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PHY101 Electricity and Magnetism I 
Topic 7 (Lectures 10 & 11) – Electric Circuits 

In this topic, we will cover: 
1) Electromotive Force (EMF) 
2) Series and parallel resistor combinations  
3) Kirchhoff’s rules for circuits 
4) Time dependence in RC circuits 

 
Introduction 

Charges will always move spontaneously to a position of lower potential energy.  (Positive 
charges mover to lower potential, negative charges to a point at more positive electrostatic 
potential.)  A current will therefore not continue to flow in a circuit on its own – some device must 
be present to raise the charges to a higher potential energy again.  We can see the same thing if we 
consider conservation of energy.  Current flowing in a circuit which possesses resistance will 
dissipate electrical power, and this power must be supplied by some external agency.  A third way 
of expressing this is that in any closed loop or circuit, the potential difference in traversing the 
circuit and returning to the same point must be zero; since positive charge drops in potential as it 
flows along a wire, some means must exist to raise it in potential for it to get back to its start point.  
The device required to complete the circuit is said to be a source of electromotive force (emf), and 
may be a battery or an electromagnetic generator which convert chemical or mechanical energy 
respectively into increased electrostatic potential energy. 

Electromotive Force 
The diagram alongside shows a simple circuit of a battery 

connected via two wires to a resistor.  The arrows show conventional 
current direction – the direction taken by a hypothetical positive 
carrier particle.  When the carrier enters the negative terminal of the 
battery, it has its potential raised to a fixed positive value in order to 
reach the positive terminal.  As it moves through the wire and 
resistor, it falls to a lower potential, its electrostatic energy being 
converted to thermal energy due to collisions with the lattice.  It 
returns to the negative terminal at the same potential as it started. 

 

+ R 
– 

The battery must do work to move charges to the terminals against the repulsion of the 
charges already present there.  In this case, chemical energy is converted into electrical potential 
energy.  The emf of the device E is defined as the work done per unit charge moved from negative 

to positive terminal.  It has the units of Volt (which, remember, is 1 Joule per Coulomb).  It should 
be clear from the units that the emf is not really a force but the energy per charge, as is potential!  
For this reason it is common to use the abbreviation emf in preference to the words “electromotive 
force”. 

Internal Resistance and Terminal Voltage 
An ideal source of emf would simply raise charges to the 

required potential.  Real devices, such as batteries and generators, 
also have some internal resistance, r.  The terminal voltage, VT, 
available to the external circuit, then depends on the current flowing.  
The potential difference across the internal resistance must be I r, so 
the terminal voltage is  VT = E – I r. [1]  

R r 

E 

VT  

I 

The external voltage is also given by VT = I R.  We can further express this as  
 E = I r + I R [2] 

So I
R r

=
+
E

 [3] 
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Resistors in Series and Parallel  
We previously examined circuits with two or more capacitors connected together, and saw 

that they behaved like a single capacitor, with a capacitance which we could calculate from the 
individual capacitance values.  We will now see that a similar situation exists for combinations of 
resistors, which can again be expressed as an effective overall resistance.   

Resistors in Series 
Two resistors in series will have a common current I flowing through them.  The 
voltage across R1 is given by V1 = I R1.  Similarly V2 = I R2.  The total voltage across 
the combinations is just V = V1 + V2 = I (R1 + R2).  Defining the overall resistance R 

in the usual way,  1 2

V
R R R

I
= = + . 

For N resistors in series,  1 2 NR R R R= + + +⋯ . [4] 
R1 

I 

R2 

 

(In a series combination, the total resistance is always greater than any individual resistance.) 

Resistors in Parallel 
When two resistors are in parallel, it is the voltage across them which is 
common, and the current splits to flow through the resistors separately.  We 

therefore have 1
1

V
I

R
=  and 2

2

V
I

R
= , with the total current I being given by 

1 2I I I= + .  Defining the overall resistance R as before as 
V

R
I

= , we have 

R1 R2

 

 1 2

1 2

1 1 1I I

R V R R

+= = + . 

For N resistors in parallel, 
1 2

1 1 1 1

NR R R R
= + + +⋯ . [5] 

(In a parallel combination, the total resistance is always less than the smallest individual resistance.) 

Kirchhoff’s Rules 
Some circuits are more complicated than series or parallel connections.  For these, it can be 

helpful to use Kirchhoff’s junction and loop rules. 

Kirchhoff’s junction rule is a statement of the conservation of 
charge.  The algebraic sum of the currents entering and leaving a 
junction is zero.   
 0IΣ = . [6] 

In the figure alongside, this means 1 2 3 4 0I I I I+ − − = . 

I1 I3 

I4 
I2  

Charge is neither created nor destroyed at the junction, and it does not accumulate there. 

Kirchhoff’s loop rule is a statement of the conservation of energy.  The algebraic sum of the 
changes in potential around any closed loop is zero.   

 0VΣ = . [7] 
Thus when any charge passes in a closed loop around a circuit, it returns to the same potential.  
When charge passes from the negative to the positive terminal of a source of emf, its potential is 
raised.  When it passes through a resistance, it falls in potential. 

An illustration of the use of Kirchhoff’s rules is given in the examples at the end of this topic. 
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RC Circuits 
Circuits containing only components of constant resistance and emf will have a steady current 

flowing.  When a capacitor is included in the circuit, the current is likely to change with time.  This 
is because the voltage across the capacitor depends on the charge it holds, and it takes time for a 
flowing current to gradually charge or discharge the capacitor.  (If a capacitor were connected with 
ideal wires, of zero resistance, to an ideal emf, with no internal resistance, then it would be charged 
instantly.) 

Capacitor Discharge 
Consider the circuit alongside, consisting of a capacitor and resistor in 
parallel connected across an ideal battery with emf E.  As long as the 

switch is closed, the potential difference across both capacitor and 
resistor is E, and the charge on the capacitor is0Q C= E .  The switch is 

then opened at time t = 0.  The capacitor then discharges through the 
resistor, and the current is just the rate of discharge, 

 

C R 
E + + 

– – 

 

 
d

d

Q
I

t
= − . [8] 

The potential difference, V, is 
Q

V IR
C

= = . 

Using [8],  
d

d

Q Q
R

C t
= −  

Rearranging and integrating, we have 
00

1 d
d

Qt

Q

Q
t

RC Q
− =∫ ∫  

So 
0

ln
Q t

Q RC

 
= − 

 
 

or 0

t
RCQ Q e

−= . [9] 

In other words, the charge on the capacitor decays away exponentially.  We can also consider how 

the voltage and current change.  Since 
Q

V
C

=  and 0Q

C
=E , [9] also gives us 

t
RCV e

−= E . 

If we differentiate [9] with respect to time, we obtain 

 0
t

RC
Q

I e
RC

−− = −  ⇒ 0

t t
RC RCI e I e

R

− −= =E
 

Note that all three quantities, charge, voltage 
and current, die away with the same time 
constant RCτ = .  When t RC= , the charge 
(for example) has decayed to 1 37%e− ≈ of its 
initial value.  We can also define the half-life 
T½ of the charge, that is the time required for 
it to fall to its original value.  Equation [8] 

then gives us 
1

2

0

1

2

T

RC
Q

e
Q

−
= =  

Taking the natural logarithm, this gives 

 1
2

ln 2 0.693T RC= = τ . 

t

Q

τT ½

Q 0

0.5 Q 0

0.37 Q 0

 
Charging a Capacitor 
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Now consider the circuit illustrated, where the capacitor and resistor 
are in series.  Initially the capacitor is uncharged, then the switch is 
closed at time t = 0.  We can employ the loop rule [7], passing 
clockwise round the circuit, to obtain 

 0
Q

IR
C

− − =E� . 

C 

R 
E 

+ – 

I 

 

(Remember that the potential falls as we follow the current through the resistor or capacitor.)  The 
same result can also be obtained by considering that the sum of the potential differences across the 
resistor and the capacitor must add up to the emf from the battery.  The current now is charging the 

capacitor, so we have 
d

d

Q
I

t
= . 

Therefore 0d

d

Q QQ Q C Q
R

t C C C

−−= − = =E
E . 

Here we are defining 0Q C= E  as the final, fully charged value for the charge on C. 

 
00 0

1 d
d

Qt Q
t

RC Q Q
=

−∫ ∫  

 ( )0 0
ln

Qt
Q Q

RC
= − −    

 0

0

ln
Q Qt

CR Q

 −− =  
 

 

⇒ 
0

1
t

RC
Q

e
Q

−− =  

 ( )0 1
t

RCQ Q e
−= −  [10] 

We see that we have the same time constant, 
RCτ = , but in this case this gives the time 

required for the current to rise to 63% of its 
final value. Once again, we can also examine 
the voltage across the capacitor: 

 ( ) ( )0 1 1
t t

RC RC
QQ

V e e
C C

− −= = − = −E . 

And finally the current (through either resistor 
or capacitor) is given by 

 0
0

d

d

t t t
RC RC RC

QQ
I e e I e

t RC R

− − −= = = =E
. 

t

Q

τ

Q 0

0.63 Q 0

 

Note that here I0 is the initial current, and that the functional form is the same as it was for the case 
of discharging the capacitor. 
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Putting What You Have Learnt Into Practice 
Question 1 
A battery has an emf of 1.60 V and an internal resistance of 0.15Ω.  It is connected to a load 
resistance of 3.0Ω. 
(a) What is the terminal voltage of the battery? 
(b) How much power is (i) delivered to the load resistor; (ii) dissipated inside the battery;  
(iii) produced in total by the battery? 

Solution  
(a) The terminal voltage depends on the current, so we first work that out. 

 
1.60

0.508A
3.15

I
R r

= = =
+
E

. 

 1.60 0.508 0.15 1.52VV Ir= − = − × =E . 

(b) (i) The external power is 2 2
ext 0.508 3.0 0.774 W 774mWP I R= = × = = . 

(ii) The internal power is 2 2
int 0.508 0.15 39mWP I r= = × = . 

(iii) The total power is tot 1.60 0.508 813mWP I= = × =E ,  

which is the sum of the answers to parts (i) and (ii), as it should be! 

 

Question 2 

 

R1 

r1 

E1 

B 
I1 

r2 

E2 

I2 

r3 

E3 

I3 

R2 

A  

The circuit above consists of 3 different imperfect batteries connected to two equal resistors.  Find 
the currents I1, I2 and I3 leaving the batteries, and the potential difference from A to B, VAB. 

Take E1 = 6 V, r1 = 1Ω, E2 = 10 V, r2 = 2Ω, E3 = 12 V, r3 = 3Ω and R1 = R2 = 20Ω. 

Solution  
Applying Kirchhoff’s junction rule at B, 
 1 2 3 3 1 20I I I I I I+ + = ⇒ = − −  (1) 

(Note that the currents I1, I2, I3 cannot all be flowing in the directions indicated towards point B.  
We do not know which flow in the other direction, but this will become apparent from the 
calculated values being negative.} 
Applying Kirchhoff’s loop rule for the left hand circuit, in clockwise direction, 
 1 1 1 1 1 2 2 2 0I r I R I r− − + − =E E   

⇒ ( )1 1 1 1 2 2 2 0I r R I r− + + − =E E  (2) 

Applying Kirchhoff’s loop rule for the right hand circuit, in clockwise direction, 
 2 2 2 3 2 3 3 3 0I r I R I r− + + − =E E  (3) 

Substitute (1) in (3) ⇒ ( )( )2 2 2 1 2 2 3 3 0I r I I R r− − + + − =E E  

⇒ ( ) ( )2 1 2 3 2 2 2 3 3 0I R r I r R r− + − + + − =E E  (4) 
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Now substitute in the component values given to give simultaneous equations we can solve: 
(2) ⇒ 1 26 21 2 10 0I I− × + × − =  

 1 221 2 4I I− + =  (5) 

(4) ⇒ 1 210 23 25 12 0I I− × + × − =  

 1 223 25 2I I− − =  (6) 

25×(5) + 2×(6) ⇒ ( ) 1525 46 100 4I− − = +  

 1 0.182AI = −  

Substitute in (5) 
( )

2
4 21 0.182

0.089A
2

I
+ × −

= =  

Substitute in (1) 3 1 2 0.093AI I I= − − =  

 B B 2 2 2 10 0.089 2 9.82VV V I r− = − = − × =E . 

 
Question 3 
The circuit alongside shows a 100 µF capacitor connected in parallel 
with a 150Ω resistor and a 3.0 V battery.  The switch, which was 
initially closed, is opened at time t = 0.  What is the current flowing 
through the resistor immediately after the switch is opened?  After how 
long will the current have dropped to 1% of this value?  What is the 
energy dissipated in the resistor during the complete discharge? 

 

C R 
E + + 

– – 

Solution  
Initially, the voltage across both capacitor and resistor is E, so the current is 

 0
3.0

0.02A
150

I
R

= = =E
. 

The current dies away according to 

 0

t
CRI I e

−
= . 

If 
0

0.01
I

I
= , then ln 0.01

t

CR
− =  

 ln100
t

CR
=  

 6ln100 100 10 150 ln100 0.69st CR −= = × × × = . 

It takes 0.69 s for the current to decay to 1% of its initial value.  
 
The answer to the final part of the question must just be that the energy stored on the capacitor is 
dissipated in the resistor, i.e. 21

2U C= E .  However, we can demonstrate this by integrating the 

instantaneous power. 

We have 2P I R= , and 0

t t
RC RCI I e e

R

− −= = E  

 

2
2

0 0

2

0

2 6
4

d d

2
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2 2 2

t
CR

t
CR

U P t R e t
R

CR
e

R

CR C

R

∞ ∞
−

∞
−

−
−

 = =  
 

 = −  

× ×= = = = ×

∫ ∫
2

2 2

E

E

E E

 

The total energy dissipated in the resistor is 0.45 mJ.  


