MOTION - CHANGING position (location)

* Entire object MUST CHANGE LOCATION

SPEED IS RATE OR CHANGE IN POSITION (RATE OF MOTION)

$$
\text { SPEED }=\frac{\text { DISTANCE TRAVELED }}{\text { TIME THANES }}
$$

$$
\begin{aligned}
& \frac{\text { SPEEDOMETER - MEASURES }}{\text { INSTANTANEOUS SPEED }} \\
& (\text { SPEED YOU ARE AT RIGHT } \\
& \text { NOW) } \\
& \left(\begin{array}{ll}
1050 & 60 \\
20 & 0.0 \\
20 & 200 \\
10 & 20 \\
\hline
\end{array}\right)
\end{aligned}
$$

Constant speed
SPEED THAT DENT Change
CRUISE CONTROL on AGAR.

Average speed
Total distance traveled DIVIDED BY
toTal time

$$
\begin{aligned}
& \text { TOTAL TIME } \\
& S=\frac{d}{t} \quad \text { SPEED }=\frac{\text { DISTANCE }}{\text { TIME }}, ~
\end{aligned}
$$

Aim: To describe speed as a rate.

$X=$ Motion can be described as changing

position. (LOCATION)

Speed is the rate of change of position.

DIStance- How far an object moves

DISPLACEMENT- THE DISTANCE AND
DIRECTION FROM ONE LOCATION to another

Instantaneous speed: The speed shown on a speedometer.

Constant speed: Speed that isn't changing.

Average speed: The total distance divided by the total time. When speed varies a great deal.

Calculating speed

$$
\begin{aligned}
& \text { AVE. SPEED }=\frac{\text { TOTAL DISANCE }}{\text { TOTAL TIME }} \\
& \text { AVE. SPEED }=\frac{10 \text { miles }}{0.5 \mathrm{hr}} \\
& 20 . \\
&=20 \frac{\mathrm{mi}}{\mathrm{hr}}
\end{aligned}
$$

Displacement: The total distance from the beginning to the end. Direction is important.

Aim: To describe speed as a rate.
Motion can be described as changing position. (LOCATION)

Speed is the rate of change of position.

Distance- How far an object moves

DISPLACemENT- THE DISTANCE AND DIRECTION FROM ONE LOCATION To another

Instantaneous speed: The speed shown on a speedometer.

Constant speed: Speed that isn't changing.
Average speed: The total distance GODD for divided by the total time.
objects that
When speed varies a great deal.
Change speed OFTEN

Calculating speed

$$
\begin{aligned}
& \text { AVE. SPEED }=\frac{\text { TOTAL D STANCE }}{\text { TOTAL TIME }} \\
& \text { AVE. SPEED }=\frac{10 \text { miles }}{0.5 \mathrm{hr}} \quad S=\frac{d}{t} \\
& 20 . \\
& 51100
\end{aligned}=20 \frac{\mathrm{mi}}{\mathrm{hr}} \quad .
$$

Displacement: The total distance from the beginning to the end. Direction is important.

VELOCITY: SPEED AND Direction of an OBJECT.
EX. $\underbrace{10 \frac{m}{5}}_{\text {SPEED }} \underbrace{\text { EAST }}_{\text {DIREETON }}$
fORMULA: $V=\frac{d}{t}=S=\frac{d}{t}$

A car travels east on the
LIE. If it travels 100 m in
20 sec., what is its
velocity?
$\begin{aligned} & t=100 \mathrm{~m} \\ & t=20 \mathrm{~s}\end{aligned} V=\frac{d}{t}=\frac{100 / \mathrm{m}}{20 \mathrm{~s}}=5 \frac{\mathrm{~m}}{\mathrm{~s}}$
$V=$?

$$
V=5 \frac{m}{S} E A S T
$$

How CaN VElocity CHANGE?

1. SPEED CAN CHANGE((fASTORER)
2. direction can change
3. Change both

ACCELERATION
CHANGE VELOCITY?
SLOW DOWN CHANGE
SPEED UP SPEED
CHANGE DIRECTION
or change both

FORCE AND MOTION
FORCE IS A PUSH OR A PULL. FORCE IS MEASURED IN NEWTONS

EX. 5 N TITHE RIGHT
forces are measured WITH SPRING SCALES 2 lbs is ABOUT 10,0 N
balanced forces - Equal IN SIRE, OPPOSITE IN DIREcTION VELOCITY $=0$ Ms

$$
\text { ACCELERATION }=0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(\text { CONSTANT SPEED })
$$

UNBALANCED FORCES CAUSE AN OBJECT TO ACCELERATE

STRING has velocity and acceleration
$2 N)$ (SUM of forces)

force causes a change in VELOITY

INERTIA-TENDANCy Of ANDRJEG TO REIST A CHANGE IN MOTION

InERTA DEPENDS ON MASS.
more mass means MORE INERTA

NEWTONS FIRST LAW OF MOTION - OBJECTS AT REST Remain at rest, objects in motion remain in motion UNLESS ACTED ON BY A FORCE. LAW OF INERITA

$$
\begin{aligned}
& \text { VELOCITY: THE SPEED AND } \\
& \text { DIRECTION OF AN } \\
& \text { OBJECT } \\
& \text { FORMULA: } \\
& V=S=\frac{d}{t}
\end{aligned}
$$

CHANGING VELOCITY
ACCELERATION: A CHANGE IN THE VELOCITY OF AN OBJECT
-Change speedरislow down

- Change direction-Turn
- Change Both

YOUR BODY IS AN accelerometer-
"YOUR BODY WILL MOVE INTHE OPPOSITE DIRECTION OF THE acceleration"

calculate the acceleration of a car that changes its VELOCITY FROM $5 \frac{\mathrm{~s}}{\mathrm{~s}}$ TO $25 \frac{\mathrm{~m}}{\mathrm{~s}}$ in los.

$$
a=\frac{V_{F}-V_{i}}{t}
$$

calculate the acceleration of a car that changes its VELOCITY FROM $5 \frac{\mathrm{~s}}{\mathrm{~s}}$ TO $25 \frac{\mathrm{~m}}{\mathrm{~s}}$ in los.

FINAL VELOCITY
(ACCELERATION)

$$
\xrightarrow[A]{\text { ORATION }}=\frac{V_{F}-V_{i}}{(T \text { IDE }}
$$

calculate the acceleration of a car that changes its VELOCITY FROM $5 \frac{\mathrm{~m}}{\mathrm{~s}}$ TO $25 \frac{\mathrm{~m}}{\mathrm{~s}}$ in 10 s .

$$
a=\frac{V_{F}-V_{i}}{t}
$$

$$
V_{F}
$$

$$
\begin{aligned}
& a=\frac{V_{F}-V_{i}}{t} \\
& a=\frac{\left(25 \frac{m}{s}\right)-\left(5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{(10 \mathrm{~s})}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{V_{F}-V_{i}}{t} \\
& \begin{aligned}
a & =\frac{\left(25 \frac{m}{s}\right)-\left(5 \frac{m}{s}\right)}{(10 s)}=\frac{20 \left\lvert\, \frac{m}{s}\right.}{10} \\
& =2 \frac{m}{s}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{V_{f}-V_{1}}{t} \\
& a=\frac{25 \frac{m}{s}-5 \frac{m}{s}}{10 s} \\
& a=\frac{205}{105} \\
& a=2 \frac{\mathrm{~m}}{5}
\end{aligned}
$$

UNITS FOR ACCELERATION

$$
\begin{aligned}
& \frac{\frac{m}{s}}{s}=\frac{m}{s} \div \frac{s}{1}=\frac{m}{s} \times \frac{1}{s}=\frac{m \cdot 1}{s \cdot s} \\
& \frac{\frac{m}{s}}{s}=\frac{m}{s^{2}} \\
& \begin{array}{c}
\text { METERS } \\
\text { SER } \\
\text { SETON PER }
\end{array}=\underset{\text { METERS P QR }}{\text { SECOND SQUARED }}
\end{aligned}
$$

A car slows down from $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ TO REST, IF IT TAKES 5 SECONDS, CALCULATE ITS acceleration.

A car slows down from $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ TO REST IF IT TAKES 5 SECOND, CALCULATE ITS acceleration.

$$
\begin{aligned}
& V_{p}=0 \frac{m}{s} \quad t=5 s \\
& V_{1}=20 \frac{m}{s}
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{V_{F}-V_{1}}{t} \\
& a=\frac{\left(0 \frac{m}{s}\right)-\left(20 \frac{m}{s}\right)}{(5 \mathrm{~s})} \\
& a=\frac{-20 \mathrm{~m}}{5 \mathrm{~s}}=-4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

