PHY101 Electricity and Magnetism |
Topic 7 (Lectures 10 & 11) — Electric Circuits
In this topic, we will cover:
1) Electromotive Force (EMF)
2) Series and parallel resistor combinations
3) Kirchhoff’'s rules for circuits
4) Time dependence in RC circuits

Introduction

Charges will always move spontaneously to a pasitiblower potential energy. (Positive
charges mover to lower potential, negative charges point at more positive electrostatic
potential.) A current will therefore not continteeflow in a circuit on its own — some device must
be present to raise the charges to a higher patamergy again. We can see the same thing if we
consider conservation of energy. Current flowingai circuit which possesses resistance will
dissipate electrical power, and this power mussuggplied by some external agency. A third way
of expressing this is that in any closed loop acuwt, the potential difference in traversing the
circuit and returning to the same point must b@;zeince positive charge drops in potential as it
flows along a wire, some means must exist to naisepotential for it to get back to its start pabi
The device required to complete the circuit is gaitbe a source of electromotive force (emf), and
may be a battery or an electromagnetic generatachwtonvert chemical or mechanical energy
respectively into increased electrostatic potemtnargy.

Electromotive Force

The diagram alongside shows a simple circuit ofastelny
connected via two wires to a resistor. The arrsia®v conventional
current direction — the direction taken by a hyptital positive t
carrier particle. When the carrier enters the tiegderminal of the -1
battery, it has its potential raised to a fixedifps value in order to
reach the positive terminal. As it moves througle wire and
resistor, it falls to a lower potential, its eledtatic energy being
converted to thermal energy due to collisions wiik lattice. It
returns to the negative terminal at the same pialeat it started.

\ 4

A

The battery must do work to move charges to thmiteals against the repulsion of the
charges already present there. In this case, caémnergy is converted into electrical potential

energy. The emf of the deviéeis defined as the work done per unit charge mdred negative

to positive terminal. It has the units of Volt (h, remember, is 1 Joule per Coulomb). It should
be clear from the units that the emf is not reallfjporce but the energy per charge, as is potential!
For this reason it is common to use the abbreviatimf in preference to the words “electromotive

force”.

Internal Resistance and Terminal Voltage

An ideal source of emf would simply raise chargesthe >
required potential. Real devices, such as bastearedl generators, {7 {
also have some internal resistance, The terminal voltageVr,

r R

available to the external circuit, then dependshencurrent flowing. T
The potential difference across the internal rasist must bér, so <
the terminal voltage is Vr=&-Ir. [1] ? ------
The external voltage is also givenWy=1R. We can further express this as

E=Ir+IR [2]
So =2 [3]

R+r
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Resistors in Series and Parallel

We previously examined circuits with two or morgpaeitors connected together, and saw
that they behaved like a single capacitor, withapacitance which we could calculate from the
individual capacitance values. We will now sed #haimilar situation exists for combinations of
resistors, which can again be expressed as artieffewverall resistance.

Resistorsin Series
Two resistors in series will have a common curdefitbowing through them. The
voltage acros®; is given by; =1 R;. SimilarlyV, =1 R,. The total voltage across

the combinations is just =V; + V, =1 (R; + R,). Defining the overall resistanée Re
in the usual way, R:Y—=R1+R2. !

Ry
For N resistors in series, R=R+Ry+---+ Ryl [4]

(In a series combination, the total resistancéwsgs greater than any individual resistance.)

Resistorsin Parallel
When two resistors are in parallel, it is the vgdtaacross them which is
common, and the current splits to flow throughrsstors separately. We

therefore havd, :% andl, :%, with the total current being given by R Rz

- . \
| =1,+1,. Defining the overall resistanéeas before astl— , we have

ForN resistors in parallel, — ==+ttt [5]

(In a parallel combination, the total resistancalvgays less than the smallest individual resisggnc

Kirchhoff's Rules
Some circuits are more complicated than seriesaaallel connections. For these, it can be
helpful to use Kirchhoff's junction and loop rules.

Kirchhoff's junction rule is a statement of the servation of
charge. The algebraic sum of the currents entering and leaving a
junction is zero. l4

>1=0. [6] I2
In the figure alongside, this meahst+1,-15;-1,=0.
Charge is neither created nor destroyed at theéipmand it does not accumulate there.

Kirchhoff’'s loop rule is a statement of the consgion of energy.The algebraic sum of the
changes in potential around any closed loop is zero.

ZV =0. [7]
Thus when any charge passes in a closed loop am@uwntuit, it returns to the same potential.

When charge passes from the negative to the pediénminal of a source of emf, its potential is
raised. When it passes through a resistancdlgtifigpotential.

An illustration of the use of Kirchhoff's rules ggven in the examples at the end of this topic.
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RC Circuits

Circuits containing only components of constanistasce and emf will have a steady current
flowing. When a capacitor is included in the citcthe current is likely to change with time. ¥hi
is because the voltage across the capacitor demantise charge it holds, and it takes time for a
flowing current to gradually charge or discharge tlapacitor. (If a capacitor were connected with
ideal wires, of zero resistance, to meal emf, with no internal resistance, then it wouldcbarged
instantly.)

Capacitor Discharge

Consider the circuit alongside, consisting of aacapr and resistor in
parallel connected across an ideal battery with @mAs long as the £
switch is closed, the potential difference acrosghbcapacitor and
resistor is€, and the charge on the capacitd@js CE . The switch is

then opened at time= 0. The capacitor then discharges through the
resistor, and the current is just the ratelistharge,

dQ
| = ——. 8
dt 8]
The potential difference/, is \% =% =IR.
- Q dQ
Using [8], —=-R—
g (8] c ot
t Q CQ
Rearranging and integrating, we have——J'dt = j—
C 0 Q Q
So In g = —L
Q RC
or Q= Qoe_y | [9]
In other words, the charge on the capacitor deaays/ exponentially. We can also consider how

Q

the voltage and current change. Sih’ceE and& :%, [9] also gives uy = 53—%«: :

If we differentiate [9] with respect to time, wetalm

1 =-S ge = | =8 etk = Ioe_yRC
RC R
Note that all three quantities, charge, voltage Ty =RCIn2=0.693.

and current, die away with the sartiene
constant T=RC. Whent=RC, the charge
(for example) has decayed &' = 37%of its Q
initial value. We can also define thelf-life Qo
Ty, of the charge, that is the time required for
it to fall to its original value. Equation [8]

0.5Qy

N
, 1 -k 0.37Q7~---- ==
then gives us Q.1 =e R ’ :
0 |
Taking the natural logarithm, this gives Ty 1 t

Charging a Capacitor
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are in series. Initially the capacitor is unchakgien the switch is
closed at timet=0. We can employ the loop rule [7], passing
clockwise round the circuit, to obtain C

Now consider the circuit illustrated, where the a@for and resistor i

e-IR-2=0. A  E

1
(Remember that the potential falls as we follow ¢herent through the resistor or capacitor.) The
same result can also be obtained by consideringhibasum of the potential differences across the
resistor and the capacitor must add up to the ewni the battery. The current nowdsarging the

capacitor, so we have :C:j—?.
Therefore d—QR=8—g=C5_Q=Q°_Q.
dt C C C
Here we are defining), = £C as the final, fully charged value for the chargeCo
t Q
RCy 0~ Q
t Q
¢ =L@ -Q)J;
_L =In M
CR Q,
= 1—g —e ke
Q
- 1- _yRC
Q=Q(1-e [10]

We see that we have the same time constant,
T=RC, but in this case this gives the time Q
required for the current to rise to 63% of its
final value. Once again, we can also examine
the voltage across the capacitor:
V :9 :%(1—6_%?(:) 28(1—8_%*‘3) .
c C
And finally the current (through either resistor
or capacitor) is given by
| :d_Q:&e"yRc :ée"%?c = e‘%?c_
dt RC R °
Note that heréy is theinitial current, and that the functional form is the same as & & the case
of discharging the capacitor.

063Qq-------4

[y [P U -
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Putting What You Have Learnt Into Practice

Question 1

A battery has an emf of 1.60 V and an internalstasice of 0.1Q. It is connected to a load
resistance of 3.

(a) What is the terminal voltage of the battery?

(b) How much power is (i) delivered to the loadises; (ii) dissipated inside the battery;
(i) produced in total by the battery?

Solution
(a) The terminal voltage depends on the currentyesirst work that out.
__& _160_ 0.508A
R+r 3.15

V=£-1Ir=1.60- 0.50& 0.1 1.52.

(b) (i) The external power i®,, =1?°R=0.508 x 3.0= 0.774W 774m\.

ext

(i) The internal power is P =1°r =0.508x 0.15 39mV.

int

(iii) The total power is P, =¢& =1.60x 0.508= 813mV,

tot

which is the sum of the answers to parts (i) andds it should be!

Question 2
R1 5 R,
| i NV
1 2 3
r ) I3
8]_ T 52 T 53 T
A

The circuit above consists of 3 different imperfieatteries connected to two equal resistors. Find
the currents, I, andls leaving the batteries, and the potential diffeesfiom A to B,Vas.

Takeé’l= 6V,ri=1Q, 52: 10 V,r, = 2Q, 53: 12 V,r3=3Q andR1=R2= 20Q.

Solution
Applying Kirchhoff’s junction rule at B,

i +1,+13=0 = Iz=-l,-1, (1)
(Note that the currents |, I, 13 cannot all be flowing in the directions indicated towards point B.
We do not know which flow in the other direction, but thiswill become apparent from the
calculated values being negative.}
Applying Kirchhoff's loop rule for the left handrcuit, in clockwise direction,

G-lin—1R+1 3,-&,=0

= &-11(r+Ry)+14,-€,=0 2)
Applying Kirchhoff's loop rule for the right handrcuit, in clockwise direction,

Ey—larat IR+t 457850 )
Substitute (1) in (3 E =lop=(l1+1 ) (Ro+rg-E4=0
= 52—|1(R2+r3)—|2(r2+R2+r9—53=0 (4)
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Now substitute in the component values given te givnultaneous equations we can solve:

(2)= 6—1,x21+1,%x 2- 10= (

21, +2,=4 (5)
4)= 10— 1, % 23+ 1, 25- 12= (

-231,-29,=2 (6)
25%(5) + 2¢(6) = (-525- 461, = 100+

|, =-0.182A
4+21x(-0.18

Substitute in (5) 5= (2 2) =0.089A

Question 3

The circuit alongside shows a 1B capacitor connected in parallel
with a 15@ resistor and a 3.0 V battery. The switch, whichsw
initially closed, is opened at timte= 0. What is the current flowing
through the resistor immediately after the swilopened? After how
long will the current have dropped to 1% of thisue® What is the

energy dissipated in the resistor during the coteplescharge?

Solution
Initially, the voltage across both capacitor arglgtr is€, so the current is

0=—=—=0.02A
R 150
The current dies away according to
K
| =1ye /CR.
If I—=O.01, then —L=In 0.01
o CR
t
—=In100
CR

t =CRIN100= 100 10°x 158 In108 0.6
it takes 0.69 s for the current to decay to 1%friitial valud.

The answer to the final part of the question must lpe that the energy stored on the capacitor is
dissipated in the resistor, il8.=1CE?. However, we can demonstrate this by integratieg
instantaneous power.

We haveP = 1°R, and| = |0e—%«: =%e_%*¢
) 2
u =det=(§j R[e en ot
0 R 0

= 8_2[—% e_ZtCR}oo
0

R 2

2 2 2 6
_ECR_EC_Fx100<10° _, .o -

R 2 2 2

[The total energy dissipated in the resistor is @b
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