PHY101 Electricity and Magnetism |
Topic 4 (Lectures 5 & 6) — Electrostatic Potential

In this topic, we will cover:

1) Potential Energy of a Charge and Electrostatic iiate

2) Potential of Point and Spherical Charge Distribnsgio

3) Deriving Electric Fields from Potentials

4) The Potential Energy of Systems of Charges andgeharstributions

Introduction

An object which can move vertically in a gravitatab field changes its gravitational potential
energy. The concept of electrostatic potentiatgyes equally important in electric fields. Thss
generalised to electrostatic potential — the paaernhergy a unit charge would have at a point due
to the electric fields around it. We will also gbat electric field can be derived from a potdntia
distribution, just as the potential can be evaldiditem the field.

Electrostatic Potential

When a particle moves under the action of a fatde,capable of doing work. The energy to
do this must come from somewhere — the potentiaiggnof the object must decrease. Similarly
applying a force to move a charge against an elgtettic force does work against the electric field
and so builds up the potential enerdy, If the external force is equal and opposite he t
electrostatic force (so that the kinetic energyhaf object does not change), the work done is just
the change in potential energy.

W, =AU =U; -
whereUs is the final value of the potential energy dhds the initial value.
Consider a test chargein a uniform electric fieldE. The E
electrostatic force acting og is F=gE. To move the M T T y
charge through a distanf& as shown, an external forEgy, X < fi
equal and opposite tB, must be applied. In moving the Fei Q

charge, the work done ¥/

Lo = F(% = %)= FAx=—qB ».
Note that in this example, the value/ofis negative.

The change in potential is therefol®) = -qEAX.

For a given electric field, the potential energyadiest charge obviously depends on the size
of the charge. It is convenient to define the tetestatic potentialV as being the potential energy a
unit charge would possess at that point.

Hence AV = Ay [1]
q
and AV = -EAX. [2]

The S.I unit of potential is the volt (V), whichésual to 1 Joule per Coulomb, 1V =13.C

The absolute potential energy is not something we cbserve — we can only measure
changesin potential energy. This gives us the freedonchoose our zero point. The usual
conventions are to define the zero of potentiakrggnéand hence of electrostatic potential) where
charges are separated by infinite distances, anielectric circuit we may choose the ground as
being at zero potential.

The potential at a point is the external work reqdito bring a positive unit charge from a position
of zero potential to the given point, with no chag kinetic energy.
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We can extend the above arguments to the case thieealectric field is not necessarily
uniform. For an infinitesimal displacemens df a chargeq, the work done by the field is
Flds=qElds. Note this is the work donky the field, so the potential energy of the system

(charge plus field) must have changeddhy = —gE [ts. For a finite displacement from point A to
point B, the change in potential energy of the eysis

B
AU =Ug -U, =~q[ Elds.
A

In terms of electrostatic potential, we can use fd]deduce that for an infinitesimal

displacement dv = a =-Elds [3]
q
B
or more generally AV =V, -V, = —j E [ds. [4]
A

Note that electric field is conservative, so thieieaf the integral depends only on the end paoints
and B, and not on the path taken between them.

If we consider a path that is parallel to the fidilte, E[ds must be positive, sdV is
negative. Electric field lines therefore always point in thieedtion of decreasing potential.

Equation [1] shows us thatU =gAV . A positive charge therefore loses potential gper
when it moves in the direction of a field line. h{¥ is the direction it would naturally tend to neov
under the influence of the field, and it may gainekic energy as a result.) On the other hand a
negative charge gains energy when it moves in itleetecbn of the field (and this must happen as a
result of an external force).

An equipotential surfacas a surface which joins a continuous distributiminpoints all
having the same potential. Electric field lines noerpendicular to such surfaces. No work is
required to move a particle along an equipotestiaface.

Electrostatic Potential of a Point Charge
We will now consider the potential in the viciniby various charge distributions. For a point
charge, we saw in Topic 2 that the electric fislgiven by

e O

AT 1

r

Equation [4] enables us to find the change in p@kemoving from point A to point B. If we
choose point A to be at zero potential — by beimgnéinite distance from the charge — we can find
the absolute potential at a point B, a distanciEom the charge. We can also simplify the intégra
by choosing a pathwhich is radial, and so parallel to the field BneHence

QT_ Q

= . [5]
ey | AEJ,

V(rB):—JEEms:—JEArT[Soerr :[

(Be careful not to confuse the expression for gtectield about a point charge,

Q > With that for potentiaV = Q N
4TE 1 4TE I

E=
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Electrostatic Potential about a Charged Condu@iplgere of RadiuR

We have seen that electric charge distributesf itaer the surface of a conductor. Gauss’s
law also told us that the flux through a surfacl @epends on the total charge contained within it.
The electric field outside a charged sphere isefioee identical to that around a point charge ef th
same value as the charge contained on the sphEhe. potential in this region must also be

Q (6]

ATE,r

identical to that evaluated abowe =

There is no electric fieldnside the conductor. There can therefore be no change
potential from point to point — throughout the sghi must have the same value as at its surface:

Forr <R V= Q .
41e R

In general, all points within and on the surfaceaafonductor in electrostatic equilibrium are aeth
same potential.

Calculating Electric Field from Potential
We have calculated the potential from a known eleéeld distribution, using

B
AV =V, -V, =~[Eds. [4]
A

This relationship can be inverted, to allow us ttedaine the electric field strength in situations
where we know the potential. For an example wherd&now the direction of the field, for
instance in the case of a point charge where wevlh radial, we can write

B
AV :—j Edr
A
SO E:—d—v. [7]
dr

(Check this, by deriving E from the expressionvon [6] above.)

More generally, we must separate the dot produetiisa components. If we writesés
(dx,dy,dz) , equation [4] becomes

B
AV =-[ Edx+ Edy+ Edz
A

oV LoV, oV

Hence E,=——; E =-—; =, 8
< ax Yooy = 0z 18]
or, using thelel operator 0= iii
0x 0y 0z
E=-0V]| [9]

[Note: %—V is apartial derivative the differential ol with respect tx while keepingy andz
X

constant.]

If we consider [7], we can see an alternative ends for electric field would be Volts per
metre or V m". In fact, these units are used more commonly M&n”.
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The Potential and Potential Energy of a Systemhar@es
We saw above that the electrostatic potentialdistancer from a point charg® was

__Q

ATES

[6]

Vo

The potential energy of a chargat this point is therefore (from [1])

qQ
U=a\, = : 10
Yo ATE 1 [10]
You might think that the chard@, seeing the electric field and potential due,tavould also have a
potential energy U=QV,= Qq
4T

so that the total potential energy would bﬁQ—q This would be wrong!! The energy would
TE,f

have been double-counted.

The potential energy expressed in [10] is thata@ioed in thesystenof charge plus field or charge
plus other charge.

Since potential can be derived from electric field can use the principle . L Q
of superposition to determine the potential at afpdue to a system of 12
charges. In the figur€); is at a point where the potential due to the other .. +f23
two charges i%/ = + [11] *

4TEOFIS 4T[E()r23 .
The total potential energy of the three charges,tduheir interactions with each other, is just

U= QQ | QQ , QQ
4TEOr13 4TEJ 23 4TE 6 12

The Potential Energy of a Continuous Charge Digtidin

We have seen that bringing charges closer togetiggires work to be done, which is stored
as potential energy of the system. The same madtue of building up a continuous charge
distribution, for example charging up a sphere wliarge.

Consider a conducting sphere of radRiglready carrying a charg@. The work done in
adding another element of chargg (@.9. bringing it from infinity) is equal to thequluct of the
charge element and the potential at the surfateeasphere:

Q
du =V dg= dg.
d 41 R d

We can calculate the total potential energy ofd@rged sphere by considering building its charge
up from 0 to a final value, sa.
Qtot 2
U= -9 dq=l e
o 4TE R 2 4re R

[Note the integral produces a factor of %2 companath considering the simple product of the total
charge with the potential due to the total chargehis automatically avoids the “double counting”
error discussed above when considering the intevaatf discrete charges.]

PHY101 E&MI 4 4 CNB



Motion of Charges and the Electron-Volt
A free charge in an electric field will move in $ua way that its total energy is conserved.
In terms of kinetic energl{ and potential energy, this means

AK +AU =0.
We have already seen that for a chaygdJ = gAV , so the kinetic energy obeys
AK = —gAV .

We might consider an electron moving between catatl anode of a cathode ray tube. H®re
is positive,q is negative, so the changelns positive, and kinetic energy is gained.

For elementary particles like electrons, it is nf@nvenient to measure kinetic energy in a unit
called the electron-volt (eV). When a particle thwitharge of magnitude moves through a
potential difference of 1 V, its kinetic energy ogas by 1 eV

[1ev=16&10"°]] [12]
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Putting What You Have Learnt Into Practice

Question 1

A proton is released from rest in a uniform electreld of
magnitude 8.810° V m™ (see figure). The proton travels a
distance of 0.5 m in the direction Bf

v
|

v

(a) Find the change in electric potential betweemts A
and B.

(b) Find the change in potential energy of the qmefield
system as a result of this displacement.

[+ + + + + + +]|
v
|

(c) Find the speed of the proton when it arrivegaant B.

Solution

(@) AV =-Ed=-8.0x10x 0.5-- 4.& 10 \.

(b) AU =gAV = eAV=1.6x10""x(-4.0c 10)=- 6.4 10° .

Note the negative sign means potential energy bas lost from the system as the proton moves in
the direction of the field. This energy is gaireedkinetic energy by the proton.

(c) The charge-field system is isolated, so italtehergy is conserved.

AK +AU =0
imv =-AU
2x(-6.4x 10"
V= _2AU :\/— ( = ):2.8><103 ms®.
m 1.67x 10

Question 2
A chargeq; = 2.0uC is located at the origin, and a charge y
g2 = —6.0uC is located at (0,3.0) m, as shown in the figure. s

(a) Find the total electric potential due to thebarges at Q2
the point P, with co-ordinates (4.0,0) m. 2

S

(b) Find the change in potential energy of theesysof two
charges plus a third chargg =3.0uC as the latter is

moved from infinity to the point P. 0. ® 5 "p X
Solution
(a) Using [11], and Pythagoras for the distancenfep to P, we have
v % . % _ 1 2.0><106+—6.0< 10
P o4rer, 4MES,, 4mx 8.85¢ 107 4 5
=-6.3x10 V

(b) By definition, whergs is at infinity it has zero potential energy. Owving to P, its potential
energy changes g Vp. The change in potential energy of the systethasefore

AU =V, =3.0x10°x(- 6.3 18)=- 1.89 10 .

The fact that this is negative means that (pogitiverk would have to be done to retuggnto its
position at infinity.
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Question 3
What is the electric potential due to a disc ofua® carrying a /

uniform charge density C ni, at a point a distancefrom the
disc and on the axis of the disc? z1P

Solution

This calculation proceeds in a similar way to tbathe electric
field, in question 4 of Topic 2. Consider the disdbe made up
of concentric rings, of thickness,ne of which is shown. The
charge @ on this ring is equal to x its area, oRrrod . The

distance from point P of all points on the ring\/frs2 +z%, so the
potential at P due to one ring of radius

dQ _ rodr

1/2
) 250(22+ r2

dv =

12"
4T1£0(22+ r? )

Letu=r? = du=2rd

Note that this result gives us an alternative wWagadculating the electric field due to the diss, a
was discussed in Topic 2 Question 4. Since by sstmynthe electric field on the axis must be
parallel toz,

oV

FTRTTy

PHY102 E&M 4 7 CNB



Question 4
A chargeQ is distributed uniformly throughout a sphere aivgR. Calculate the electric potential
(a) at a point outside the sphere; (b) at a poititivthe sphere.

Solution
In the previous topic, we used Gauss’s law to dateuthe electric field due to this charge
distribution. We can now use that result to fihd potential. From equation [4]

B
AV =V, -V, =~[Elds
A

and we know by symmetry that the field is radid/e may also take the potential at infinity as
being zero, so

V(r):—j'Edr.
(@) Forr >R, then E:4n§r2'
_ Q[ -Q]_ Q
v(r)= i4ﬂ£or2dr {4115(;10 4Te § [13]

(which is the same as whéhis concentrated at a point at the centre of thes).

(b) When we consider a point inside the sphere R, we cannot take a single expressionHall
the way from infinity to the point. We can use]1@find the potential at the surface of the
sphere

V(Ri=2
4me R
and then integrate from the surface in to the megupoint, using the previously calculated
expression foE within the sphere

Qr

AR

Since (from [4]) AV =V (r)-V(R = —j Edr

v(r):—jEdr+v(R):—rj A g2

| 4T R 4te R

_J oo’ [, o Q. Q
2x4me R | 4R 8®,R 8e,R 4%, F

__Q (L.
_8TIEOR(3 sz
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