

GALAXIES

BRYN JONES QUEEN MARY UNIVERSITY OF LONDON

The Milky Way

Picture by Fred Espenak

The Milky Way

All-sky picture by Knut Lundmark (1940s)

The Milky Way

2MASS infrared survey of 250 million stars

The Milky Way

2MASS infrared survey of 250 million stars

The Large Magellanic Cloud

The Small Magellanic Cloud

Andromeda Galaxy, M31

Burrell Schmidt photographs NOAO / AURA / NSF

Galaxy morphological types

Normal galaxies are found to come in distinct types:

- elliptical
- S0 (lenticular)
- spiral barred and unbarred
- irregular

Some have peculiar morphologies

Active galaxies

have active nucleus, powerful energy source
 e.g. radio galaxies, Seyfert galaxies, quasars

Elliptical galaxies

SuperCOSMOS Sky Survey UKST data from the ROE

NGC 1407 E0

NGC 584 E4

NGC 4033 E6

NGC 1395

E2

Elliptical galaxies

M87 in Virgo Cluster

Elliptical galaxies

Smooth, mostly featureless appearance

Spectra show the combined light of old stars

Light is red - indicating old stars

Motions of stars - orbits are elongated and randomly orientated

Very little gas or dust - no stars currently being formed

Normal spirals (without bars)

Normal spirals (without bars)

Barred spirals

Barred spirals

NGC 2997

NGC 3370 HST

2.2-metre Telescope, La Silla, Chile NGC 300

Spiral galaxies Sombrero Galaxy M104 VLT

Spiral galaxies M83 barred spiral galaxy AAT

Contain a flattened disc

Disc is rotating - stars and gas on near-circular orbits in the disc

Discs have spiral arms with luminous blue stars

Spectra - light from stars and gas - absorption lines from the stars, emission lines from the gas

Gas is confined to the plane of the disc Gas contains dust

Gas is forming stars - mix of stars with a range of ages

Spheroidally distributed halo of old stars in elongated orbits, random orientations

Central bulge of old stars

Some spirals have central bars, some do not

Spheroidally distributed globular clusters

Spiral galaxies: spiral arms

NGC 2997 through blue, red and infrared filters

Irregular galaxies

UKST and POSS-II data from the SuperCOSMOS Sky Survey at the ROE Photographic images through a blue filter

Irregular galaxies

Irregular morphologies

Large fraction of gas

Gas is forming stars

Many young blue stars

Overall colours are very blue

Spectra show prominent emission lines from the gas and absorption spectra from the stars

Irregular galaxies

NGC 6822 Local Group galaxy

1.6 Mly distant

4m Blanco Telescope

Local Group Galaxies Survey Team/NOAO/ AURA/NSF

Galaxy morphological types

Galaxy morphological types

Galaxy properties vary in a sequence

E SO Sa Sb Sc Sd Irr

Early type Late type

Old stars
Red colour
Gas poor

Young stars
Blue colour
Gas rich

Absorption-line Strong emission lines in spectra

Some evolution along this sequence from late to early

Stars in nearby galaxies

Can resolve individual stars in relatively nearby galaxies

NASA and the Hubble Heritage Team (STScI/AURA)

STScI-PRC04-13b

Stars in nearby galaxies

Can compare properties of stars in nearby galaxies with stars in our Galaxy of known distance e.g. main sequence fitting

distance of galaxy

Distance indicators can work to greater distances
e.g. variable stars - Cepheids, RR Lyrae
planetary nebulae
most luminous stars
supernovae - Type Ia

Stars in nearby galaxies: Cepheid variable stars

Characteristic change in brightness

Stars in nearby galaxies: Cepheid variable stars

Period-luminosity relation

Madore & Freedman, PASP, 103, 933, 1991

Stars in nearby galaxies

Cepheid variables in M100 in the Virgo Cluster of galaxies

Stars in nearby galaxies

Cepheid variables in M100 in the Virgo Cluster of galaxies

Hubble Space Telescope

Use of distances

Once distances are known:

Observed brightness —

total energy emitted per unit time *luminosity*

Angular size on sky — physical size

Rotation velocity

Consider a star of mass m in circular motion about the centre of a galaxy at a distance R from the centre

Rotation velocity

For a spherically symmetric mass distribution,

Force
$$F = \frac{G M_{int} m}{R^2}$$

where $M_{int}(R)$ is the mass interior to radius R

Using F = m a and $a = v_{rot}^2 / R$,

$$v_{rot} = \sqrt{\frac{GM_{int}(R)}{R}}$$

Rotation velocity of spiral galaxies

Can measure the rotation of spiral galaxies from the spectrum of the material in the galaxy using the Doppler shift

- from the combined spectrum of the stars
- from the emission lines from excited gas
- from the 21cm radio emission from cold neutral hydrogen

Measure rotation velocity as function of distance from centre of galaxy - rotation curve

Rotation curves of spiral galaxies

Can calculate mass interior to a point as a function of radius from v_{rot}

$$M_{int}(R) = \frac{R v_{rot}^2}{G}$$

 v_{rot} increases rapidly with radius R near the centre

- then remains nearly constant for almost all observable radii

Indicates a large amount of unseen matter

- dark matter

Rotation curves of spiral galaxies

Rotation curve of NGC 2841 from radio observations

Image from the Digitized Sky Survey Rotation curve data by S. M. Kent from A. Bosma, AJ, 93, 816, 1987

The spiral structure of spiral galaxies

Spiral arms mark the regions of recent active star formation

Arms are the regions of greatest gas density

Spiral density patterns arise naturally particularly when stimulated by tides of nearby galaxies

The spiral structure of spiral galaxies

Simulation of formation of spiral pattern

Our Galaxy

Evolution of galaxies

Galaxies can change over time

New stars can be formed if they contain gas

Evolved stars can return gas into the interstellar medium, containing heavy elements

As galaxies age, stars evolve - without new stars being formed, galaxy will become redder and slightly fainter

Gas can be removed from galaxies, through forming stars, being removed by pressure of gas in clusters

Interacting galaxies

NGC 2207 and IC 2163 HST

Interacting galaxies

Interactions cause star formation

- gas is compressed and shocked

Some gas is used up in star formation

The Antennae: wide-angle view

UKST blue data from the SuperCOSMOS Sky Survey at the ROE

The core of The Antennae

Gas is compressed and shocked

- intense star formation

Gas is used up in star formation

Mergers can form ellipticals

Observed examples

Hibbard & van Gorkum, AJ, 111, 655,1996

Simulation of merger of two spiral galaxies

Mihos & Hernquist, ApJ, 464, 662, 1996

Simulation of merger of a spiral and a dwarf galaxy

Hernquist & Mihos, ApJ, 448, 41, 1995

Merging galaxies: our Galaxy and the Sagittarius Dwarf Galaxy

Where galaxies live

Our Galaxy lies in a collection of 40 – 50 galaxies called the *Local Group*

Some galaxies are isolated

Some exist in groups - few to few hundred galaxies

Some lie in clusters of galaxies - hundreds or thousands of galaxies
Some clusters are dense

Clusters of galaxies

Abell 2218 HST

Galaxy type vs. environment

Elliptical galaxies are plentiful in clusters but rare in the field

Spirals and irregulars are plentiful in the field but less so in clusters

Interactions, mergers and stripping of gas has ended much of the star formation in clusters

Other types of galaxy

Dwarf galaxies

Low luminosity galaxies

Plentiful e.g. most galaxies in the Local Group are dwarfs

Main types

- dwarf irregulars
- dwarf ellipticals
- dwarf spheroidals

Dwarf galaxies

NGC 1705 dwarf irregular

HST

Local Group, companion to M31

2.2 Mly distant

0.9m telescope Kitt Peak National Observatory

Dwarf galaxies Tucana dwarf spheroidal galaxy

Local Group

2.9 Mly distant

UKST / SuperCOSMOS Sky Survey blue plate

Dwarf galaxies Leo I dwarf spheroidal galaxy

Local Group, 800 000 ly

Anglo-Australian Telescope

Active galaxies

Extremely powerful energy source in a compact nucleus

Probably accretion on to a black hole

Active galaxies

M87 jet

HST

Radio galaxies

Radio galaxy 3C31 (NGC383) with radio jets and lobes. Observed with the Very Large Array.

Quasars

Quasar Host Galaxies

HST • WFPC2

PRC96-35a • ST Scl OPO • November 19, 1996

J. Bahcall (Institute for Advanced Study), M. Disney (University of Wales) and NASA

Galaxy formation

How did galaxies form?

Once it was believed that a single large cloud collapsed to form a galaxy

Clouds with little angular momentum formed ellipticals

Clouds with substantial angular momentum formed spirals

Galaxy formation

How did galaxies form?

Numerical simulations show that dark matter in the early Universe formed many small clumps - also contained gas

The clumps merged to form larger units, producing galaxies

In Summary

The Universe is populated with galaxies

Vast systems of 10⁶ to 10¹² stars

Spirals, ellipticals, irregulars, peculiars, dwarfs, active galaxies

Contain stars, many contain gas, but dark matter dominates

Spirals and irregulars plentiful in the field, ellipticals plentiful in clusters of galaxies

In Summary

Evolution determined by conversion of gas into stars, interactions, mergers, passage through diffuse gas in clusters

Formation probably by merging of small galaxies and sub-galactic units early in the Universe

Curious object

NGC 2997

UKST / SuperCOSMOS Sky Survey