Chapter 5 Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. A measurement standard is defined as \qquad .
a. a system of prefixes
b. the distance between two points
c. the exact quantity people agree to use for comparison
d. the interval between two events
\qquad 2. The prefix kilo- means \qquad .
a. 1,000
b. 100
c. 0.01
d. 0.001
\qquad 3. The prefix milli-means \qquad .
a. 1,000
b. 100
c. 0.01
d. 0.001
\qquad 4. The correct symbol for the SI unit of temperature is \qquad .
a. ${ }^{\circ} \mathrm{C}$
c. K
b. ${ }^{\circ} \mathrm{F}$
d. s
\qquad 5. The SI unit that is used to measure time is the \qquad .
a. kelvin
c. second
b. kilogram
d. meter
\qquad 6. The variable plotted on the horizontal or x-axis is called the \qquad .
a. dependent variable
c. variable with the largest range
b. independent variable
d. variable with the smallest range
\qquad 7. How many meters are there in $1,865 \mathrm{~cm}$?
a. 0.1865
b. 1.865
c. 18.65
d. 186.5
\qquad 8. In a graph showing temperature change of a material over time, temperature change is the \qquad -
a. dependent variable
c. variable with the largest range
b. independent variable
d. variable with the smallest range
\qquad 9. The best type of graph to use to show how some fixed quantity is broken down into parts is \qquad .
a. bar graph
c. circle graph
b. line graph
d. scatter graph
2. One benefit of the SI system is that it is \qquad $-$
a. based on units of 100
c. based on multiples of ten
b. not used to measure temperature
d. not used in the United States
3. A beaker contains 0.32 L of water. What is the volume of this water in milliliters?
a. $\quad 320 \mathrm{~mL}$
b. 3.2 mL
c. 32 mL
d. $\quad 0.32 \mathrm{~mL}$
4. A box is 25 cm long, 6 cm wide, and 4 cm high. How many cubic centimeters of water can it hold?
a. 600
b. 25
c. 150
d. 24
5. The lightbulb is an example of \qquad .
a. a dependent variable
c. pure science
b. an exercise
d. technology
6. Another term for technology is \qquad .
a. applied science
c. matter
b. energy
d. pure science
7. The process of gathering information through the senses is called \qquad .
a. analysis
c. hypothesis
b. observation
d. inference
8. When designing an experiment, the first step is to \qquad .
a. analyze the data
c. state a hypothesis
b. list a procedure
d. state the problem
9. A rule or principle that describes what happens in nature is a \qquad .
a. hypothesis
c. scientific law
b. problem
d. theory
10. An explanation of an event that is based on repeated observations and experiments is a \qquad .
a. hypothesis
c. problem
b. scientific law
d. theory
11. An idea, event, or object can be represented by a \qquad to help people better understand it.
a. constant
c. law
b. hypothesis
d. model
12. In an experiment to determine whether the popping of popcorn is affected by the temperature at which it is stored, counting the popped kernels is an example of a(n) \qquad _.
a. conclusion
c. hypothesis
b. control
d. observation
13. A standard for comparison that helps to ensure that the experimental result is caused by the condition being tested is the \qquad -.
a. constant
c. dependent variable
b. control
d. hypothesis
14. A factor in an experiment that changes from the manipulation of the independent variable is the \qquad _.
a. constant
c. dependent variable
b. control
d. hypothesis
15. A factor that does NOT change in an experiment is the \qquad .
a. constant
c. dependent variable
b. control
d. hypothesis
16. Studying the effect of one thing on another in order to test a hypothesis is $a(n)$ \qquad .
a. exercise
c. constant
b. experiment
d. problem
17. A factor that is manipulated in an experiment to change the dependent variable is the \qquad -
a. constant
c. control
b. dependent variable
d. independent variable
18. The application of scientific knowledge to help people is \qquad .
a. a discovery
c. pure science
b. a hypothesis
d. technology
19. If you ride your bicycle down a straight road for 500 m then turn around and ride back, your distance is \qquad your displacement.
a. greater than
c. less than
b. equal to
d. can't determine
20. Motion is a change in \qquad .
a. time
c. velocity
b. speed
d. position
21. The speed you read on a speedometer is \qquad .
a. instantaneous speed
c. average speed
b. constant speed
d. velocity
22. $3 \mathrm{~m} / \mathrm{s}$ north is an example of $\mathrm{a}(\mathrm{n})$ \qquad -.
a. speed
c. position
b. velocity
d. acceleration
23. The relationship among speed, distance, and time is \qquad .
a. $t=s / d$
b. $d=t / s$
c. $s=d t$
d. $\quad s=d / t$
24. A single point on a distance-time graph tells the \qquad .
a. instantaneous speed
c. constant speed
b. average speed
d. average velocity
25. A merry-go-round horse moves at a constant speed but at a changing \qquad .
a. velocity
c. inertia
b. balanced force
d. unbalanced force
26. Acceleration is rate of change of \qquad .
a. position
c. velocity
b. time
d. force
27. If you ride your bike up a hill, then ride down the other side, your acceleration is \qquad .
a. all positive
c. first positive, then negative
b. all negative
d. first negative, then positive
28. The equation used to find acceleration is $\mathrm{a}=$ \qquad
a. $\quad v_{f}-v_{i} / t$
b. v / t
c. $\quad v_{i}-v_{f} / t$
d. $\quad v_{i}+v_{f} / t$
29. A horizontal line on a velocity/time graph shows \qquad acceleration.
a. positive
c. changing
b. negative
d. zero
30. Inertia varies depending on \qquad -.
a. force
c. velocity
b. mass
d. motion
31. Newton's first law of motion is also called the law of \qquad .
a. mass
c. force
b. inertia
d. constant velocity
32. The upward force on an object falling through the air is \qquad .
a. air resistance
c. momentum
b. inertia
d. terminal velocity
33. The relationship among mass, force, and acceleration is explained by \qquad .
a. conservation of momentum
c. Newton's second law of motion
b. Newton's first law of motion
d. Newton's third law of motion
34. A feather will fall through the air more slowly than a brick because of \qquad —.
a. air resistance
c. inertia
b. gravity
d. momentum
35. In the absence of air, a penny and a feather that are dropped from the same height at the same time will \qquad .
a. fall at different rates
c. float
b. fall at the same rate
d. not have momentum
36. The acceleration due to gravity is \qquad .
a. $\quad 98 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 9.8 \mathrm{~m} / \mathrm{s}$
d. $\quad 0.98 \mathrm{~m} / \mathrm{s}$
37. According to Newton's second law of motion, \qquad
a. $\quad F=m \times a$
c. $\quad F=p \times a$
b. $F=m \times v$
d. $F=p \times v$
38. When an object moves in a circular path, it accelerates toward the center of the circle as a result of \qquad .
a. centripetal force
c. gravitational force
b. frictional force
d. momentum
39. The path of a projectile is \qquad -.
a. curved
c. always vertical
b. always horizontal
d. straight
40. For any object, the greater the force that's applied to it, the greater its \qquad will be.
a. acceleration
c. inertia
b. gravity
d. velocity
41. The size of the gravitational force between two objects depends on their \qquad -.
a. frictional forces
b. inertia
c. masses and the distance between them
d. speed and direction
42. As you get farther from the center of Earth, your weight will \qquad _.
a. decrease
c. remain the same
b. increase
d. can't tell from information given
43. When a force is exerted on a box, an equal and opposite force is exerted by the box. These forces are called
\qquad forces.
a. action-reaction
c. frictional
b. centripetal
d. gravitational
44. A real car moving at $10 \mathrm{~km} / \mathrm{h}$ has more momentum than a toy car moving at the same speed because the real car \qquad _.
a. generates less friction
c. has less mass
b. has greater mass
d. has greater forward motion
45. In the equation $p=m \times v$, the p represents \qquad
a. friction
c. momentum
b. inertia
d. position
46. The statement "to every action there is an equal and opposite reaction" is \qquad .
a. the law of conservation of momentum
b. Newton's first law of motion
c. Newton's second law of motion
d. Newton's third law of motion
47. The unit of momentum is \qquad .
a. $\mathrm{kg} \times \mathrm{m}$
b. $\mathrm{kg} \times \mathrm{m} / \mathrm{s}$
c. $\mathrm{kg} \times \mathrm{m} / \mathrm{s}^{2}$
d. $\mathrm{m} / \mathrm{s}^{2}$
48. When two balls collide, the momentum of the balls after the collision is explained by \qquad .
a. the law of conservation of momentum
b. Newton's first law of motion
c. Newton's second law of motion
d. Newton's third law of motion
49. A $300-\mathrm{N}$ force acts on a $25-\mathrm{kg}$ object. The acceleration of the object is \qquad -.
a. $7,500 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 300 \mathrm{~m} / \mathrm{s}^{2}$
c. $25 \mathrm{~m} / \mathrm{s}^{2}$
d. $12 \mathrm{~m} / \mathrm{s}^{2}$
50. A $3,000-\mathrm{N}$ force acts on a $200-\mathrm{kg}$ object. The acceleration of the object is \qquad _.
a. $\quad 50 \mathrm{~m} / \mathrm{s}^{2}$
b. $26 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 15 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad 150 \mathrm{~m} / \mathrm{s}^{2}$
51. An object that is in free fall seems to be \qquad .
a. not moving
c. speeded up by air resistance
b. slowed by air resistance
d. weightless
52. If gravity did NOT affect the path of a horizontally thrown ball, the ball would \qquad .
a. go straight up
c. follow a curved path
b. fall straight down
d. travel horizontally

a.

b.

c.

d. \qquad

Figure 3-1
61. A ball attached to a string is being swung in a clockwise circular path as shown in Figure 3-1. Assume the string breaks at point A . In which direction will the ball be traveling an instant later?
a. direction a
c. direction c
b. direction b
d. direction d
62. A ball attached to a string is being swung in a clockwise circular path as shown in Figure 3-1. In which direction will the acceleration on the ball be when the ball passes point A?
a. direction a
c. direction c
b. direction b
d. direction d
63. The kinetic energy of an object increases as its \qquad increases.
a. gravitational energy
c. specific heat
b. potential energy
d. velocity
64. Increasing the speed of an object \qquad its potential energy.
a. does not affect
c. decreases
b. increases
d. changes
65. The SI unit for energy is the \qquad .
a. calorie
c. meter per second
b. joule
d. kilogram
66. You can calculate kinetic energy by using the equation \qquad —.
a. $\quad \mathrm{KE}(\mathrm{J})=m(\mathrm{~kg}) \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times h(\mathrm{~m})$
b. $\quad \mathrm{KE}(\mathrm{J})=w(\mathrm{~m}) \times h(\mathrm{~m})$
c. $\operatorname{KE}(\mathrm{J})=1 / 2 \mathrm{~m}(\mathrm{~kg}) \times v^{2}\left(\mathrm{~m}^{2} / \mathrm{s}^{2}\right)$
d. $\quad \mathrm{KE}(\mathrm{J})=9.8 \mathrm{~m} / \mathrm{s}^{2} \times 1 / 2 \mathrm{~m}(\mathrm{~kg})$
67. You can calculate gravitational potential energy by using the equation \qquad .
a. $\quad \operatorname{GPE}(J)=1 / 2 m(\mathrm{~kg}) \times 1 / 2 h(\mathrm{~m})$
b. $\quad \operatorname{GPE}(\mathrm{J})=m(\mathrm{~kg}) \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times h(\mathrm{~m})$
c. $\quad \operatorname{GPE}(J)=h(\mathrm{~m}) \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad \operatorname{GPE}(\mathrm{J})=1 / 2 h(\mathrm{~m}) \times w(\mathrm{~m})$
68. Which of the following devices does not make use of electrical energy?
a. upright piano
c. toaster
b. radio
d. digital camera
69. A bus engine transfers chemical potential energy into \qquad so that the bus moves.
a. thermal energy
c. electrical energy
b. gravitational potential energy
d. kinetic energy
70. In a nuclear fusion reaction, mass is transformed into \qquad _.
a. matter
c. energy
b. nuclei
d. light
71. According to the law of conservation of energy, the total amount of energy in the universe \qquad .
a. remains constant
c. increases
b. changes constantly
d. decreases
72. If a weight lifter is holding barbells above his head, what does he have to do to perform work?
a. stand still
c. step forward
b. move barbells sideways
d. lower barbells

Figure 5-1
73. The fixed pulley shown in Figure 5-1 does which one of the following?
a. doubles the force required to lift the block
b. decrease the force required to lift the block
c. makes the block easier to lift by changing the direction of the force needed to lift it
d. decreases the force required and changes the direction of the force required
74. A slanted surface used to raise an object is a(n) \qquad
a. efficiency board
c. inclined plane
b. effort ramp
d. screw
75. A device that does work with only one movement and changes the size or direction of a force is a(n) \qquad _.
a. compound machine
c. screw
b. effort machine
d. simple machine
76. A bar that is free to pivot about a fixed point is a \qquad -.
a. fulcrum
c. ramp
b. lever
d. screw
77. The rate at which work is done is called \qquad .
a. efficiency
c. force
b. effort time
d. power
\qquad 78. The amount by which a machine multiplies an effort force is called the \qquad .
a. efficiency factor
c. mechanical advantage
b. fulcrum
d. resistance force
79. An inclined plane with one or two sloping sides forms a machine called a \qquad .
a. pulley
c. ramp
b. lever
d. wedge
80. An inclined plane wrapped around a cylindrical post is a \qquad .
a. block and tackle
c. ramp
b. lever
d. screw
81. A machine that changes only the direction of a force has a mechanical advantage of \qquad -
a. 100
b. 10
c. 5
d. 1
82. A winding mountain road is an example of $a(n)$ \qquad
a. block and tackle
c. inclined plane
b. lever
d. wheel and axle
83. When two or more simple machines work together, they are called a(n) \qquad -.
a. compound machine
c. screw
b. effort machine
d. simple machine
84. The unit of power is the \qquad .
a. joule
c. m / s
b. watt
d. second
85. A lever with a mechanical advantage greater than 1 is used to \qquad .
a. change direction
c. increase force
b. increase distance
d. increase force and change direction
86. Three of the following simple machines are basically the same. The one that does NOT belong with the group is the \qquad _.
a. lever
c. wedge
b. pulley
d. wheel and axle
87. An arrangement of pulleys designed to reduce the effort force is called a \qquad -
a. block and tackle
c. movable pulley
b. fixed pulley
d. simple pulley
88. Two simple machines that are part of a bicycle are $a(n)$
a. gear and a wheel and axle
c. inclined plane and a wedge
b. inclined plane and a lever
d. screw and an inclined plane

True/False

Indicate whether the statement is true or false.
89. Balanced forces acting on an object cause the object to accelerate.
90. Gravity causes all falling objects to accelerate at a rate of $98 \mathrm{~m} / \mathrm{s}^{2}$.
91. Acceleration is defined as the rate of change of position.
92. The momentum of a 5,000-kg truck that is standing still is greater than the momentum of a 3,000-kg truck that is also at rest.
93. The projectile velocity is the highest velocity that will be reached by a falling object.
94. When an object falls, it is reacting to the force of gravity.
95. Jane is on a merry-go-round that is moving at a constant speed. Her velocity is also constant.
96. Momentum is a property of an object and cannot be transferred from that object to another object.
97. Objects in Earth's orbit appear to be weightless because they are in free fall.
98. Friction is a force that encourages motion between two surfaces that are touching each other.
99. Energy doesn't have to involve motion.
_100. Energy is the ability to cause change. 101. Energy is measured in joules.
102. When you ride a playground swing, your potential energy is greatest at the highest point.
103. Chemical energy travels from the Sun to Earth and is transformed into light energy by plants.
104. As mass decreases, kinetic energy increases.
105. Lowering an object decreases its potential energy.
106. In a car engine, burning fuel produces heat, which causes gases to expand, producing kinetic energy.
107. The sum of potential and kinetic energy in a system is called the total energy.
108. As an object falls its potential energy is lost to the air around it.
109. Carbohydrates and fats provide our bodies with energy in the form of calories.
110. Energy from the Sun and energy from food are just different forms of the same thing.
111. When a machine is used to do work, the force applied by the machine is called the effort force.
112. Under certain conditions, it is possible to get more work out of a machine than you put into it.
113. Some machines don't multiply the force that is applied to them.
114. Examples of all three classes of levers are found in the human body.
115. In order for work to be done on a object, the object must move.

Modified True/False

Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.
_1 116. Displacement includes both distance and direction. \qquad
117. Motion occurs when there is a change in speed. \qquad
\qquad 118. If you were trying to get out of the way of a storm, you would need to know the speed at which it was moving.
119. The total distance traveled divided by the constant speed is the average speed.
120. The relationship $\mathrm{s}=\mathrm{d} / \mathrm{t}$ can be used to calculate speed, distance or time.
121. Acceleration occurs when velocity changes. \qquad
122. If you roll a ball up a hill, it undergoes positive acceleration.
123. When you push on a sled and it begins to go downhill, you cause negative acceleration.
__ 124. Acceleration is calculated by dividing change in speed by total time. \qquad
125. When the forces acting on an object are unbalanced, the net force is zero.
\qquad 126. An object in motion at a constant velocity will change its motion only if a balanced force acts on it.
127. In a car crash, inertia could cause you to crash into the windshield.
___ 128. The greater an object's mass, the weaker the gravitational force on it. \qquad
129. When a ball is dropped, it falls down due to the force of friction. \qquad
130. Pushing a box up a hill, you have to overcome static friction. \qquad
131. A box doesn't move when you push it because of static friction. \qquad
132. Energy in the form of motion is potential energy. \qquad
133. According to the law of conservation of energy, mechanical energy can be changed to heat energy.
134. A rock at the edge of a cliff has kinetic energy because of its position.
135. When you put on the brakes of a bicycle, friction causes some of the mechanical energy to change to thermal energy. \qquad
136. According to the law of conservation of energy, energy can be created or destroyed.
137. Energy that is stored is kinetic energy. \qquad
138. Energy stored in food you eat is chemical potential energy.
139. Elastic energy is the total potential and kinetic energy in a system.
140. Energy is measured in joules. \qquad
141. Compression energy is stored in a stretched rubber band.
142. A book sitting on a shelf has gravitational potential energy. \qquad
143. Actual mechanical advantage is determined with the equation $M A=F_{r} / F_{e}$.
144. Power is work done over a distance. \qquad
145. The longer arm of a lever with a mechanical advantage greater than 1 is the effort arm.
\qquad 146. Friction changes the useful work of a machine into mechanical energy. \qquad
\qquad 147. Reducing friction increases the ideal mechanical advantage of a machine. \qquad

Chapter 5 Review

Answer Section

MULTIPLE CHOICE

1. ANS: C
2. ANS: A
3. ANS: D
4. ANS: C
5. ANS: C
6. ANS: B
7. ANS: C
8. ANS: A
9. ANS: C
10. ANS: C
11. ANS: A
12. ANS: A
13. ANS: D
14. ANS: A
15. ANS: B
16. ANS: D
17. ANS: C
18. ANS: D
19. ANS: D
20. ANS: D
21. ANS: B
22. ANS: C
23. ANS: A
24. ANS: B
25. ANS: D
26. ANS: D
27. ANS: A

STA: S4.PS.KI.5.1a
28. ANS: D

STA: S4.PS.KI.5.1b
29. ANS: A PTS: 1
30. ANS: B PTS: 1

STA: S4.PS.KI.5.1b
31. ANS: D PTS: 1

STA: S4.PS.KI.5.1b
32. ANS: A PTS: 1
33. ANS: A PTS: 1

STA: S4.PS.KI.5.1b
34. ANS: C PTS: 1

STA: S4.PS.KI.5.1b
35. ANS: D PTS: 1

DIF: B

DIF: B

DIF: B
DIF: B

DIF: B

DIF: B
DIF: B

DIF: B

DIF: B

OBJ: 4/2
OBJ: 4/2
OBJ: 4/2
OBJ: 5/2
OBJ: 5/2
OBJ: 8/3
OBJ: 6/2
OBJ: 8/3
OBJ: 7/3
OBJ: 4/2
OBJ: 6/2
OBJ: 6/2
OBJ: 3/1
OBJ: 3/1
OBJ: 1/1
OBJ: 3/1
OBJ: 1/1

OBJ: 1/1

OBJ: 2/1
OBJ: 2/1

OBJ: 2/1

OBJ: 3/1
OBJ: 2/1

OBJ: 4/2

OBJ: 5/2

STA: S4.PS.KI.5.1b
36. ANS: A PTS: 1
37. ANS: D PTS: 1

STA: S1.PS.KI.3.1a
38. ANS: B PTS: 1

STA: S4.PS.KI.5.1d
39. ANS: B PTS: 1
40. ANS: A PTS: 1
41. ANS: C PTS: 1
42. ANS: A PTS: 1

STA: S4.PS.KI.5.1c
43. ANS: B PTS: 1

STA: S4.PS.KI.5.1c
44. ANS: B PTS: 1
45. ANS: A PTS: 1 STA: S4.PS.KI.5.1d
46. ANS: A PTS: 1
47. ANS: A PTS: 1 STA: S4.PS.KI.5.1c
48. ANS: A PTS: 1 STA: S4.PS.KI.5.1d
49. ANS: C PTS: 1

STA: S4.PS.KI.5.2a
50. ANS: A PTS: 1

STA: S4.PS.KI.5.2a
51. ANS: A PTS: 1

STA: S4.PS.KI.5.1e
52. ANS: B PTS: 1

STA: S4.PS.KI.5.1d
53. ANS: C PTS: 1
54. ANS: D PTS: 1

STA: S4.PS.KI.5.1e
55. ANS: B PTS: 1

STA: S4.PS.KI.5.1d
56. ANS: A PTS: 1

STA: S4.PS.KI.5.1e
57. ANS: D PTS: 1

STA: S4.PS.KI.5.1c
58. ANS: C PTS: 1

STA: S4.PS.KI.5.1c
59. ANS: D PTS: 1
60. ANS: D PTS: 1

STA: S4.PS.KI.5.1c
61. ANS: D PTS: 1

STA: S4.PS.KI.5.1c
62. ANS: B PTS: 1

STA: S4.PS.KI.5.1c
63. ANS: D PTS: 1

DIF: B
DIF: B

DIF: B

DIF: B
DIF: B
DIF: B
DIF: B

DIF: B

DIF: B
DIF: B

DIF: B
DIF: B

DIF: B

DIF: B

DIF: B

DIF: B

DIF: B

DIF: B
DIF: B

DIF: B

DIF: B

DIF: A

DIF: A

DIF: A
DIF: A

DIF: A

DIF: A

DIF: B

OBJ: 6/2
OBJ: 6/2

OBJ: 8/3

OBJ: 8/3
OBJ: 3/1
OBJ: 1/1
OBJ: 3/1

OBJ: 6/2

OBJ: 6/2
OBJ: 4/1

OBJ: 7/2
OBJ: 6/2

OBJ: 1/1

OBJ: 6/2

OBJ: 6/2

OBJ: 9/3

OBJ: 9/3

OBJ: 9/3
OBJ: 9/3

OBJ: 9/3

OBJ: 10/3

OBJ: 1/1

OBJ: 1/1

OBJ: 5/2
OBJ: 6/2

OBJ: 7/2

OBJ: 7/2

OBJ: 1/1

64.	ANS: A	PTS:	1	DIF:	B	OBJ:	$1 / 1$
	STA: S4.PS.KI.4.1e						
65.	ANS: B	PTS:	1	DIF:	B	OBJ:	1/1
66.	ANS: C	PTS:	1	DIF:	B	OBJ:	1/1
67.	ANS: B	PTS:	1	DIF:	B	OBJ:	$1 / 1$
	STA: S4.PS.KI.5.2a						
68.	ANS: A	PTS:	1	DIF:	B	OBJ:	2/1
69.	ANS: D	PTS:	1	DIF:	B	OBJ:	5/2
70.	ANS: C	PTS:	1	DIF:	B	OBJ:	5/2
	STA: S4.PS.KI.4.5b						
71.	ANS: A	PTS:	1	DIF:	B	OBJ:	7/2
	STA: S4.PS.KI.4.5a						
72.	ANS: D	PTS:	1	DIF:	B	OBJ:	1/1
73.	ANS: C	PTS:	1	DIF:	B	OBJ:	9/3
74.	ANS: C	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
75.	ANS: D	PTS:	1	DIF:	B	OBJ:	5/2
	STA: S4.PS.KI.5.2g						
76.	ANS: B	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
77.	ANS: D	PTS:	1	DIF:	B	OBJ:	4/1
78.	ANS: C	PTS:	1	DIF:	B	OBJ:	6/2
79.	ANS: D	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
80.	ANS: D	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
81.	ANS: D	PTS:	1	DIF:	B	OBJ:	10/3
82.	ANS: C	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
83.	ANS: A	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
84.	ANS: B	PTS:	1	DIF:	B	OBJ:	4/1
85.	ANS: C	PTS:	1	DIF:	B	OBJ:	10/3
86.	ANS: C	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
87.	ANS: A	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						
88.	ANS: A	PTS:	1	DIF:	B	OBJ:	9/3
	STA: S4.PS.KI.5.2g						

TRUE/FALSE

89.	ANS:	F	PTS:
STA:	S4.PS.KI.5.1c		
90.	ANS:	F	
	STA:	S4.PS.KI.5.2a	
91.	ANS:		
92.	ANS:	F	PTS:

DIF: B

DIF: B

DIF: B
DIF: B

OBJ: 1/1

OBJ: 3/1

OBJ: 1/1
OBJ: 9/3

STA: S4.PS.KI.5.1d
93. ANS: F PTS: 1
94. ANS: T PTS: 1

STA: S4.PS.KI.5.2a
95. ANS: F PTS: 1 STA: S4.PS.KI.5.1c
96. ANS: F PTS: 1 STA: S4.PS.KI.5.1e
97. ANS: T PTS: 1
98. ANS: F PTS: 1
99. ANS: T PTS: 1

STA: S4.PS.KI.4.1e
100. ANS: T PTS: 1
101. ANS: T PTS: 1
102. ANS: T PTS: 1

STA: S4.PS.KI.4.1e
103. ANS: F PTS: 1

STA: S4.PS.KI.4.1a
104. ANS: F PTS: 1
105. ANS: T PTS: 1

STA: S4.PS.KI.4.1e
106. ANS: T PTS: 1

STA: S4.PS.KI.4.1d
107. ANS: F PTS: 1
108. ANS: F PTS: 1

STA: S4.PS.KI.4.1e
109. ANS: T PTS: 1

STA: S4.LS.KI.5.2b
110. ANS: T PTS: 1

STA: S4.PS.KI.4.1d
111. ANS: F PTS: 1
112. ANS: F PTS: 1

STA: S4.PS.KI.4.5a
113. ANS: T PTS: 1

STA: S4.PS.KI.5.2f
114. ANS: T PTS: 1

STA: S4.PS.KI.5.2g
115. ANS: T PTS: 1

MODIFIED TRUE/FALSE
116. ANS: T

OBJ: 1/1
STA: S4.PS.KI.5.1a
117. ANS: F, position

PTS: 1
DIF: B
OBJ: 1/1
STA: S4.PS.KI.5.1b
118. ANS: F, velocity

PTS: 1 DIF: B
OBJ: 2/1
STA: S4.PS.KI.5.1a
119. ANS: F, total travel time

PTS: 1
120. ANS: T

OBJ: 2/1
121. ANS: T

OBJ: 4/2
122. ANS: F, negative

PTS: 1 DIF: B OBJ: 5/2
123. ANS: F, positive

PTS: 1 DIF: B
124. ANS: F, velocity

PTS: 1 DIF: B
125. ANS: F, balanced

PTS: 1 DIF: B OBJ: 8/3
126. ANS: F, an unbalanced

PTS: 1 DIF: B
127. ANS: T

OBJ: 9/3
128. ANS: F, stronger

PTS: 1 DIF: B
129. ANS: F, gravity

PTS: 1 DIF: B OBJ: 6/2 STA: S4.PS.KI.5.2a
130. ANS: F, sliding

PTS: 1
131. ANS: T

OBJ: 2/1
132. ANS: F, kinetic

PTS: 1
133. ANS: T

OBJ: $5 / 2$
DIF: B
OBJ: 1/1
PTS: 1
STA: S4.PS.KI.4.5a
134. ANS: F, potential

PTS: 1
135. ANS: T

OBJ: 5/2
DIF: B

STA: S4.PS.KI.5.4d
136. ANS: F, cannot

PTS: 1
DIF: B
OBJ: 7/2

OBJ: 5/2
STA: S4.PS.KI.5.1c

OBJ: 6/2

OBJ: 6/2
STA: S4.PS.KI.5.1d
STA: S4.PS.KI.5.1b
DIF: B
DIF: B
PTS: 1
OBJ: 2/1
PTS: 1

OBJ: $8 / 3$

OBJ: 7/3
PTS: 1
STA: S4.PS.KI.5.1c
DIF: B

DIF: B

STA: S4.PS.KI.4.1e
DIF: B

STA: S4.PS.KI.4.1e DIF: B

STA: S4.PS.KI.4.5a
137. ANS: F, potential

PTS: 1 DIF: B OBJ: $1 / 1 \quad$ STA: S4.PS.KI.4.1e
138. ANS: T

OBJ: 1/1 STA: S4.LS.KI.5.2a
139. ANS: F, mechanical

PTS: 1 DIF: B
140. ANS: T

OBJ: 1/1
141. ANS: F, Elastic potential

PTS: 1
142. ANS: T

OBJ: 1/1
143. ANS: F, Ideal

PTS: 1
DIF: B
OBJ: 6/2
144. ANS: F, time

PTS: 1 DIF: B
145. ANS: T

OBJ: 10/3
146. ANS: F, thermal

PTS: 1 DIF: A
147. ANS: F, efficiency

PTS: 1
DIF: A
OBJ: 7/2
OBJ: 1/1
PTS: 1
STA: S4.PS.KI.4.1e

OBJ: 4/1
PTS: 1

OBJ: 7/2

DIF: B

STA: S4.LS.KI.5.2a
DIF: B

PTS: 1

STA: S4.PS.KI.5.2e
 -
\qquad
\qquad
\qquad

