TA T	•	TA /	
1	/	13/	н
1.4			

\mathbf{D}	٨	П	$\Gamma \mathbf{L}$
v	А	ı.	L

CLASS

STUDY GUIDE

Chapter 2

Velocity and Acceleration

Use the terms below to fill in the blanks.

acceleration

direction

negative

meters per second squared (m/s2)

slowing down

 $a = \frac{v_f - v_i}{t} = \frac{\Delta v}{t}$

divide

meters per second (m/s)

subtract

velocity

increasing speed

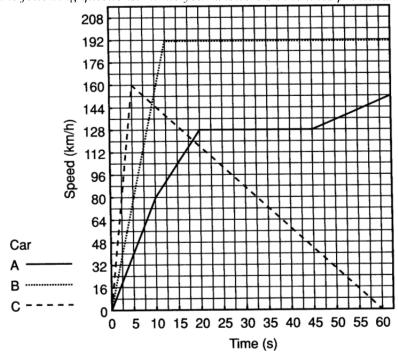
positive seconds(s) time interval

change

Change	
Speed is the rate of motion of an object.	describes an object's
speed and direction. The velocity of an object can	even if the speed of the
object remains constant. This would occur if the	of the object's motion
changes.	
The rate of change of velocity is called	The size of an
acceleration depends on both the change in velocity and the	of the change.
To calculate acceleration,	the change in velocity by the time
interval. To find the change in velocity,	the initial velocity (v _i) from the
final velocity (v _f). The equation for acceleration is	Final velocity will be
less than initial velocity if an object is	and acceleration will have a
value. Final velocity will	be greater than initial velocity if an object is
and acceleration will have	e a value.
The units for velocity are	. The unit for time is
Therefore, the units for ac	eceleration are

REINFORCEMENT

Chapter 2


Velocity and Acceleration

THE CAR RACE

The graph below represents three cars during the first minute of a race. Using the following information, draw another curve on the grid representing the motion of Car D.

Car D accelerates from a rest position at 0 seconds to a speed of 208 km/h at 5 seconds and maintains this speed for 5 seconds. The car decelerates to 32 km/h at 20 seconds. It then accelerates to a speed of 160 km/h at 30 seconds and maintains this speed for 5 seconds. Car D then decelerates to 112 km/h at 40 seconds, decelerates to 64 km/h at 50 seconds, and accelerates to 208 km/in at 55 seconds.

Use your graph to answer the following questions. Write your answers on the lines provided.

- Over which time period is Car B's acceleration the greatest?
- 2. What is Car B's speed at 10 seconds?
- When is Car B's acceleration at zero? 3.
- When is Car C's acceleration at zero?_____ 4.
- Which car(s) have a negative acceleration during the race? 5.
- Which car has traveled the farthest at the end of one minute?
- Which car may have had a reckless driver? Explain.