\phi} B_{\phi}+A_{z} B_{z}
$$

The cross product (vector product) is

$$
\mathbf{A} \times \mathbf{B}=\left(A_{\phi} B_{z}-A_{z} B_{\phi}\right) \hat{\mathbf{e}}_{\mathbf{R}}+\left(A_{z} B_{R}-A_{R} B_{z}\right) \hat{\mathbf{e}}_{\phi}+\left(A_{R} B_{\phi}-A_{\phi} B_{R}\right) \hat{\mathbf{e}}_{\mathbf{z}} .
$$

The gradient of a scalar field f is

$$
\nabla f=\hat{\mathbf{e}}_{\mathbf{R}} \frac{\partial f}{\partial R}+\hat{\mathbf{e}}_{\phi} \frac{1}{R} \frac{\partial f}{\partial \phi}+\hat{\mathbf{e}}_{\mathbf{z}} \frac{\partial f}{\partial z} .
$$

The divergence of a vector is

$$
\nabla \cdot \mathbf{A}=\frac{1}{R} \frac{\partial}{\partial R}\left(R A_{R}\right)+\frac{1}{R} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} .
$$

The curl of a vector is

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{A}=\hat{\mathbf{e}}_{\mathbf{R}}\left(\frac{1}{R} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+ & \hat{\mathbf{e}}_{\phi}\left(\frac{\partial A_{R}}{\partial z}-\frac{\partial A_{z}}{\partial R}\right)+ \\
& \hat{\mathbf{e}}_{\mathbf{z}} \frac{1}{R}\left(\frac{\partial}{\partial R}\left(R A_{\phi}\right)-\frac{\partial A_{R}}{\partial \phi}\right) .
\end{aligned}
$$

The Laplacian of a scalar field f is

$$
\nabla^{2} f \equiv \nabla \cdot(\nabla f)=\nabla^{2} f \equiv \frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial f}{\partial R}\right)+\frac{1}{R^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

C5. Position Vectors, Velocity Vectors and Acceleration Vectors

In a Cartesian coordinate system (x, y, z) with unit vectors $\hat{\mathbf{1}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$, the position vector \mathbf{r}, the velocity vector \mathbf{v} and the acceleration vector a are

$$
\begin{aligned}
& \mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}} \\
& \mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \hat{\mathbf{\imath}}+\frac{\mathrm{d} y}{\mathrm{~d} t} \hat{\mathbf{j}}+\frac{\mathrm{d} z}{\mathrm{~d} t} \hat{\mathbf{k}} \\
& \mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \hat{\mathbf{\imath}}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} \hat{\mathbf{j}}+\frac{\mathrm{d}^{2} z}{\mathrm{~d} t^{2}} \hat{\mathbf{k}}
\end{aligned}
$$

for any position, velocity and acceleration.
(Note that these expressions apply whatever the velocity and acceleration are, and whatever forces drive the acceleration.)

In a spherical polar coordinate system (r, θ, ϕ) with unit vectors $\hat{\mathbf{e}}_{\boldsymbol{r}}, \hat{\mathbf{e}}_{\boldsymbol{\theta}}$ and $\hat{\mathbf{e}}_{\boldsymbol{\phi}}$, we have

$$
\begin{aligned}
& \mathbf{r}= r \hat{\mathbf{e}}_{r} \\
& \mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\hat{\mathbf{e}}_{r} \frac{\mathrm{~d} r}{\mathrm{~d} t}+\hat{\mathbf{e}}_{\boldsymbol{\theta}} r \frac{\mathrm{~d} \theta}{\mathrm{~d} t}+\hat{\mathbf{e}}_{\phi} r \sin \theta \frac{\mathrm{~d} \phi}{\mathrm{~d} t} \\
& \mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\hat{\mathbf{e}}_{r}\left(\frac{\mathrm{~d}^{2} r}{\mathrm{~d} t^{2}}-r\left(\frac{\mathrm{~d} \theta}{\mathrm{~d} t}\right)^{2}-r \sin ^{2} \theta\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)^{2}\right) \\
&+\hat{\mathbf{e}}_{\boldsymbol{\theta}}\left(2 \frac{\mathrm{~d} r}{\mathrm{~d} t} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}+r \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}-r \sin \theta \cos \theta\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)^{2}\right) \\
&+\hat{\mathbf{e}}_{\phi}\left(r \sin \theta \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}+2 \sin \theta \frac{\mathrm{~d} r}{\mathrm{~d} t} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}+2 r \cos \theta \frac{\mathrm{~d} \theta}{\mathrm{~d} t} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)
\end{aligned}
$$

for any position, velocity and acceleration.
(Note that $\hat{\mathbf{e}}_{\boldsymbol{r}}, \hat{\mathbf{e}}_{\boldsymbol{\theta}}$ and $\hat{\mathbf{e}}_{\boldsymbol{\phi}}$ are unit vectors in the r, θ and ϕ directions at any time and that they change direction as the particle moves. These expressions for \mathbf{r}, \mathbf{v}, and \mathbf{a} apply whatever the velocity and acceleration are, and whatever forces drive the acceleration.)

In a cylindrical coordinate system (R, ϕ, z) with unit vectors $\hat{\mathbf{e}}_{\mathbf{R}}, \hat{\mathbf{e}}_{\boldsymbol{\phi}}$ and $\hat{\mathbf{e}}_{\mathbf{z}}$, we have

$$
\begin{aligned}
& \mathbf{r}=R \hat{\mathbf{e}}_{\mathbf{R}}+z \hat{\mathbf{e}}_{\mathbf{z}} \\
& \mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}=\hat{\mathbf{e}}_{\mathbf{R}} \frac{\mathrm{d} R}{\mathrm{~d} t}+\hat{\mathbf{e}}_{\phi} R \frac{\mathrm{~d} \phi}{\mathrm{~d} t}+\hat{\mathbf{e}}_{\mathbf{z}} \frac{\mathrm{d} z}{\mathrm{~d} t} \\
& \mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\hat{\mathbf{e}}_{\mathbf{R}}\left(\frac{\mathrm{d}^{2} R}{\mathrm{~d} t^{2}}-R\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)^{2}\right)+\hat{\mathbf{e}}_{\phi}\left(2 \frac{\mathrm{~d} R}{\mathrm{~d} t} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}+R \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}\right)+\hat{\mathbf{e}}_{\mathbf{z}} \frac{\mathrm{d}^{2} z}{\mathrm{~d} t^{2}}
\end{aligned}
$$

for any position, velocity and acceleration.

C6. Some General Vector Identities

The product rule for differentiating the scalar product of two vectors is

$$
\frac{\mathrm{d}(\mathbf{a} \cdot \mathbf{b})}{\mathrm{d} t} \equiv \frac{\mathrm{~d} \mathbf{a}}{\mathrm{~d} t} \cdot \mathbf{b}+\mathbf{a} \cdot \frac{\mathrm{d} \mathbf{b}}{\mathrm{~d} t}
$$

for any vectors \mathbf{a} and \mathbf{b} that are functions of a scalar variable t.

C7. Gauss's Theorem (the Divergence Theorem)

Gauss's Theorem (the Divergence Theorem) states that

$$
\int_{V}(\boldsymbol{\nabla} \cdot \mathbf{A}) \mathrm{d} V \equiv \int_{S} \mathbf{A} \cdot \mathrm{~d} \mathbf{S}
$$

for any continuous vector field \mathbf{A} over any volume V, where S is the surface that bounds the volume V.

